
 1

 

 

Technische Universität Braunschweig 

Institut für Betriebssysteme und Rechnerverbund 
Kommunikation und Multimedia 

Prof. Dr. L. Wolf 

 

 

Praktikum Computernetze im WS0809 

– Task Description – 
Betreuer: Felix Büsching, Habib-ur-Rehman 

 

Aufgabe: Network Simulator Programming-OSPF Routing Protocol 
 

1. Objective 
This task/assignment is about implementing the basic routing operations performed by OSPF 
routers. The scope of this task is limited to initialization of link state databases inside routers, 
sharing the link state information between routers and finally calculating shortest paths and routes 
as per OSPF specifications. The simulator source provided in this task has very limited 
functionality (explained in the next section) to keep this task simple therefore the features will not 
be implemented in full scale. 

We have eliminated some of the functions like performing basic routing operations like sharing 
link state information and calculation of shortest paths and routes, from the simulator and 
students are required to re-write those functions so that the simulator eventually works according 
to the OSPF specifications. And of course while writing that code; there will be very limited 
access to the rest of the components of the simulator. 

2. OSPF features supported/not-supported by the 
simulator 
The simulator provided in this assignment supports very limited but core functionality of OSPF. 
Most of the optional and more technical components are eliminated from the scope of this 
assignment to keep it simple for the students. Following are the OSPF features which are not 
available in this simulator: 

• Division of topology into Areas. The topology is considered as one single area in this 
simulator. Consequently, all the features which are based on the concept of multiple areas are 
also not present. For example, individual Link State Database and Shortest Path Tree for 
each area. Now every router has only one instance of these. Similarly, in OSPF packets and 

 



 2

Link State Advertisements, wherever there is an option to mention Area ID, it is hard coded 
and user has provided no control to access it. Link State Advertisements of type Network, 
Summary and AS-External are not implemented. 

• Transit Networks. In OSPF, a network attached to more than one routers is called transit 
network. This simulator doesn’t support existence of such nodes in the topology. As a result, 
the related concepts of Neighbor Router and Designated Router are also not provided. 

• Hello Protocol. This part of OSPF functionality is responsible for identifying Neighbor 
Routers and then electing Designated Router. As there is no support for Neighbor and 
Designated routers in this simulator, so Hello Protocol and Hello Packet are also missing. 

• Bringing up Adjacencies. During this operation, Neighbor Routers share Database 
Description Packets with each other to get initial information about their links and 
synchronize their Link State Databases. This process, Database Description Packets and 
Link State Request Packets (required to demand updated link state information from 
neighbors) are not provided as there are no Neighbor Routers. However, initialize method 
is provided in Routers to identify their link status and initialize their Link State Databases 
before starting flooding. 

• Transmission Error, Acknowledgements, Checksums, Type of Service, Timers, 
Aging, Sequence Numbers. All these concepts are eliminated to reduce the complications. 
Link State Acknowledgment Packets are not required any more. Similarly, the verification 
of age and validity at different processes is needed not to consider. 

The supported OSPF features and operations which simulator performs on behalf of user are 
following: 

• Reading the topology from file and initialize simulator data structures. This operation is 
performed in response to “load filename” command. 

• Verification of ambiguities in the topology. This process is performed as a first step in 
response to “run” command so that there shouldn’t be any complications in the later 
operations. 

• Initialization of Router data structures. This is the first step of OSPF functionality simulation 
(executed after verification). Routers are provided references to their links. A call is made to 
initialize method of every router so that necessary steps can be performed. 

• The OSPF flooding. Repeated calls to the flood method of routers are performed. After every 
call, simulator looks for OSPF packets to send and forward them to relevant routers. 

• Data structures for OSPF packet header, Link State Update Packet, LSA header, 
Router LSA, Routing Table, Shortest Path Tree, and Link State Database are 
implemented in the simulator. 

• This simulator also supports equal cost multiple paths feature of OSPF. 

3. Simulator Structure 
The OSPF simulator is designed solely in C++ under Linux environment. It contains classes for 
different components to simulate an OSPF instance inside a single router as well as to integrate 
these router instances so that they can exchange OSPF related information with each other. 

 



 3

 
Fig 1: Basic Simulator Structure 

These classes are described in different header files (.h) provided. The class diagrams in this 
document show how these classes are interrelated in the simulator. All these classes are briefly 
described here while a detailed description of these classes is independently given in the 
document “PCn-OSPF-class-description.pdf”: 

main (main.h, main.cpp) 
Basically these two files contain the main function and some other global functions and 
variables. None of these are really important in this assignment. In the main function, an instance 
of Simulator is created and a command prompt is displayed to accept input from user. The 
relevant functions of Simulator are called to fulfill user commands. A complete list of available 
commands is provided in “PCn-OSPF-class-description.pdf”. 



 4

Simulator (Simulator.{h/cpp}) 
This class represents the simulator instance. A simulator instance contains routers, links and 
networks in the topology. Data members of a simulator instance are populated in response to user 
commands. For example, “load filename” assigns topology file name to the topologyFile. 
Details of routers, links and networks are loaded into routers, links, networks etc., from 
topology file in response to “run” command. 

Router (Router.{h/cpp}) 
This class represents an OSPF router. It contains all necessary components of an OSPF router like 
Link State Database, Shortest Path Tree, Routing table and queues for incoming and outgoing 
OSPF packets. As this implementation of OSPF doesn’t contain the concept of areas, therefore 
each router has only one Link State Database. Similarly, there is only one instance of Shortest 
Path Tree in each router. A router instance also contains references to its links. During the 
execution of run command, before starting core OSPF operations, simulator instance passes 
references of every router’s links to its instance. 

Network (Network.{h/cpp}) 
This class represents a network. Only OSPF “stub networks” are implemented in this simulator. 

Link (Link.{h/cpp}) 
This class represents a link. Only two types of OSPF links i.e., “Point to Point” and “Stub 
Network” are implemented. 

LSDatabase (LSDatabase.{h/cpp}) 
This class represents a Link State Database. As only Router LSAs are implemented in this 
simulator, therefore, every instance of LSDatabase contains Router LSAs only. 

SP_Tree (SP_Tree.h) 
This class represents an OSPF shortest path tree. In OSPF, a router has an independent shortest 
path tree for every area, but as this simulator doesn’t support areas therefore there will be only 
one instance of SP_Tree in every router. Also, for this task this class is provided blank. It means 
students are free to design this class according to their choice and ease. 

Routing_Table (Routing_Table.{h/cpp}) 
This class describes the Routing Table of each router. Entries are defined as a structure (rtEntry) 
and every instance of this class contains multiple instances of this structure. As OSPF supports 
multiple paths, therefore every entry contains more than one path (struct path). 

OSPF_Packet_Queue (OSPF_Packet_Queue.{h/cpp}) 
Every router exchanges routing information with its neighbors through OSPF packets. For this 
purpose, two queues are implemented in each router. The inQ basically contains packets sent by 
other routers to this router, while the outQ contains packet to be sent by this router. During the 
execution of OSPF functionality, simulator takes packets from the outQ of every router and put 
them in the inQs of relevant routers. 

OSPF_Header (OSPF_Header.{h/cpp}) 
All types of OSPF packets carry a similar header. This class describes this header and related 
functionality. 

 



 5

 
Fig 2: Router and related classes 

OSPF_Packet_Base (OSPF_Packet_Base.{h/cpp}) 
OSPF has five types of packets for routing operations. Although this simulator implements only 
one of them, but still parent-child class structure is provided for future extension. This class 
contains the features common to all OSPF packet types like header. 

OSPF_Packet (OSPF_Packet_Queue.{h/cpp}) 
This structure basically describes an individual element in the OSPF_Packet_Queue. 



 6

Link_State_Update_Packet (Link_State_Update_Packet.{h/cpp}) 
This class describes the only OSPF packet type implemented in this simulator. Link State Update 
packets are used by OSPF routers to advertise their link states to other routers. This class provides 
all the relevant OSPF functionality. 

 

 
Fig 3: OSPF Packet hierarchy in the simulator 

LSA_Header (LSA_Header.{h/cpp}) 
OSPF has four different types of Link State Advertisements (LSA). All these LSA types have a 
similar header. This class describes that common header available in all those LSAs and the 
required functionality. 



 7

LSA__Base (LSA_Base.{h/cpp}) 
This simulator includes implementation of only one of the LSA types i.e., router LSAs, but still 
parent-child class structure is provided for future extension. This class contains the features 
common to all OSPF LSA types like header. 

 

 
Fig 4: Link State Advertisement hierarchy in the simulator 

Router_LSA (Router_LSA.{h/cpp}) 
OSPF routers share their link states in the form of router LSAs. Every router keeps its own router 
LSAs and the router LSAs received from other routers in its Link State Database. These LSAs are 



 8

packed into Link State Update Packet during the advertisement process. This class describes an 
OSPF Link State Advertisement of type “Router LSA” and related functionality. 

Link_Data (Link_Data.{h/cpp}) 
Every router LSA contains information about all the links of the router originating this LSA. This 
information is provided inside an instance of Router_LSA as multiple instances of this class. 

IP (IP.{h/cpp}) 
This is a utility class which basically represents an IP address and provides necessary operations 
to work with an IP address. 

4. How it works 
This section will describe the sequence of operations inside the simulator to provide an 
understanding about its working. A sequence diagram about the main operations of simulator is 
also given below to enhance the clarity. 

 

 
Fig 5: Sequence diagram showing sequence of operations inside “load” and “run” command 

The simulator executable is named ospf.o and when invoked it displays a command prompt as: 

OSPF Simulator Command Line>> 



 9

It also creates an instance of Simulator to perform further operations. A complete list of 
available commands and their output is given in a later section. The two commands “load” and 
“run” are important as these provide the core functionality of OSPF. In this section, the sequence 
of operations performed by simulator in response to these two commands will be described. 

load filename 
This command directs the simulator to load the network topology given in the file “filename”. In 
response, the name of topology file is assigned to the topologyFile member of Simulator 
instance and read_Topology method is invoked. This method reads the file line by line and 
identifies different parameters from the file. The members, routers, links and networks are 
initiated and then descriptions of individual routers, links or networks are assigned to the relevant 
instances after parsing using set_Routers or set_Links or set_Networks and values are 
assigned to routers, links and networks elements by calling set methods of these classes. 

run 
This command invokes the sequence of operations to simulate the OPSF behavior on the topology 
loaded previously. 

First of all verify method of Simulator instance is called to verify any ambiguities in the 
topology like invalid or duplicate addresses etc. 

In second step, the initialize method is called. This method copies the IP addresses of link ends 
to each Link instance (required in later operations) by calling addLinkEndIPs which eventually 
calls setEnds of each Link. Then countRouterLinks is called which identifies the links but just 
sets the number of the links in each router by calling setNumLinks. These link references are 
later passed by addRouterLinks to each Router instance by calling their addLink method. 
Finally, the initialize of each Router instance is called. 

Third step actually performs the OSPF flooding. First the flood method of every Router instance 
is called. After that, inQs of all the Router instances are checked. If there are any packets, then 
these packets are transferred in the outQs of relevant Router instances. This process is 
performed repeatedly, until all the inQs are found empty. 

Finally, the out method is called. This method writes the status of all Router instances to a file 
“Routing_Table.txt”. The out method calls display method of each Router instance which 
actually writes Link State Database and routing table to the output file. 

5. Your task 
The simulator provided for this assignment purpose is fully functional (as per exceptions 
mentioned earlier). However, we eliminated the code from initialize, flood, calcualteSPT and 
calcualteRoutingTable methods of Router class. Also the SP_Tree class is provided without 
implementation. Students have to implement these methods following the OSPF protocol 
specifications (only for those features which are originally supported by the simulator). However, 
during this implementation, they also have to take care for the following rules: 

• They will be provided with following header files only: 

main.h, Simulator.h, Router.h, Link.h, Network.h, IP.h, LSDatabase.h, SP_Tree.h, 
Routing_Table.h, Link_Data.h, OSPF_Header.h, OSPF_Packet_Queue.h, 
OSPF_Packet_Base.h, Link_State_Update_Packet.h, LSA_Base.h, LSA_Header.h, 
Router_LSA.h 



 10

The respective cpp files containing implementation of functions in these files will be provided in 
compiled (.o) form. However, Router.o will not have the implementation of initialize, flood, 
calcualteSPT and calcualteRoutingTable. The blank definitions of these functions will be 
provided in an independent file ospf.cpp. 

• Students have to write their code only in this ospf.cpp file. They cannot add any functions or 
data members to any of the classes except Router, SP_Tree. 

• Few test topologies with their output on original simulator are provided so that students can 
verify the correctness of their code. These files contain the output generated in response to 
run command. 

• For compiling the simulator code with their additions, a script file compile-ospf is also 
provided. They have to simply run the command ./compile-ospf from OS/X command 
prompt. This will generate an executable with name ospf.exe. 

• Students have to submit their version of Router.h, SP_Tree.h and ospf.cpp. 

6. Reading Material helpful in this assignment 
• The main reading source for this assignment is OSPF version 2 RFC 2328. A copy of this 

RFC is provided on the course website. Required sections are already marked for convenience. 
Few sections are beyond the scope of this assignment but are highlighted so that the student’s 
can have enough background knowledge about the task requirements. 

• Many major books on networking provide brief introduction on OSPF’s working. That can 
also be helpful to have a basic understanding about it. One good option can be “Routing in 
Internet” by Christian Huitema. 

 


