Technische Universitat Braunschweig

Institut flr Betriebssysteme und Rechnerverbund
Kommunikation und Multimedia

Prof. Dr. L. Wolf

Praktikum Computernetze im WS0708

- Task Description -

Betreuer: Zefir Kurtisi, Habib-ur-Rehman

Aufgabe Network Simulator Programming-OSPF Routing Protocol

1. Objective

This task/assignment is about implementing the basic routing operations performed by OSPF
routers. The scope of this task is limited to initialization of link state databases inside routers,
sharing the link state information between routers and finally calculating shortest paths and routes
as per OSPF specifications. The simulator source provided in this task has very limited
functionality (explained in the next section) to keep this task simple therefore the features will not
be implemented in full scale.

We have eliminated some of the functions like performing basic routing operations like sharing
link state information and calculation of shortest paths and routes, from the simulator and
students are required to re-write those functions so that the simulator eventually works according
to the OSPF specifications. And of course while writing that code; there will be very limited
access to the rest of the components of the simulator.

2. OSPF features supported/not-supported by the
simulator

The simulator provided in this assignment supports very limited but core functionality of OSPF.
Most of the optional and more technical components are eliminated from the scope of this
assignment to keep it simple for the students. Following are the OSPF features which are not
available in this simulator:

e Division of topology into Areas. The topology is considered as one single area in this
simulator. Consequently, all the features which are based on the concept of multiple areas are
also not present. For example, individual Link State Database and Shortest Path Tree for
each area. Now every router has only one instance of these. Similarly, in OSPF packets and

Link State Advertisements, wherever there is an option to mention Area ID, it is hard coded
and user has provided no control to access it. Link State Advertisements of type Network,
Summary and AS-External are not implemented.

Transit Networks. In OSPF, a network attached to more than one routers is called transit
network. This simulator doesn’t support existence of such nodes in the topology. As a result,
the related concepts of Neighbor Router and Designated Router are also not provided.

Hello Protocol. This part of OSPF functionality is responsible for identifying Neighbor
Routers and then electing Designated Router. As there is no support for Neighbor and
Designated routers in this simulator, so Hello Protocol and Hello Packet are also missing.

Bringing up Adjacencies. During this operation, Neighbor Routers share Database
Description Packets with each other to get initial information about their links and
synchronize their Link State Databases. This process, Database Description Packets and
Link State Request Packets (required to demand updated link state information from
neighbors) are not provided as there are no Neighbor Routers. However, initialize method
is provided in Routers to identify their link status and initialize their Link State Databases
before starting flooding.

Transmission Error, Acknowledgements, Checksums, Type of Service, Timers,
Aging, Sequence Numbers. All these concepts are eliminated to reduce the complications.
Link State Acknowledgment Packets are not required any more. Similarly, the verification
of age and validity at different processes is needed not to consider.

The supported OSPF features and operations which simulator performs on behalf of user are
following:

3.

Reading the topology from file and initialize simulator data structures. This operation is
performed in response to “load filename” command.

Verification of ambiguities in the topology. This process is performed as a first step in
response to “run” command so that there shouldn’t be any complications in the later
operations.

Initialization of Router data structures. This is the first step of OSPF functionality simulation
(executed after verification). Routers are provided references to their links. A call is made to
initialize method of every router so that necessary steps can be performed.

The OSPF flooding. Repeated calls to the flood method of routers are performed. After every
call, simulator looks for OSPF packets to send and forward them to relevant routers.

Data structures for OSPF packet header, Link State Update Packet, LSA header,
Router LSA, Routing Table, Shortest Path Tree, and Link State Database are
implemented in the simulator.

This simulator also supports equal cost multiple paths feature of OSPF.

Simulator Structure

The OSPF simulator is designed solely in C++ under Linux environment. It contains classes for
different components to simulate an OSPF instance inside a single router as well as to integrate
these router instances so that they can exchange OSPF related information with each other.

Simulator

Flinks : Link*

Fretworks © Network®
Frum_Links © int
Frium_Metworks @ int
lnum_Routers : int
Frouters : Router*
+HopologyFile © char256]

+Simulator)

+~Simulaton}

FaddLinkEnd|Ps() - int

FaddRouterlinks(] - int

+dispLSDE(in routerindex - char*)
+dispRTBL{incut routerindex : char*)
+dispRouter(in index : char®)
+dispTopology(}

FexistLink(in id : int) : int

FexistMetwork(in num @ int) @it
FeistMetwork(inout ospfid @ char*) @ int
FexistRoutenin num : int} ©int
FexistRouten(inout ospfid : char*) : int
FgetMetworklndex(in networkiumber < int) - int
FaetLink|ndex(in linkMumber : IP) : int
FaetRouterndex(in routerMumber @ int) @ int
Finitializel) : int

+read_Topology() @ int

+simulatel) : int
+unload_Topalogy() : int
+varify() it

+out() :int
FcountRouterLinks() @ int

Fset_Links(in index : int, inid :int, in typ : char, inid1 :int, inid2 :int, in cost © unsigned short) © int
Feat_Matworks(in index - int, in num : int, inout id : char*, inout mask : char*) : int
l-set_Routers(in index : int, in number : int, inout id - char®) : int

B

-id : IP

Hinks : Link"

Hsdb : LSDatabase

Fepft : SPF_Trea

lin : OSPF_Packet_Cueue

-out : OSPF_Packet_Cueue
Frum_Links © int

Fiumber : int

HroutingTableSize : int

|-t : Routing_Table*

+Router()

+=~Router{)}

+addLink{in link : Link™} : int
+setMumLinks(in count : int) - int
-calculateRoutingTable() : int
FoalculateSPET() : int
+aetPacketsTaSendCount() @ int
+display(in outFile @ FILE®) : woid
+lood() ©int

+oetlDi) ;P&

+oetPacketToSend() | OSPF_Packet”
+packetReceived(in packet : OSPF_Packet™) : int]
+getMumber() @ int

+initialize() - int

+sat{in num ;int, inout ospfid @ char®) ;@ int
+dispLSDB({in oulFile : FILE™) ; void

+dispRTBL(in outFile : FILE*) : void

. 1

1 1
Network Link

Fid : IP ~oost unsigned short

Fmask ; IP Hidd - int

Fnumber : int Fend2Mask - IP

+Metworkl) Land2 :int

+~Metwork() ~end1IP : IP

+getl() : IP& ~erdd sint

+gethMaski) : IP& Htype : char

+aetMumber() : int rend2IP 1P

+set(in num : int, inout nid - char®, inowt nmask : char*) : int FLinki()
—=Link(}
+gelCosl{) unsigred shor
getlD() - int

HgetEnd2Mask() : IP&
HgetEnd2() : IP&
HgetEnd1() : IP&
HgetRouter() : int
+getType() : char

+gethlet_Router() : int

+set(in ownlD :int, in typ : char, inid1 :int, inid2 : int, in KCost : unsigned short) : void
+setEnds(in el : IP, in ez : IP, ined: IF) - void

=setEnds{in el 1P, ine2: IP) : vaid

Fig 1: Basic Simulator Structure

These classes are described in different header files (.h) provided. The class diagrams in this
document show how these classes are interrelated in the simulator. All these classes are briefly
described here while a detailed description of these classes is independently given in the
document “PSP-task1-class-description”:

main (main.h, main.cpp)

Basically these two files contain the main function and some other global functions and
variables. None of these are really important in this assignment. In the main function, an instance
of Simulator is created and a command prompt is displayed to accept input from user. The
relevant functions of Simulator are called to fulfill user commands. A complete list of available
commands is provided in “OSPF-class-description”.

Simulator (Simulator.{h/cpp})

This class represents the simulator instance. A simulator instance contains routers, links and
networks in the topology. Data members of a simulator instance are populated in response to user
commands. For example, “load filename” assigns topology file name to the topologyFile.
Details of routers, links and networks are loaded into routers, links, networks etc., from
topology file in response to “run” command.

Router (Router.{h/cpp})

This class represents an OSPF router. It contains all necessary components of an OSPF router like
Link State Database, Shortest Path Tree, Routing table and queues for incoming and outgoing
OSPF packets. As this implementation of OSPF doesn’t contain the concept of areas, therefore
each router has only one Link State Database. Similarly, there is only one instance of Shortest
Path Tree in each router. A router instance also contains references to its links. During the
execution of run command, before starting core OSPF operations, simulator instance passes
references of every router’s links to its instance.

Network (Network.{h/cpp})
This class represents a network. Only OSPF “stub networks” are implemented in this simulator.

Link (Link.{h/cpp})
This class represents a link. Only two types of OSPF links i.e., “Point to Point” and “Stub
Network” are implemented.

LSDatabase (LSDatabase.{h/cpp})
This class represents a Link State Database. As only Router LSAs are implemented in this
simulator, therefore, every instance of LSDatabase contains Router LSAs only.

SP_Tree (SP_Tree.h)

This class represents an OSPF shortest path tree. In OSPF, a router has an independent shortest
path tree for every area, but as this simulator doesn’t support areas therefore there will be only
one instance of SP_Tree in every router. Also, for this task this class is provided blank. It means
students are free to design this class according to their choice and ease.

Routing_Table (Routing_Table.{h/cpp})

This class describes the Routing Table of each router. Entries are defined as a structure (rtEntry)
and every instance of this class contains multiple instances of this structure. As OSPF supports
multiple paths, therefore every entry contains more than one path (struct path).

OSPF_Packet_Queue (OSPF_Packet_Queue.{h/cpp})

Every router exchanges routing information with its neighbors through OSPF packets. For this
purpose, two queues are implemented in each router. The inQ basically contains packets sent by
other routers to this router, while the outQ contains packet to be sent by this router. During the
execution of OSPF functionality, simulator takes packets from the outQ of every router and put
them in the inQs of relevant routers.

OSPF_Header (OSPF_Header.{h/cpp})
All types of OSPF packets carry a similar header. This class describes this header and related
functionality.

OSPF_Packet_Queue
|-qLength : int
-packets : OSPF_Packet™
+OSPF_Packet_Queue)
+~0SPF_Packet CQueua()
+getlLengthl) @ int
+enqueuelin packet - OSPF_Packet”) - int
H+daqueue() : OSPF_Packet”

2

Router

Hid © 1P

Hinks @ Link™

Hsdb : LSDatabase

Fspt 1 SP_Tree

FinQ : OSPF_Packet_Clueue
Foutl - OSPF_Packet_Queue
Fnum_Links ;int

Fnumber : int

+rt : Routing_Table

HRouterr)

+~Router |

+addLlinkiin link @ Link®) : int
+setMumlinks{in count - int) : int
FealoulateRouting Tablel) © int
FeakculateSPT) ¢ int
+getPacketsToSendCount() : int
+digplay(in outFile : FILE*) @ void

+Hlood() : int

Hoetl D) IP&

HoetPackelToSend() 1 OSPF_Packet*
+packetReceived(in packet : OSPF_Packet™) : int|
+oethumber() @ int

tinitializel) : int

Hset{in num :int, inout ospfid © char®) :int
HdispLSDB(in outFile : FILE™) : vaid
+dispRTBL(in cutFile : FILE*) : void

Link

Fcost : unsigned short

Hid :int

rend2Mask - IP

Fand2 it

rendllP e 1P

rendl :int

Hype - char

rend2IP ;P

fFLink()

~Link()

HgetCost() | unsigned short
HgetiD() - int

HgetEnd2Mask() : IP&

lrgetEnd2() : IP&

FgetEndi(): IP&

HogetRouter() @ int

HgetType() : char

tsatin ownlD @ int, in typ @ char, in id1 :int, inid2 : int, in ICost @ unsigned short) © void
#setEndsiin el : IP, in eZ : IP, in &3 : IP} : void
Fgethet Router() - int

HsetEndsiin el @ IP, in 22 1 IP) : void

Routing_Table
-entries : tEntry*
-size [int
+Routing Table() aslfucts
+~Routing_Table() riEntry
+getAM(in diD : IP) : IP Hdestination_Type : char|
+getDID{in index : int} : IP "y Hdestination_ID : 1P
+getDType(in diD : 1P} : char +address_Mask - IP
+getMH{in index : int, in diD: 1P} - IP 1 * |rpathCount : int
+getPathTypelin index : int, in dID : 1P} : char Hpaths : path®
+addRoutein AT : char, in diD : IP. in aM - IF) © int
+getCostiin index : int, n 4D - 1P} : unsigned short
+addPathiin dID : IF, in cost - unsigned shart, in next - IP) : int 1 L
+gelSizel) : int
+gatPathCount(in diD @ 1P} :int

wstructe
LSDatabase path
MLSAs “int +path_Type : char
Lrouter | SAs : Router LSA" :‘;‘;i[t :H“nsl‘\?::‘d shaot
SDawmbase)) SR
HaddRLSALink{in 1sID : IP, in linkID : 1P, in linkData : IP, in type : char, in cost : short)) 1
+addRouterLSA(In rsa : Router_LSA) - int
+display(in outFile : FILE*) : vaid
+oetnRLSA{) @ int
HoetRouterLSA(In index - int) : Router_LSA 8P_Tree
l+~LSDatabase()
+updateRouterL SA(in risa | Router_LSA) - int FSPF_Treel)
+getRouterLSA(in IsID : IP) : Router_LSA +~SPF_Tree()
+existRouterLSAIN IsID : IF) : int =
[]
Router_LSA

Clinks - Link_Data*
Fnumi_Links. : unsigned short
~optionsFixed : char
~optionsVEB : char
Router_LSA()

L~Router LSA()

. Hoperator=(inout right : Router_LSA&) : Router_LSAS&

HaddLink(inid : 1P, in data : IP, in type : char, in metric : unsigned short) @ int
display(in cutFile : FILE*) : void

Fgetlinkiin index - int) : Link_Data

+gethumbinks() : unsigned short

+Router_LSA(In IsID : IP, in advRouter - IP)

operator==(inout right : Router | SAL) : int

Fig 2: Router and related classes

OSPF_Packet_Base (OSPF_Packet_Base.{h/cpp})

OSPF has five types of packets for routing operations. Although this simulator implements only
one of them, but still parent-child class structure is provided for future extension. This class
contains the features common to all OSPF packet types like header.

OSPF_Packet (OSPF_Packet_Queue.{h/cpp})
This structure basically describes an individual element in the OSPF_Packet_Queue.

Link_State_Update Packet (Link_State Update_Packet.{h/cpp})

This class describes the only OSPF packet type implemented in this simulator. Link State Update
packets are used by OSPF routers to advertise their link states to other routers. This class provides
all the relevant OSPF functionality.

OSPF_Header

farea_ID : P

au_Tyvpe - short

Fauthentication - int

Fauthentication2 - int

fchecksum : short

packet Length : unsigned short

Frouter 1D - 1P

Ftype : char

Fwarsion - char

+OSPF_Header()

+—OSPF_Header()

+operator={inaut right : OSPF_Header&) : OSPF_Header&
Hgetlengthl) : unsigned short

+getRouter() : IP

Hsetiin typ : char, in length : unsigned short, in router © IP) : int
Hsetlength{in | : unsianed short) © int

Hset(in typ : char, in length @ unsigned short) @ int
H+getType() - char

3
wstructs OSPF_Packet_Base
OSPF_Packet [Hospl_Header - OSPF_Header
[+packet : OSPF_Packet_Base” e +OSPF_Packet_Base()
HinklD - int 1 1 |[+~OSPF_Packet_Base()
+getTypel) : char

JE

QOSPF_Packet_Queue Link_State_Update_Packet
LgLength : int Frum_rlLSA C int
-packets | OSPF_Packet* HLSAs - Router_LSA™
+OS5PF_Packe! Clueuea() HLink_State_Update Packet()
=—0SPF_Packet Queus(} +—Link_State Lpdate Packet()
getlength() - int +operator={inout right : Link_State LUpdate_Packet&) : Link_State_Update Packet&
Fenqueaus{in packet 1 OSPF_Packet®) : int HaddRLSA(IN dsa @ Router LSA) @ int
Fdequeus() - OSPF_Packet” HgetmnRLSA() - int
+getRLSA(IN index : int) - Router_LSA
+Link_State lpdate Packet(in router : IP)

1

-

Router_LSMA

-links : Link_Data*

Frum_Links © unsigned short

—optionsFixed : char

~optionsVER @ char

FRouter_LSA)

—Router LSAL)

Foperator=({inout right : Router LSA&) : Router_ LSA&
=addLink(in id - IP, in data : IP, in ype : char, in matric @ unsigned short) :int
#display(in cutFile : FILE*) @ woid

Foetlink(in index : int) : Link_Data

=getMumbinksi) @ unsigned shart

HRouter_LSAlIn IsID : IP, in adviRouter - IF)
=oparator==(inout right - Router_LSA&] © int

Fig 3: OSPF Packet hierarchy in the simulator

LSA Header (LSA_ Header.{h/cpp})

OSPF has four different types of Link State Advertisements (LSA). All these LSA types have a
similar header. This class describes that common header available in all those LSAs and the
required functionality.

LSA_Base (LSA_ Base.{h/cpp})

This simulator includes implementation of only one of the LSA types i.e., router LSAs, but still
parent-child class structure is provided for future extension. This class contains the features
common to all OSPF LSA types like header.

LSA_ Header

Fadwvertising_Router : IP

Hink_State_ 1D IP

Hs_Age unsigned short

He CheckSum @ shor

Hi= Length : unsigned short

Fls_SequenceMNumber :int

Hs_ Type : char

Foptions : char

FLSA_Header()

H~LSA_Header)

Hoperator=(inout right : LSA_ Header) | LSA_Headeré
Foperator==(incut right : LSA_Header&) : int
rdizplayiin cutFile @ FILE*) : void

oetLSID0) : IP&

Foetlength() - unsigned short

Fsat(in type : char, in IslD - 1P, in advRouter : IP) @ int
Hsatlengthlin kength @ unsigned short) @ int

Hsatiin type @ char) © int

1
1

LSA_Base
#lsa_Header : LSA_Header
+HLS5A_ Base()
+~L5A_ Basel)
HdizplayHeader(in ocutFila : FILE®) = wvoid
+getLSIDI) © IP&

i

Router_LSA

Lliinks : Link_Data*

Frum_Links | unsigned short

FoptionsFixed : char

FoptionsVER @ char

FRouter_LSA)

F—Router LSA)

Foperator={inout right : Router_LSAL) : Router_LSA&
raddLink(in id - IP, in data : IP, in type : char, in meatric @ unsigned short) @ int
Hdisplay(in cutFile : FILE*) : woid

rrgetlink(in index @ int) - Link_Data

FgethumLinks() © unsigned short

FRouter_LSAIN IsID : 1P, in advRouter : IP)
Hoperator==(inout right : Router LSA&) @ int

1

-

Link_Data

Flink_Diata @ 1P

Hink_ID ;1P

Fmetric : unsigned short

FtosMumber @ char

Fivpe : char

+Link_Datal)

+~Link_Data()

+operator=(incut right - Link_Data&) : Link_Datas&
+operator==(inout right : Link_Data&) - int
+getData() : IP

+getlD{) : I

+gethdetric() : unsigned short

+oetTOS() : char

+oetType() | char

+set(in id - IP, in data - IP. in typ : char, in cost ; unsigned shart) ©int
+display(in outFile : FILE™) - waid

Fig 4: Link State Advertisement hierarchy in the simulator

Router_LSA (Router_LSA.{h/cpp})
OSPF routers share their link states in the form of router LSAs. Every router keeps its own router
LSAs and the router LSASs received from other routers in its Link State Database. These LSAs are

packed into Link State Update Packet during the advertisement process. This class describes an
OSPF Link State Advertisement of type “Router LSA” and related functionality.

Link_Data (Link_Data.{h/cpp})
Every router LSA contains information about all the links of the router originating this LSA. This
information is provided inside an instance of Router_L SA as multiple instances of this class.

IP (IP.{h/cpp})
This is a utility class which basically represents an IP address and provides necessary operations

to work with an IP address.

4. How it works

This section will describe the sequence of operations inside the simulator to provide an
understanding about its working. A sequence diagram about the main operations of simulator is
also given below to enhance the clarity.

" simulator is started

|
I
1

creates an instance of Simulator

: i ospf - Simulator
:7 Displays command prompt

L

load filename

read_Topology()

sa.tWFlo-nersc]: sat()

routers]] : Rouwter

sel_Links(): set()
1

1 links[l : Link
un

1"__—‘_.__&__‘_‘_‘,

sel_h:;;mmks' sal()
I
werifyl) natworksl] @ Network

1
initialize])

'
addLinkEnd|Ps() setEnds()

couniRouterLinks({}: setMumLinks()
|

addRouterLinks{}: addLink()
1

J

]

]

] |
] 1
] l
| |
] l
] l
] |
] 1 |
] 1 l
] 1 l
] 1 l
] 1 l
] 1 l
| initialized) ! |
] 1 1 l
] 1 l
] 1 l
] . 1 l
| simulate() T 1 | |
| 4 i flood () : : :
]

] L | l
: While thepe [are ! :
| no more pathkets | |
| to transfer gmong 1 |
1 routers. 1 |
I out) oh T | |
1 1 display() 1 ! !
| 1 1 l
] 1 |
] 1 l
] 1 l
] L] T 1 1 |
] 1 l
| | |

Fig 5: Sequence diagram showing sequence of operations inside “load” and “run” command

The simulator executable is named ospf.o and when invoked it displays a command prompt as:

OSPF Simulator Command Line>>

It also creates an instance of Simulator to perform further operations. A complete list of
available commands and their output is given in a later section. The two commands “load” and
“run” are important as these provide the core functionality of OSPF. In this section, the sequence
of operations performed by simulator in response to these two commands will be described.

load filename

This command directs the simulator to load the network topology given in the file “filename”. In
response, the name of topology file is assigned to the topologyFile member of Simulator
instance and read_Topology method is invoked. This method reads the file line by line and
identifies different parameters from the file. The members, routers, links and networks are
initiated and then descriptions of individual routers, links or networks are assigned to the relevant
instances after parsing using set Routers or set_Links or set Networks and values are
assigned to routers, links and networks elements by calling set methods of these classes.

run
This command invokes the sequence of operations to simulate the OPSF behavior on the topology
loaded previously.

First of all verify method of Simulator instance is called to verify any ambiguities in the
topology like invalid or duplicate addresses etc.

In second step, the initialize method is called. This method copies the IP addresses of link ends
to each Link instance (required in later operations) by calling addLinkEndIPs which eventually
calls setEnds of each Link. Then countRouterLinks is called which identifies the links but just
sets the number of the links in each router by calling setNumLinks. These link references are
later passed by addRouterLinks to each Router instance by calling their addLink method.
Finally, the initialize of each Router instance is called.

Third step actually performs the OSPF flooding. First the flood method of every Router instance
is called. After that, inQs of all the Router instances are checked. If there are any packets, then
these packets are transferred in the outQs of relevant Router instances. This process is
performed repeatedly, until all the inQs are found empty.

Finally, the out method is called. This method writes the status of all Router instances to a file
“Routing_Table.txt”. The out method calls display method of each Router instance which
actually writes Link State Database and routing table to the output file.

5. Your task

The simulator provided for this assignment purpose is fully functional (as per exceptions
mentioned earlier). However, we eliminated the code from initialize, flood, calcualteSPT and
calcualteRoutingTable methods of Router class. Also the SP_Tree class is provided without
implementation. Students have to implement these methods following the OSPF protocol
specifications (only for those features which are originally supported by the simulator). However,
during this implementation, they also have to take care for the following rules:

e They will be provided with following header files only:

main.h, Simulator.h, Router.h, Link.h, Network.h, IP.h, LSDatabase.h, SP_Tree.h,
Routing_Table.h, Link_Data.h, OSPF_Header.h, OSPF_Packet_Queue.h,
OSPF_Packet_Base.h, Link_State_Update Packet.h, LSA Base.h, LSA Header.h,
Router LSA.h

The respective cpp files containing implementation of functions in these files will be provided in
compiled (.0) form. However, Router.o will not have the implementation of initialize, flood,
calcualteSPT and calcualteRoutingTable. The blank definitions of these functions will be
provided in an independent file ospf.cpp.

e Students have to write their code only in this ospf.cpp file. They cannot add any functions or
data members to any of the classes except Router, SP_Tree.

o Few test topologies with their output on original simulator are provided so that students can
verify the correctness of their code. These files contain the output generated in response to
run command.

e For compiling the simulator code with their additions, a script file compile-ospf is also
provided. They have to simply run the command ./compile-ospf from OS/X command
prompt. This will generate an executable with name ospf.exe.

¢ Students have to submit their version of Router.h, SP_Tree.h and ospf.cpp.

6. Reading Material helpful in this assignment

e The main reading source for this assignment is OSPF version 2 RFC 2328. A copy of this
RFC is provided on the course website. Required sections are already marked for convenience.
Few sections are beyond the scope of this assignment but are highlighted so that the student’s
can have enough background knowledge about the task requirements.

e Many major books on networking provide brief introduction on OSPF’s working. That can
also be helpful to have a basic understanding about it. One good option can be “Routing in
Internet” by Christian Huitema.

10

