

Theoretische Informatik 2

Arne Schmidt

Kapitel 3 – Berechen- und Entscheidbarkeit

Kapitel 3.1 - Berechenbarkeit

Sei
$$f: \Sigma_1^* \to \Sigma_2^*$$
 (für bel. Σ_1^*, Σ_2^*) mit $f(w) = \text{undef für all } w \in \Sigma_1^*$.

Wie berechnet man *f*?

Was dürfte ein Algorithmus ausgeben? Wenn er etwas ausgibt, wäre das ein definiertes verhalten!

Wir müssen erst definieren, was "berechenbar" bedeutet!

Berechenbarkeit

Intuitiv: Eine (partielle) Funktion $f: \Sigma_1^* \to_p \Sigma_2^*$ ist **berechenbar**, wenn es einen Algorithmus gibt, der mit Eingabe $w \in \Sigma_1^*$

- nach endlich vielen Schritten akzeptiert und f(w) ausgibt, falls f(w) definiert ist
- nicht anhält oder nicht akzeptiert, falls f(w) nicht definiert ist.

Umgekehrt, berechnet jeder (deterministische) Algorithmus eine partielle Funktion.

Sei
$$f: \Sigma_1^* \to \Sigma_2^*$$
 (für bel. Σ_1^*, Σ_2^*) mit $f(w) = \text{undef für all } w \in \Sigma_1^*$.

Ein möglicher Algorithmus:

while true do continue; end while

Sei
$$f_{\pi} \colon \mathbb{N} \to \mathbb{N}$$
 mit
$$f_{\pi}(n) = \begin{cases} 1, & \text{falls } n \text{ ein Pr\"afix der Dezimaldarstellung von } \pi \text{ ist.} \\ 0, & \text{sonst} \end{cases}$$

Beispiele:

$$f_{\pi}(314) = 1$$
, $f_{\pi}(5) = 0$, $f(141) = 0$

Ist diese Funktion berechenbar?

Ja! Sei *n* die Eingabe mit *k* vielen Ziffern. Dann:

- Approximiere π auf k-1 Stellen genau
- Vergleiche die Ziffern.
- Gib 1 zurück, falls Vergleich erfolgreich, 0 sonst.

Sei
$$g_{\pi} : \mathbb{N} \to \mathbb{N}$$
 mit

$$g_{\pi}(n) = \begin{cases} 1, & \text{falls } n \text{ ein Infix der Dezimaldarstellung von } \pi \text{ ist.} \\ 0, & \text{sonst} \end{cases}$$

Beispiele:

$$g_{\pi}(314) = 1$$
, $g_{\pi}(5) = 1$, $g_{\pi}(141) = 1$

Ist diese Funktion berechenbar?

Unbekannt!

Der Trick von eben funktioniert nicht mehr: Wir wissen nicht, wie lange wir approximieren müssen. Wenn es ein Infix ist, terminieren wir, wenn nicht, kennen wir keine Abbruchbedingung!

Sei
$$f_{PNP}$$
: $\{0,1\}^* \rightarrow \{0,1\}^*$ mit
$$f_{PNP}(w) = \begin{cases} 0, & \text{falls P = NP.} \\ 1, & \text{falls P \neq NP.} \end{cases}$$

Ist diese Funktion berechenbar?

P und NP definieren Klassen von Problemen, die auf einer DTM bzw. NTM in polynomieller Zeit gelöst werden können.

Bisher ungelöst, ob P = NP oder $P \neq NP$.

Ja!

Wir fordern nur, dass es einen Algorithmus gibt, nicht, dass wir ihn kennen!

Betrachte folgende zwei Algorithmen

- Gib immer 0 zurück.
- Gib immer 1 zurück.

Einer der beiden berechnet f_{PNP} . Wir wissen nur nicht welcher.

Berechenbarkeit II

Intuitiv wollen wir eine (partielle) Funktion $f: \Sigma_1^* \to_p \Sigma_2^*$ berechenbar nennen, wenn es einen Algorithmus gibt, der eine Eingabe $w \in \Sigma_1^*$ nimmt, und

- nach endlich vielen Schritten akzeptiert und f(w) ausgibt, falls f(w) definiert ist
- nicht anhält oder nicht akzeptiert, falls f(w) nicht definiert ist.

Umgekehrt, berechnet jeder (deterministische) Algorithmus eine partielle Funktion.

Wir nennen eine Funktion **effektiv berechenbar**, wenn man den Algorithmus, der die Funktion berechnet, konkret angeben kann.

Analog nenn man ein Entscheidungsproblem **effektiv entscheidbar**, wenn man den Entscheidungsalgorithmus für das Problem kennt.

Sei $h_{\pi} : \mathbb{N} \to \mathbb{N}$ mit

$$h_{\pi}(n) = \begin{cases} 1, & \text{falls 5 ... 5 } (n \text{ Mal die 5}) \text{ ein Infix der Dezimaldarstellung von } \pi \text{ ist.} \\ 0, & \text{sonst} \end{cases}$$

Ist diese Funktion berechenbar?

Intuitiv: Nicht bekannt wie Beispiel 3.3.

Aber, es gibt zwei Fälle:

- Jedes Wort aus $\{5\}^*$ kommt in π als Infix vor. Gib dann einfach immer 1 zurück.
- $\{5\}^{n_0}$ mit $n_0 \in \mathbb{N}$ ist das längste Wort. Dann ist der Algorithmus wie folgt:
 - Falls $n \le n_0$, gib 1 zurück.
 - Falls $n > n_0$, gib 0 zurück.

Definition 3.6

Eine Menge M ist **abzählbar**, wenn sie entweder leer ist oder eine surjektive Funktion $f: \mathbb{N} \to M$ gibt.

Sei
$$f_a: \mathbb{N} \to \mathbb{N}$$
 mit $a \in \mathbb{R}$ und

$$f_a(n) = \begin{cases} 1, & \text{falls } n \text{ ein Präfix der Dezimaldarstellung von } a \text{ ist.} \\ 0, & \text{sonst} \end{cases}$$

Ist diese Funktion für jedes a berechenbar?

Nein!

Wir werden gleich sehen:

- Es gibt abzählbar viele Algorithmen, aber
- überabzählbar viele Reelle zahlen

Damit muss ein α existieren, sodass f_{α} nicht berechenbar ist!

Beispiel 3.2 (reprise)

Sei
$$f_{\pi} \colon \mathbb{N} \to \mathbb{N}$$
 mit
$$f_{\pi}(n) = \begin{cases} 1, & \text{falls } n \text{ ein Pr\"afix der Dezimaldarstellung von } \pi \text{ ist.} \\ 0, & \text{sonst} \end{cases}$$

Beispiele:

$$f_{\pi}(314) = 1$$
, $f_{\pi}(5) = 0$, $f(141) = 0$

Ist diese Funktion berechenbar?

Ja! Sei *n* die Eingabe mit *k* vielen Ziffern. Dann:

- Approximiere π auf k-1 Stellen genau
- Vergleiche die Ziffern.
- Gib 1 zurück, falls Vergleich erfolgreich, 0 sonst.

Berechenbarkeit

Definition 3.8

Sei $f: \Sigma_1^* \to_p \Sigma_2^*$ eine partielle Funktion. Wir nennen f (**Turing-)berechenbar**, wenn es eine deterministische Turing-Maschine $M = (Q, \Sigma_1, \Gamma, q_0, \delta, Q_F)$ gibt, so dass für jede Eingabe $w \in \Sigma_1^*$ gilt, dass

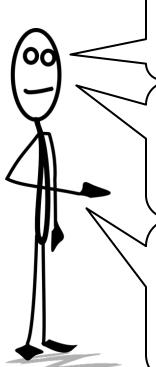
$$f(w) = w' \in \Sigma_2^* \iff q_0 w \to^* \dots \sqcup \sqcup q_f w' \sqcup \sqcup \dots,$$

wobei $q_f \in Q_F$. Hierbei nehmen wir an, dass $\Sigma_2 \subseteq \Gamma$ im Bandalphabet ist, und $\sqcup \notin \Sigma_2$.

Für partielle Funktionen $f: \mathbb{N}^k \to_p \mathbb{N}$, sagen wir dass f Turing-berechenbar ist, falls für jede Eingabe $n_1, \dots, n_k \in \mathbb{N}$ gilt, dass

 $f(n_1,...,n_k) = n \in \mathbb{N} \iff q_0 \operatorname{bin}(n_1) \# ... \# \operatorname{bin}(n_k) \to^* ... \sqcup \sqcup q_f \operatorname{bin}(n) \sqcup \sqcup ...$ wobei $q_f \in Q_F$ und $\operatorname{bin}(n)$ die Binärdarstellung (ohne führende Nullen) von n ist.

Bemerkung 3.9



DTMs sind hier keine Einschränkung: Zu jeder NTM existiert eine DTM!

DTMs sind allerdings natürlicher für Funktionen.

Vereinfachte Annahme: TMs ändern weder Zustand noch Kopf, sobald akzeptierender Zustand erreicht wurde.

→ Die Turing Maschine **hält**.

Anderfalls **bleibt** sie **stecken**, falls keine passende Transition in einem nicht-akzeptierenden Zustand existiert.

Für einen undefinierten Wert darf die TM keine Konfiguration wie in der Definition erreichen. D.h. sie muss

- Stecken bleiben (geht nicht für DTMs)
- Unendlich lange loopen
- In einer Konfiguration stehen bleiben, die nicht obiger Beschreibung entspricht.

Menge der Turing-Maschinen

Beispiel 3.10

Die Funktionen f, f_{π} , f_{PNP} , h_{π} sind turing berechenbar.

Aber warum ist f_a nicht für jedes $a \in \mathbb{R}$ turing-berechenbar?

Lemma 3.11

Es gibt abzählbar viele Turing-Maschinen.

Menge der Turing-Maschinen (Beweis)

Lemma 3.11

Es gibt abzählbar viele Turing-Maschinen.

Beweis: Wir betrachten Turing-Maschinen der Form $M = (Q, \Sigma, \Gamma, q_0, \delta, Q_F)$ mit

$$Q = \{q_0, \dots, q_k\},$$

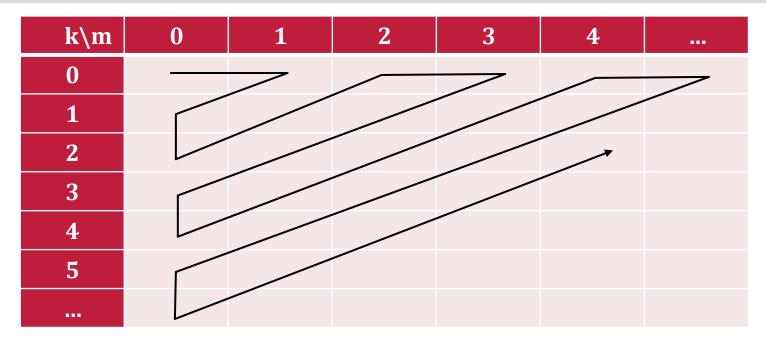
$$\Gamma = \Sigma \ \dot{\cup} \ \{a_0, \dots, a_m, \$, _\}$$

Fixiert man *m* und *k*, gibt es nur endlich viele Turing-Maschinen. Die Anzahl an Transitionen kann durch folgenden Wert beschränkt werden:

$$((k+1)(|\Sigma|+m+3)\cdot 3)^{(k+1)(|\Sigma|+m+3)}$$

Nutze nun das Cantor'sche Diagonalverfahren, um alle Turing-Maschinen aufzuzählen.

Diagonalverfahren



Zähle k und m auf, dann für jedes Tupel alle Turing Maschinen.

Nicht-berechnbare Funktionen

Lemma 3.12

Es seien Σ_1 , Σ_2 beliebige Alphabete. Es gibt nicht-berechenbare Funktionen $f: \Sigma_1^* \to \Sigma_2^*$.

Beweis:

Seien f_0 , f_1 , ... alle berechenbaren Funktionen.

Definiere

$$f(n) \coloneqq \begin{cases} 0, & \text{falls } f_n(n) = \text{undef} \\ f_n(n) + 1, & \text{sonst} \end{cases}$$

Annahme, *f* ist berechenbar.

Dann existiert $m \in \mathbb{N}$ mit $f = f_m$.

Allerdings ist

$$f(m) = f_m(m) + 1$$
, falls definiert oder $f(m) = 0$ für $f_m(m) =$ undef.

Also können die beiden nicht gleich sein!

Alle berechenbaren Funktionen

n	f	f_0	f_1	f_2	f_3	f_4	
0	0	undef	2	4	0	undef	
1	5	1	4	100	0	1	
2	106	0	5	105	0	4	
3	1	2	undef	0	0	9	
4	17	3	3	115	0	16	
:	:	:	:	:	i	:	••
:	:	:	:	:	:	:	•.

Kapitel 3.2 – Entscheidbarkeit

Entscheidbarkeit

(Semi-)Entscheidbarkeit

Definition 3.14

Eine Menge $A \subseteq \Sigma^*$ ist **entscheidbar**, wenn die totale charakteristische Funktion χ_A von A mit

$$x_A: \Sigma^* \to \{0, 1\}$$

$$w \mapsto \begin{cases} 1, & \text{falls } w \in A \\ 0, & \text{sonst} \end{cases}$$

berechenbar ist.

Eine Menge A ist **semi-entscheidbar**, wenn die partielle charakteristische Funktion χ'_A von A mit

$$x_A': \Sigma^* \to_p \{1\}$$

$$w \mapsto \begin{cases} 1, & \text{falls } w \in A \\ \text{undef,} & \text{sonst} \end{cases}$$

berechenbar ist.

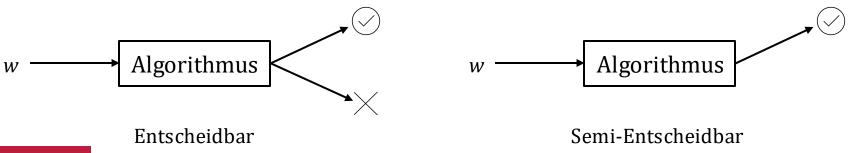
Wortproblem

Sprachen werden in der Literatur oft mit Entscheidungsproblemen identifiziert:

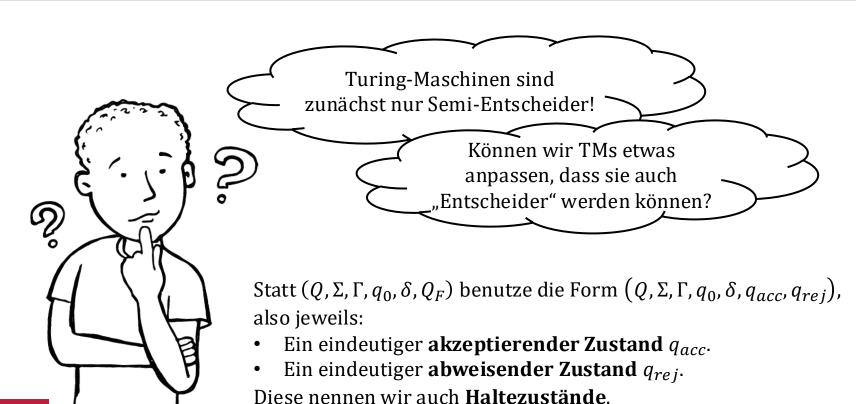
Wortproblem zu A:

Gegeben: Wort $w \in \Sigma^*$

Frage: Ist *w* ein Element von *A*?



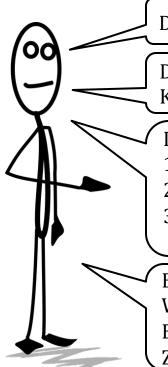
Zusammenhang zu Turing-Maschinen



Technische

Universität

Haltezustände



Diese Definition von TMs ist nicht schwächer!

Diese TMs **halten** in einer akzeptierenden oder abweisenden Konfiguration.

Diese TMs können also:

- 1. Nach endlich vielen Schritten das Wort akzeptieren.
- 2. Nach endlich vielen Schritten das Wort abweisen.
- 3. Unendlich lange laufen, ohne eine Haltekonfiguration zu erreichen sie loopen.

Bemerkung zu NTMs:

Wir können auch in Zuständen stecken bleiben! Es reicht aber, wenn es einen Pfad zum akzeptierenden Zustand gibt, um das Wort zu akzeptieren.

Entscheider

Proposition 3.16

Eine Menge $A \subseteq \Sigma^*$ ist genau dann **semi-entscheidbar**, wenn es eine Turing-Maschine M mit $A = \mathcal{L}(M)$ gibt.

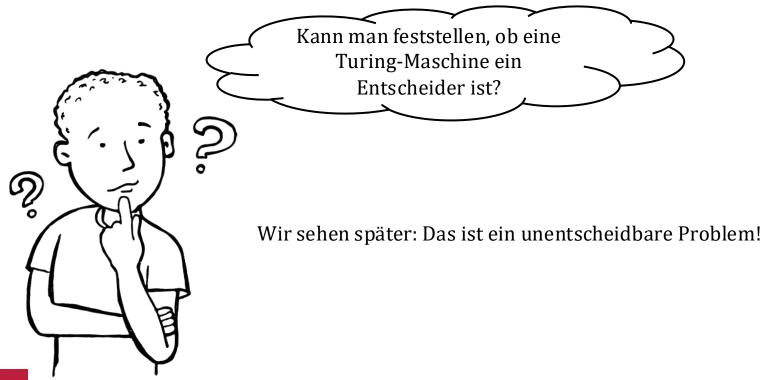
Definition 3.17

Wir nennen eine Turing-Maschine $M = (Q, \Sigma, \Gamma, q_0, \delta, q_{acc}, q_{rej})$ total oder einen Entscheider, wenn jede Berechnung von M zu jeder Eingabe x nach endlich vielen Schritten hält.

Proposition 3.18

Eine Menge $A \subseteq \Sigma^*$ ist genau dann **entscheidbar**, wenn es einen Entscheider M mit $A = \mathcal{L}(M)$ gibt.

Entscheidbare Mengen



Bemerkung 3.19

Bereits bekannte Theoreme und Lemma gelten auch für Entscheider:

- Zu jedem nicht-deterministischen Entscheider M existiert ein deterministischer Entscheider M' mit $\mathcal{L}(M) = \mathcal{L}(M')$.
- Zu jedem Mehr-Band-Entscheider M_k existiert ein Ein-Band-Entscheider M' mit $\mathcal{L}(M_k) = \mathcal{L}(M')$.
- Zu jedem Entscheider $M \leftrightarrow$ mit beidseitig unendlichem band existiert ein Entscheider M' mir recths unendlichem Band und $\mathcal{L}(M \leftrightarrow) = \mathcal{L}(M')$.

Hilfssatz für entscheidbare Sprachen

Lemma 3.20

Jede konstextsensitive Sprache $\mathcal{L}(G)$ ist entscheidbar.

Beweis: Siehe Kapitel 1.

Hilfssatz für entscheidbare Sprachen

Theorem 3.21

Eine Sprache $A \subseteq \Sigma^*$ ist genau dann entscheidbar, wenn A und \bar{A} semi-entscheidbar sind.

```
"⇒": Klar.
```

"⇐":

Sei M_A eine TM (Semi-Entscheider) für A, und $M_{\bar{A}}$ eine TM für \bar{A} .

Betrachte folgenden Algorithmus:

Eingabe: $w \in \Sigma^*$

For i = 1, 2, 3...

if (M_A akzeptiert Eingabe w in höchstens i Schritten) then return 1

if $(M_{\bar{A}}$ akzeptiert Eingabe w in höchstens i Schritten) then return 0

Dies lässt sich als TM / Entscheider verpacken!

Zusammenhang der Terminologie

