
Online Algorithms Summer 2024

Prof. Dr. Sándor P. Fekete
Peter Kramer

Due: 06.05.2024
Discussion: 13.05.2024

Sheet 1

Please submit your individual solutions using the boxes in front of IZ338, before
the exercise timeslot on the due date above. Your homework submission may be
handwritten using proper ink (no pencil, no red ink) or printed.

Exercise 1 (BahnCard Problem): (20 points)
We consider instances of the BahnCard Problem BC(C, β, T) with cost C, cost reduction β
and validity period T as introduced in the exercise. We already proved that no online algorithm
can guarantee a cost lower than 2− β times that of an optimal offline algorithm.

Construct an optimal offline algorithm OPT for a given sequence σ consisting of n chronologically
ordered ticket requests (t1, c1), . . . , (tn, cn), produces an optimal solution in O(n) time.

You may make use of the following two facts:

• OPT never has to buy a BahnCard while it still owns one.

• OPT never has to buy a BahnCard at a point in time that is not contained in a ticket request.

Exercise 2 (BahnCard Problem: The SUM Algorithm): (3 + 4 + 8 + 10 points)
For the BahnCard Problem BC(C, β, T), we introduced the online algorithm SUM:

1: Input sequence σ = (t1, c1), . . . , (tn, cn) of travel requests, as well as C, β, and T .
2: Output sequence γ = γ1, . . . , γn ∈ {0, 1}n, of purchase decisions.
3: function SUM(ti, ci)
4: if we already own a BC at request i then
5: return γi = 0 ▷ Do not purchase.
6: else
7: if the cost of all regular requests in (ti − T, ti] is at least c∗ then
8: return γi = 1 ▷ Make a purchase.
9: else

10: return γi = 0 ▷ Do not purchase.

Recall that a request is called reduced if SUM possesses a BahnCard for that request and regular
otherwise, and that the break-even price c∗ is C

1−β . Let σ = (t1, c1), . . . , (tn, cn) be the sequence
of travel requests. Moreover, let τ1, . . . , τk be the moments in time when OPT buys a BahnCard.

We prove that SUM is (2− β)-competitive by considering the phases [0, τ1), [τ1, τ2), . . . , [τk,∞)
and proving cSUM ≤ (2− cOPT) for each phase individually.

a) Recall that we call a time interval I = [b, e) expensive if the sum of costs for travel requests
with time ti ∈ I is at least c∗, and cheap otherwise. Moreover, let τk+1 := ∞.

Page 1 / 2

https://www.ibr.cs.tu-bs.de/rooms/index.html?room=338&lang=de

Prove that for each phase [τi, τi+1) with 1 ≤ i ≤ k, the interval [τi, τi + T) is expensive.
Prove that any subinterval of [τi + T, τi+1) of length at most T is cheap.

b) Prove that for the first phase I = [0, τ1), cSUM ≤ cOPT .

c) Prove that cSUM ≤ (2−β) ·cOPT for a phase I = [τi, τi+1) if SUM does not buy a BahnCard
in phase I.

d) Finally, prove that cSUM ≤ (2−β) ·cOPT for a phase I = [τi, τi+1) if SUM buys a BahnCard
in phase I. (Hint: Decompose I into three intervals I1, I2, I3 based on the time until which SUM
possesses a BahnCard from the last phase and the time where SUM decides to buy a new BahnCard.)

Exercise 3 (Potential Functions and Amortized Analysis): (5 + 15 points)
Consider an abstract online problem where an online algorithm A faces a sequence r of online re-
quests r1, r2, . . . , rn. In response to each request ri, A has to perform an action A(i) without
knowing the next request ri+1. Each such action incurs a cost cA(i) ∈ R. Analogously, the
optimal offline algorithm OPT performs actions OPT (i) with cost cOPT (i).

In the analysis of online algorithms, it is often impossible to bound the cost of an online algorithm
by proving cA(i) ≤ c · cOPT (i) for each request i. Therefore, we need a way to distribute the
costs of an expensive action of A across several requests.

One way of doing this is by considering a so-called potential function, which we define as

Φr : {1, 2, . . . , n} → R≥0 with Φr(0) = 0.

This potential function acts as a savings account that is not allowed to become negative and
that accumulates saved costs to pay for later expensive actions.

a) Prove the following. If for every request sequence r, there is a potential function Φr such that

cA(i)+Φr(i)−Φr(i−1) ≤ c ·cOPT (i), then A is c-competitive, i.e.,
n∑

i=1
cA(i) ≤ c

n∑
i=1

cOPT (i).

b) Consider the problem Read Into Buffer: We want to read a non-empty stream s of
unknown length into a buffer that is stored in memory as contiguous array of size at
most 2|s|. Reading a symbol from s into the buffer has a cost of 1. The optimal offline
algorithm allocates an array of size |s| once and thus has a cost of |s|.

In the online scenario, if the buffer is full, it has to be reallocated and its content have to be
copied to the new buffer. For every symbol already in the buffer, this incurs an additional
cost of 1. Thus, reading the kth symbol from s either costs 1 (not full) or k (buffer full).

Devise a 3-competitive algorithm for Read Into Buffer and use a potential function to
prove the competitive ratio.

Page 2 / 2

