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Online algorithms have to work with incomplete information. To this end, their
input is an ordered sequence σ = σ1, . . . , σn of requests over the input alphabet Σ, the
length of which is not known in advance. The requests are given to the algorithm one
by one, requiring a decision in response before the next request is given. Each response
is an element of the output alphabet Γ. An algorithm A can take the input history into
account, so we can describe it as a function A : Σ∗ → Γ. Combining the output of A
with the input sequence σ in chronological order, we obtain the run of A on σ:

ρ(A, σ) := σ1A(σ1)σ2A(σ1σ2) . . . σnA(σ1σ2 . . . σn) ∈ (Σ Γ)∗

To evaluate online algorithms’ decisions within a run, a cost function c : (Σ Γ)∗ → R≥0

is defined over runs of the problem. This function must only be well-defined over valid
runs, but can optionally filter by validity, e.g., by assigning infinite cost to invalid runs.

An example. We can formally describe the Ski Rental Problem as follows. Every
request corresponds to another day of skiing, and any response corresponds to either
renting, purchasing, or previously having purchased a pair of skis.

Σ = {ski}, Γ = {rent, buy, bought}

We define the cost function over valid runs as the total money spent by renting at a day
rate of R or making a purchase at a one-time cost of B as c : (Σ Γ)∗ → R≥0 such that

w 7→

{
|w|/2 ·R, if w ∈ (ski rent)∗

|z|/2 ·R+ C if w = z ski buy (ski bought)∗, with z ∈ (ski rent)∗.

Competitive ratio. Informally, the competitive ratio of an online algorithm A is the
worst-case ratio between the cost of an online solution computed by A and that ob-
tained by an optimal offline algorithm OPT ’s solution over the same input sequence. We
formally describe this as the supremum of the ratio over all runs, i.e.,

sup
σ∈Σ∗

{
online solution cost

optimal solution cost

}
= sup

σ∈Σ∗

{
c(ρ(A,σ))

c(ρ(OPT,σ))

}
.
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The BahnCard Problem.

We generalize the Ski Rental Problem by considering a scenario in which, rather
than buying skis to use for the rest of our skiing career, we can purchase a time-limited
discount to save money on future purchases. This is known as the BahnCard Problem,
in which we seek to minimize the amount of money we spend on train tickets without
exact future knowledge of travel plans. We do this by purchasing a BahnCard, which
reduces the cost of any ticket purchase during its validity period by a fixed percentage.

We describe instances of the BahnCard Problem as BC(C, β, T ), where C ∈ R+

is the purchase cost of a BahnCard, β ∈ R is a discount factor in (0, 1), and T ∈ R+ is
the BahnCard’s validity period. We receive a series of chronologically ordered requests
for ticket purchases, all of which must be made. Each request to defines the time at
which the purchase is to be made, alongside the base cost of the ticket, i.e., σi = (ti, ci).

In response, an algorithm can either choose to purchase only the ticket, or, in addition,
a BahnCard. A BahnCard is valid from the moment it is purchased and can be applied
to a ticket that is purchased simultaneously. Buying a BahnCard at time ti therefore
reduces the price of a ticket from cj to cjβ, if it is purchased at some time tj ∈ [ti, ti+T ).

We therefore define the input and output alphabets as follows:

Σ = R≥0 × R>0, Γ = {buy (1), pass (0)}.

For each request σi, an algorithm A therefore pays based on three cases:

cA(σi) =


ci if a BahnCard is neither owned nor bought,
ciβ if a BahnCard is owned, or
C + ciβ if a BahnCard is bought.

When is buying a BahnCard worth it? Let I = [b, e) be a time interval of length
at most T . We define the base price p(σ, I) as the total cost of tickets requested in I

p(σ, I) =
∑

σi: ti∈I
ci

Buying a BahnCard at the start of I is clearly only efficient if the money saved is
more than the initial investment into a BahnCard. We derive the critical price c∗ to
break even with a BahnCard purchased at the start of I as follows:

p(σ, I) = C + β · p(σ, I)
⇔ (1− β) · p(σ, I) = C

⇔ p(σ, I) =
C

1− β
= c∗.

Based on this, we say that an interval I is expensive, if p(σ, I) ≥ c∗, and cheap otherwise.
We make the following two observation about the behaviour of any optimal solution.

Lemma 1. OPT must own a BahnCard at some point in every expensive interval.

Lemma 2. OPT will never buy a BahnCard if it already owns a valid one.
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Greedy offline solutions Based on this, is the following an optimal offline algorithm?

1: function Greedy(σ, C, β, T )
2: for all (ti, ci) ∈ σ1, . . . , σn do
3: if Greedy already owns a BahnCard at ti then
4: output pass
5: else if the interval [ti, ti + T ) is expensive then
6: output buy
7: else
8: output pass
9: end if

10: end for
11: end function

No. We can construct a sequence σ = (0, ε)(T − ε, c∗)(T + ε, c∗)(2T − ε, ε) such that
Greedy purchases two BahnCards, whereas OPT purchases a single one and spends
roughly the same amount on tickets:

c(GRE, σ) = 2C+2c∗β + 2εβ

c(OPT, σ) = C +2c∗β + 2ε.

For ε → 0, c(GRE,σ)
c(OPT,σ) approaches 2, implying that Greedy is not a suitable approach.

A bound on the competitive ratio of algorithms for the BahnCard Problem

Theorem 1. There is no deterministic online algorithm for the BahnCard Problem
that has a better (lower) competitive ratio than 2− β.

Proof. Let A be such an algorithm. We consider two cases for the behaviour of A.
Case 1: A never buys a BahnCard. In this case, we act as an adversary to max-

imize the ratio between cA and cOPT by giving OPT maximal possible savings from
a single BahnCard purchase. We therefore send arbitrarily many requests in the time
interval [0, T ), each of cost 0 < ε ≪ C. The algorithms incur the following costs.

c(A, σ) = p(σ, [0, T ))

c(OPT, σ) = C + p(σ, [0, T ))β.

For an increasing number of requests, i.e., p(σ, [0, T )) → ∞, c(A,σ)
c(OPT,σ) approaches 1/β.

This is greater than 2− β for any value of β, so A is not 2− β-competitive:

1/β ≥ 2− β

0 ≥ (2− β)β − 1

0 ≥ −(β − 1)2.
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Case 2: A eventually buys a BahnCard. In this case, we again act as an adversary to
maximize the ratio between cA and cOPT . To achieve this, we again send cheap (ε cost)
requests in the time interval [0, T ) and stop as soon as A purchases a BahnCard.

Let σ = σ1, . . . , σn be all resulting requests, and s =
∑

i∈[1,n−1] ci = ε(n− 1) the cost
of all requests before A bought a BahnCard. The algorithms incur the following costs.

c(A, σ) = s+ C + εβ

c(OPT, σ) =

{
s+ ε if s+ ε < c∗ (i.e., [0, T ) is cheap), or
C + β(s+ ε) if s+ ε ≥ c∗ (i.e., [0, T ) is expensive).

We first consider the case that [0, T ) is cheap, so s+ ε < c∗. Our goal is to maximize
the gap between A and OPT with c(OPT, σ) = s+ ε:

c(A, σ)

c(OPT, σ)
=

s+ C + εβ

s+ ε

This ratio shrinks with increasing s, so we assume s = c∗−ε, i.e., the largest possible
value for s such that the time interval [0, T ) remains cheap:

(c∗ − ε) + C + εβ

(c∗ − ε) + ε
=

c∗ + C + εβ − ε

c∗

=
c∗ + (1− β)c∗ + εβ − ε

c∗
=

(2− β)c∗ + (β − 1)ε

c∗

ε → 0
=

(2− β)c∗

c∗
= (2− β).

It remains to argue the case that [0, T ) is expensive, so s + ε ≥ c∗. Our goal is to
maximize the gap between A and OPT with c(OPT, σ) = C + β(s+ ε):

c(A, σ)

c(OPT, σ)
=

s+ C + εβ

sβ + C + εβ

This ratio grows with increasing s, so we assume s = c∗ − ε, i.e., the smallest possible
value for s such that the time interval [0, T ) remains expensive:

(c∗ − ε) + C + εβ

(c∗ − ε)β + C + εβ
=

c∗ + C + εβ − ε

c∗β + C

ε → 0
=

c∗ + (1− β)c∗

c∗β + (1− β)c∗
=

(2− β)c∗

c∗
= (2− β).

We conclude that A is (2− β)-competitive at best.
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