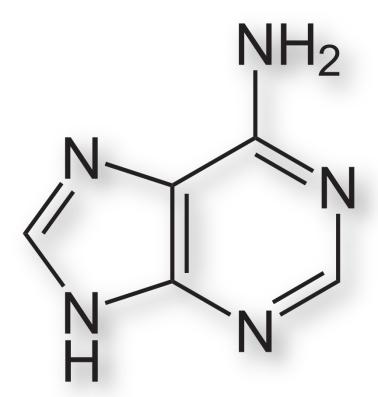
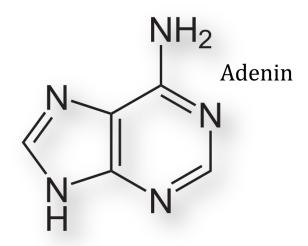
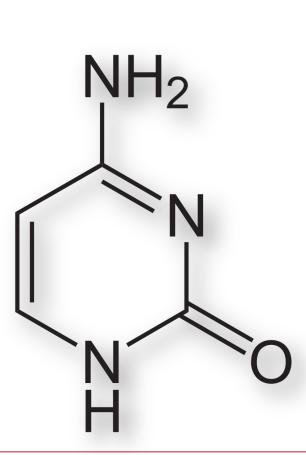


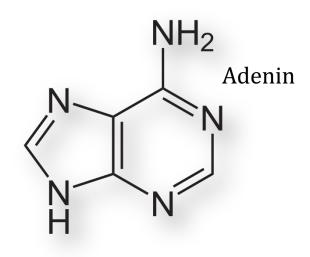
Algorithmen und Datenstrukturen 2 – Übung #2

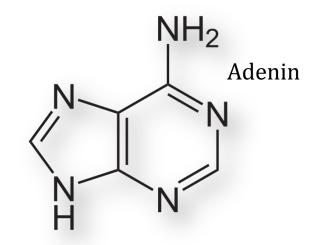
Ramin Kosfeld und Chek-Manh Loi 08.05.2024

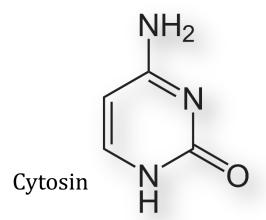


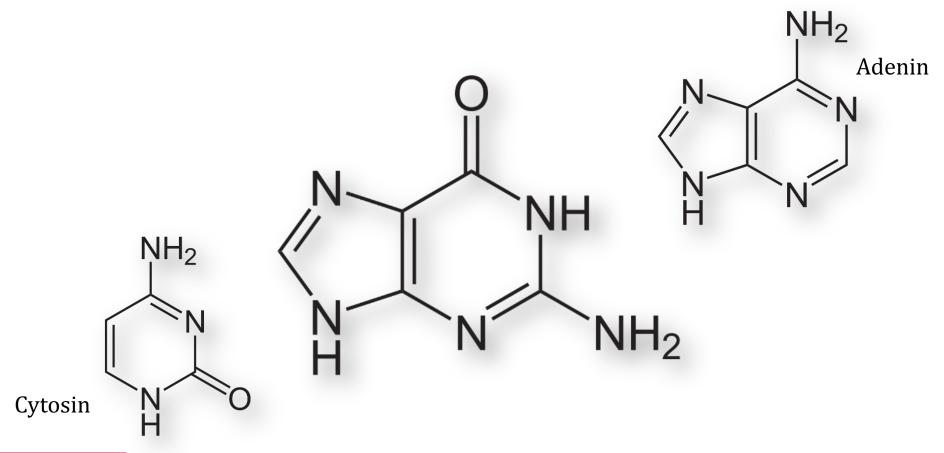


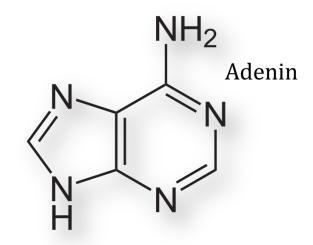


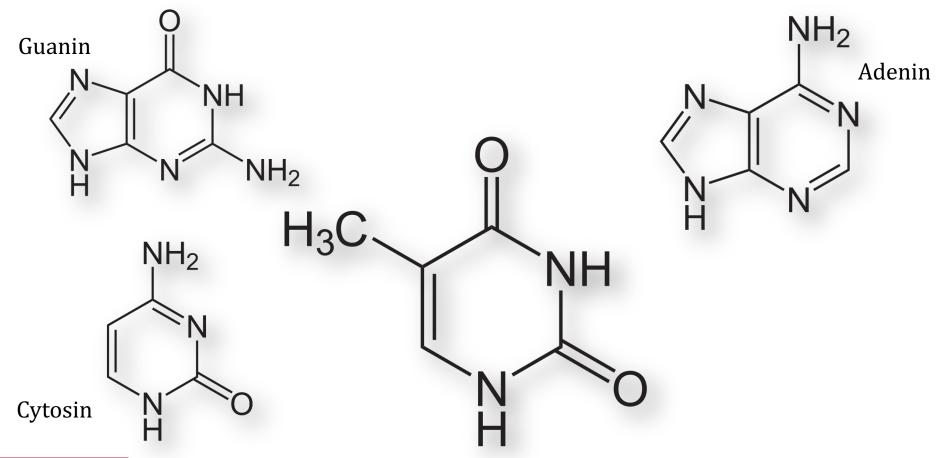


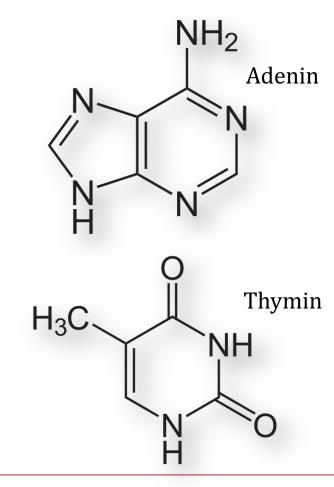




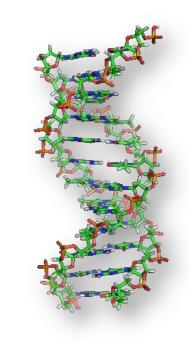


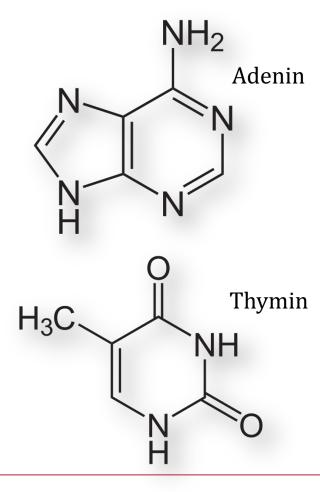


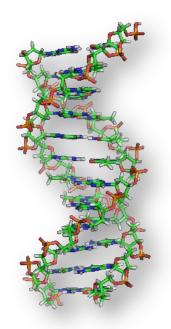




$$\begin{array}{c|c} NH_2 \\ \hline N\\ N\\ N\\ \end{array}$$







CTTGCTCATTGGAGTTGACAGAGTACTGTTTCACATCTGATCAAGGTTATGCTAGC
ACGTCCCAATGCAGGATAACTCAATATGAACTCCTTATAAGGCGATGAATTTGTTT
CTATGGTTGCCACGCAGCTCTTGGTCGGGTCAGAAGGGGTTTCCTAGGTGTGGCG
TCATGTCCTTTCTGCGGCCACAGGCGTTTGTGGTGGATCTGCACCACGTGGGTGT
CTGGCTACGCACCGTTTGTACATCTTCAAAAAATCGAGCTTTGCACGGCTCAATTG
GCATAGACTGCCTGCCGTAATCTCGCTGAGTATAAGTTGATGTAATTTTCAAGACG
AGAGAGCTGGTATCCAGACAAGTCGGATGGTGAGGTTACTGAAGCGGATCCCGGA
CACTAGCTAAATATAATCGACGGATGAGACGAGGTGTAACAGGACTTTATCTCCGC
TTACGCCACACGTTCCCGGCCCTGCCGCTAGTTCCAATGTCCAAATGAGT

Wie ähnlich sind diese beiden Wörter?

CTTGCTCATTGGAGTTGACAGAGTACTGTTTCACATCTGATCAAGGTTATGCTAGC
ACGTCCCAATGCAGGATAACTCAATATGAACTCCTTATAAGGCGATGAATTTGTTT
CTATGGTTGCCACGCAGCTCTTGGTCGGGTCAGAAGGGGTTTCCTAGGTGTGGCG
TCATGTCCTTTCTGCGGCCACAGGCGTTTGTGGTGGATCTGCACCACGTGGGTGT
CTGGCTACGCACCGTTTGTACATCTTCAAAAATCGAGCTTTGCACGGCTCAATTG
GCATAGACTGCCTGCCGTAATCTCGCTGAGTATAAGTTGATGTAATTTTCAAGACG
AGAGAGCTGGTATCCAGACAAGTCGGATGGTGAGGTTACTGAAGCGGATCCCGGA
CACTAGCTAAATATAATCGACGGATGAGACGAGGTGTAACAGGACTTTATCTCCGC
TTACGCCACACGTTCCCGGCCCTGCCGCTAGTTCCAATGTCCAAATGAGT

Wie ähnlich sind diese beiden Wörter?

CTTGCTCATTGGAGTTGACAGAGTACTGTTTCACATCTGATCAAGGTTATGCTAGC
ACGTCCCAATGCAGGATAACTCAATATGAACTCCTTATAAGGCGATGAATTTGTTT
CTATGGTTGCCACGCAGCTCTTGGTCGGGTCAGAAGGGGTTTCCTAGGTGTGGCG
TCATGTCCTTTCTGCGGCCACAGGCGTTTGTGGTGGATCTGCACCACGTGGGTGT
CTGGCTACGCACCGTTTGTACATCTTCAAAAAATCGAGCTTTGCACGGCTCAATTG
GCATAGACTGCCTGCCGTAATCTCGCTGAGTATAAGTTGATGTAATTTTCAAGACG
AGAGAGCTGGTATCCAGACAAGTCGGATGGTGAGGTTACTGAAGCGGATCCCGGA
CACTAGCTAAATATAATCGACGGATGAGACGAGGTGTAACAGGACTTTATCTCCGC
TTACGCCACACGTTCCCGGCCCTGCCGCTAGTTCCAATGTCCAAATGAGT

Wie ähnlich sind diese beiden Wörter?

CTTGCTCATTGGAGTTGACAGAGTACTGTTTCACATCTGATCAAGGTTATGCTAGC ACGTCCCAATGCAGGATAACTCAATATGAACTCCTTATAAGGCGATGAATTTGTTT CTATGGTTGCCACGCAGCTCTTGGTCGGGTCAGAAGGGGTTTCCTAGGTGTGGCG TCATGTCCTTTCTGCGGCCACAGGCGTTTGTGGTGGAATCTGCACCACGTGGGTGT CTGGCTACGCACCGCTTTGTACATCTTCAAAAAATCGAGCTTTGCACGGCTCAATTG GCATAGACTGCCTGCCGTAATCTCGCTGAGTATAAGTTGATGTAATTTTCAAGACG AGAGAGCTGGTATCCAGACAAGTCGGATGGTGAGGTTACTGAAGCGGATCCCGGA CACTAGCTAAATATAATCGACGGATGAGACGAGGTGTAACAGGACTTTATCTCCGC TTACGCCACACGTTCCCGGCCCTGCCGCTAGTTCCAATGTCCAAATGAGT

Wie ähnlich sind diese beiden Wörter?

CTTGCTCATTGGAGTTGACAGAGTACTGTTTCACATCTGATCAAGGTTATGCTAGC
ACGTCCCAATGCAGGATAACTCAATATGAACTCCTTATAAGGCGATGAATTTGTTT
CTATGGTTGCCACGCAGCTCTTGGTCGGGTCAGAAGGGGTTTCCTAGGTGTGGCG
TCATGTCCTTTCTGCGGCCACAGGCGTTTGTGGTGGAATCTGCACCACGTGGGTGT
CTGGCTACGCACCGTTTGTACATCTTCAAAAAATCGAGCTTTGCACGGCTCAATTG
GCATAGACTGCCTGCCGTAATCTCGCTGAGTATAAGTTGATGTAATTTTCAAGACG
AGAGAGCTGGTATCCAGACAAGTCGGATGGTGAGGTTACTGAAGCGGATCCCGGA
CACTAGCTAAATATAATCGACGGATGAGACGAGGTGTAACAGGACTTTATCTCCGC
TTACGCCACACGTTCCCGGCCCTGCCGCTAGTTCCAATGTCCAAATGAGT

Gegeben:			

Gegeben:

• Alphabet *Z*

Gegeben:

- Alphabet *Z*
- Sequenzen

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

 Eine längstmögliche Sequenz T, die eine Teilsequenz von X und Y ist. Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

 Eine längstmögliche Sequenz T, die eine Teilsequenz von X und Y ist. Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

 Eine längstmögliche Sequenz T, die eine Teilsequenz von X und Y ist. Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

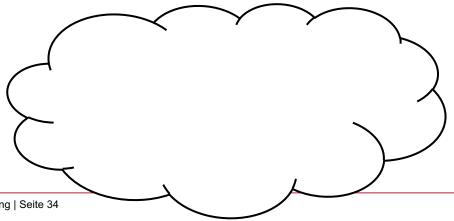
• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von



Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

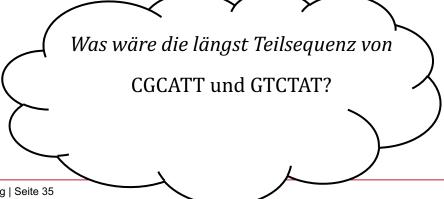
• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von



Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

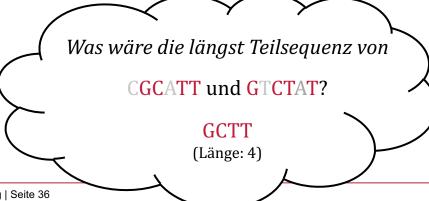
• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von



Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

 Eine längstmögliche Sequenz T, die eine Teilsequenz von X und Y ist. Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

ACCTATATGTT

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

ACCTATATGTT

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

ACCTATATGTT

Wie lösen wir das Problem?

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

ACCTATATGTT

Wie lösen wir das Problem?

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Beispiel:

ACTG

ist eine Teilsequenz von

ACCTATATGTT

Wie lösen wir das Problem?

Dynamic Programming?

Greedy?

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

ACTG von TATATGTT

Wie lösen wir das Problem? Dynamic
Programming?

Greedy?

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

 Eine längstmögliche Sequenz T, die eine Teilsequenz von X und Y ist.

> Wie lösen wir das Problem?

Eine Teilsequ Weglassen vo Was ist denn überhaupt dieses Dynamic Programming?

durch

E

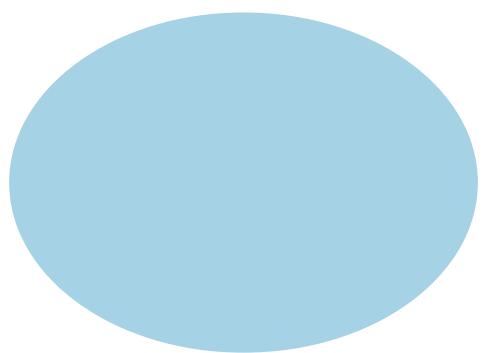
i:

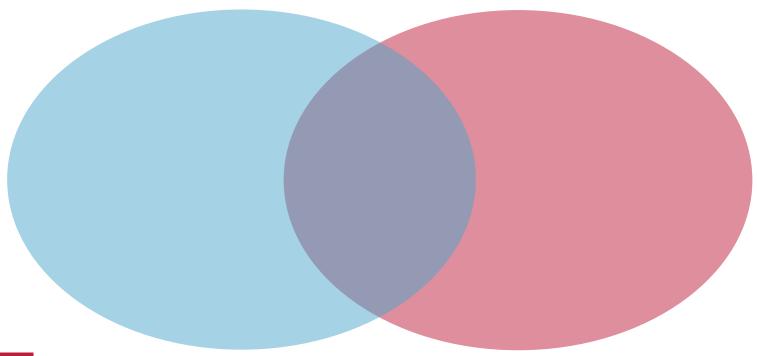
ACTG von

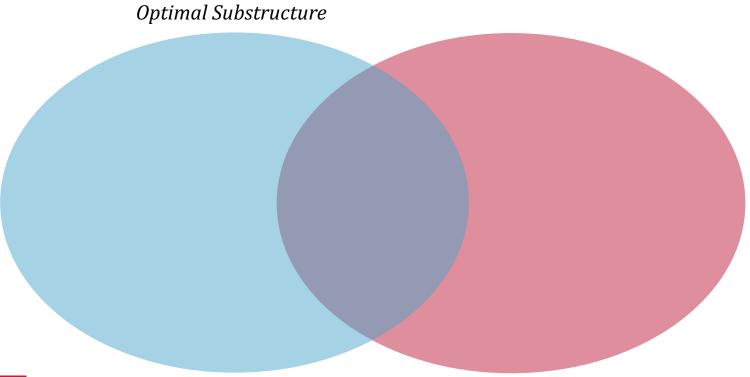
TATATGTT

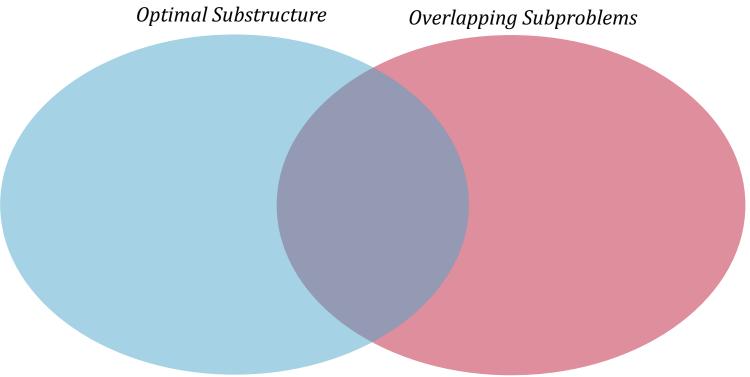
Dynamic Programming?

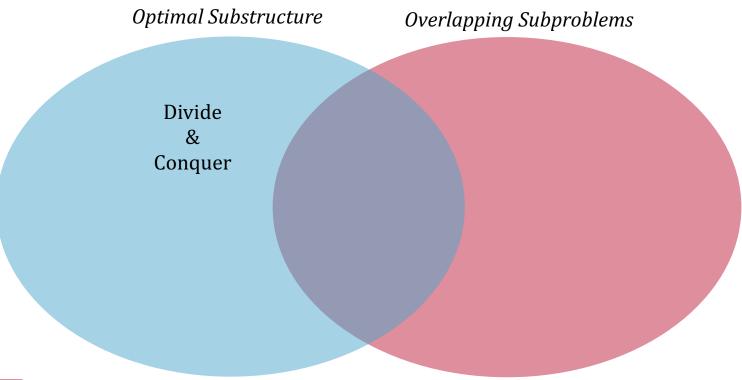
Greedy?

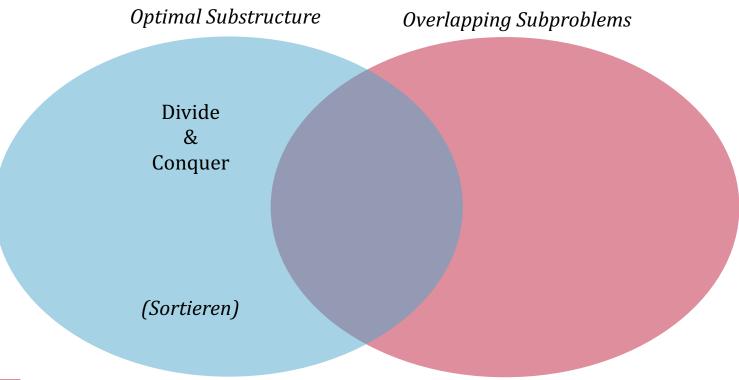


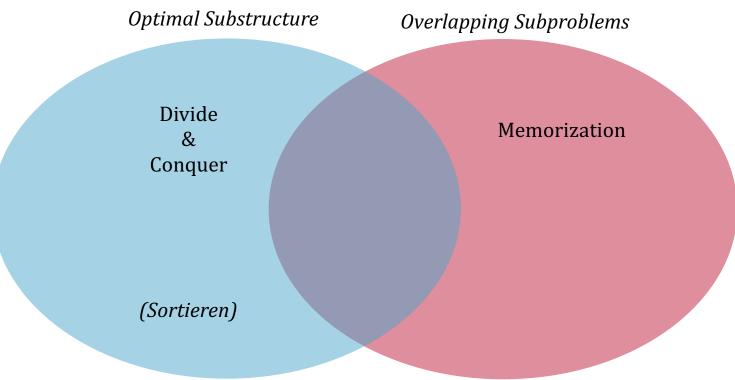


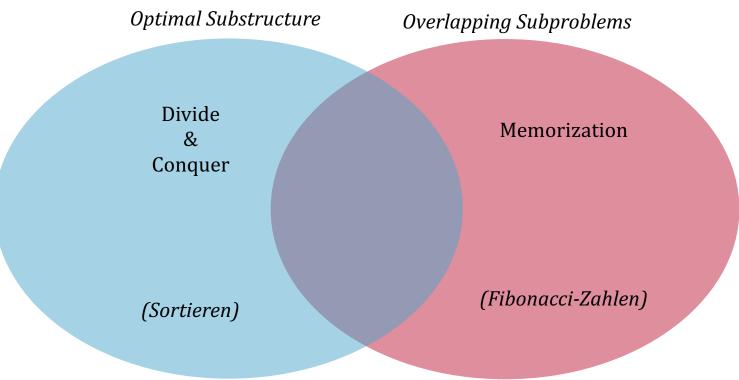


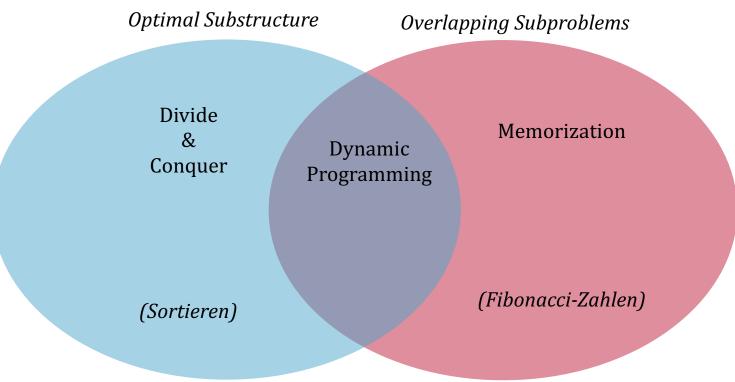


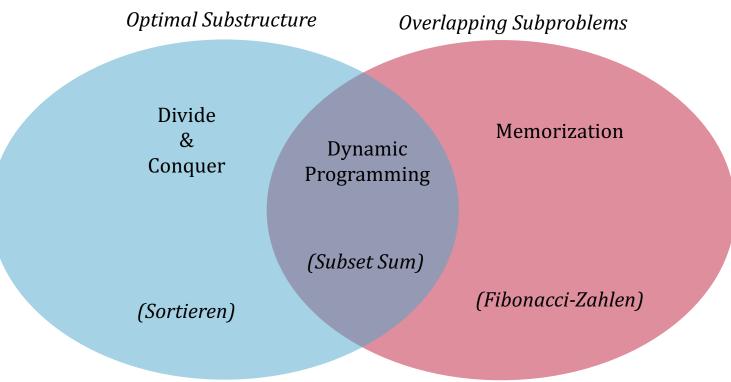


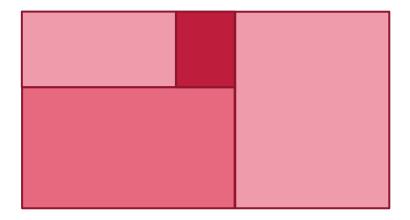




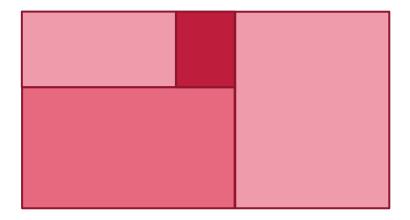


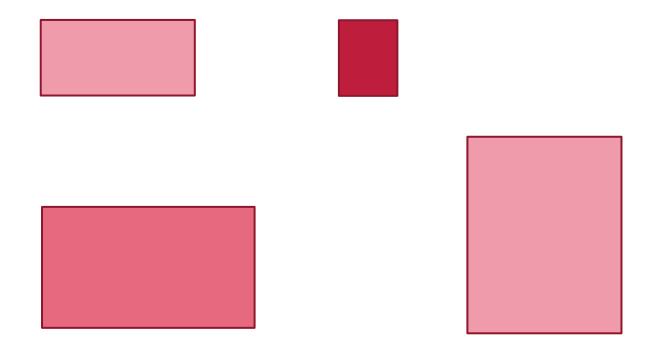


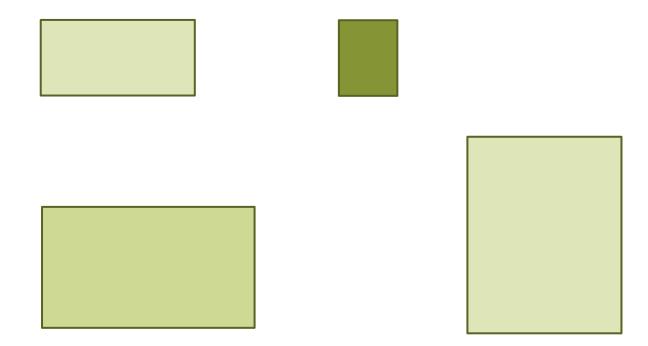




Aufteilen in Teilprobleme

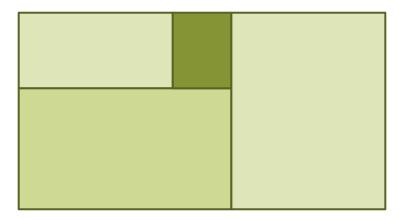






Lösen des Hauptproblems

Lösen des Hauptproblems

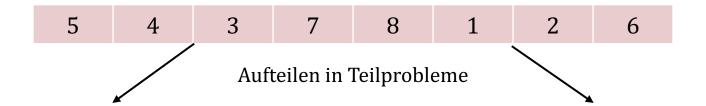


Lösen des Hauptproblems

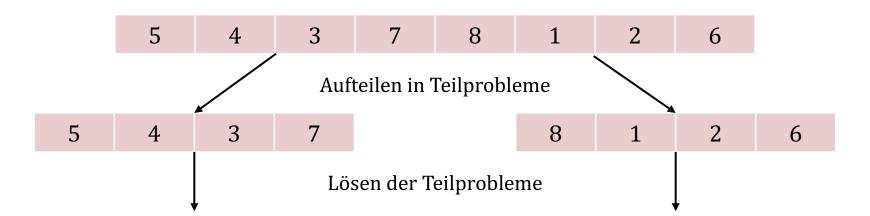
5 4 3 7 8 1 2 6

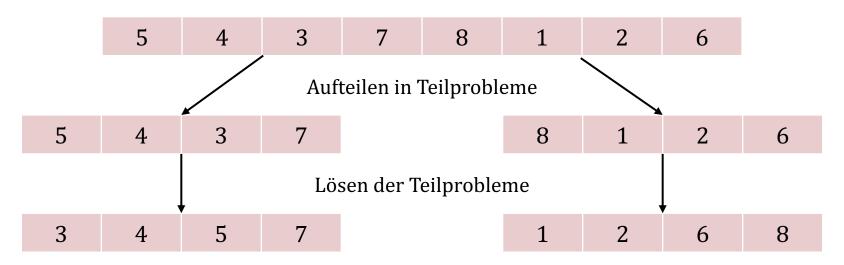
5 4 3 7 8 1 2 6

Aufteilen in Teilprobleme

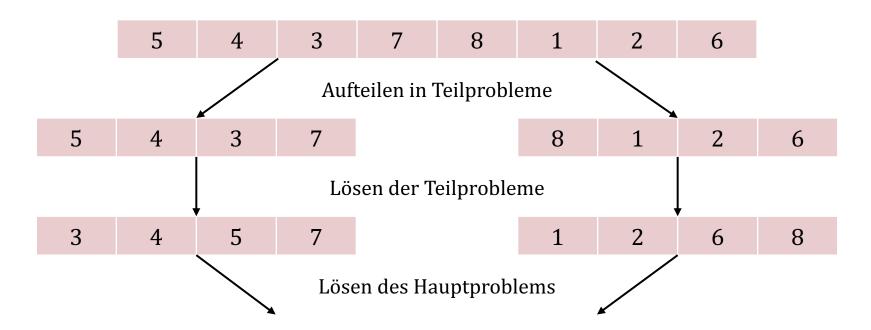


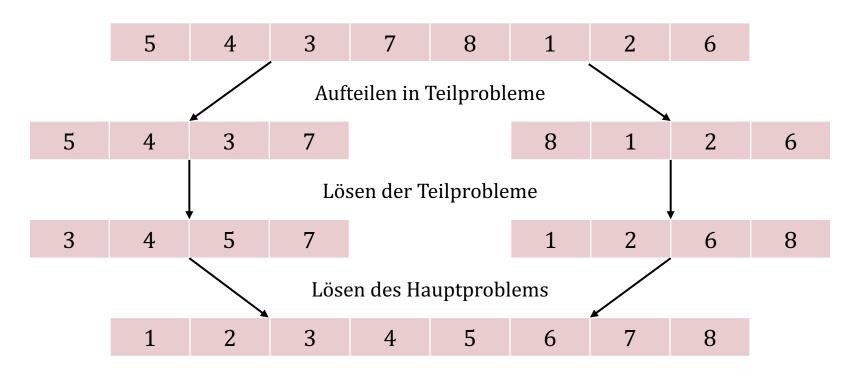
Lösen der Teilprobleme

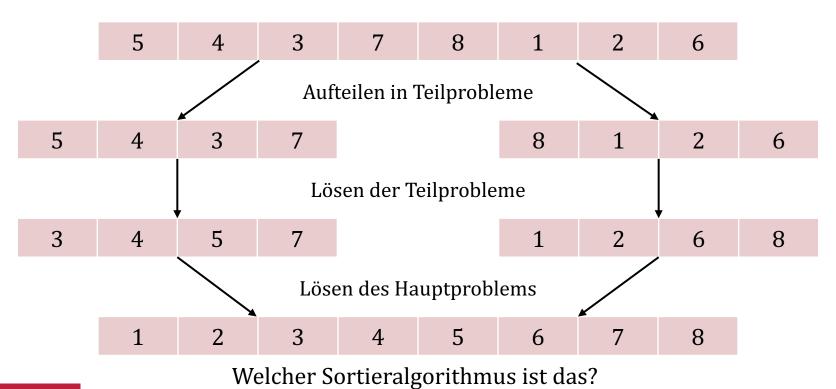




Lösen des Hauptproblems



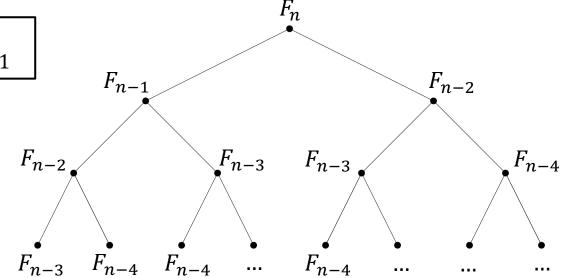




Overlapping Subproblems

Fibonnaci-Zahlen:

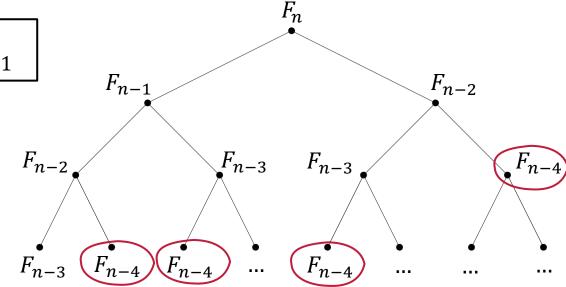
$$F_n := F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$$



Overlapping Subproblems

Fibonnaci-Zahlen:

$$F_n := F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$$



Overlapping Subproblems

Fibonnaci-Zahlen:

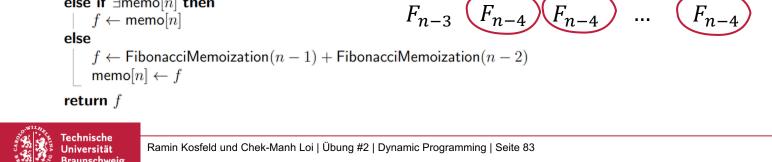
$$F_n := F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$$

Input : $n \ge 0$

Output: *n*-te Fibonacci Zahl

if $n \leq 2$ then $f \leftarrow 1$

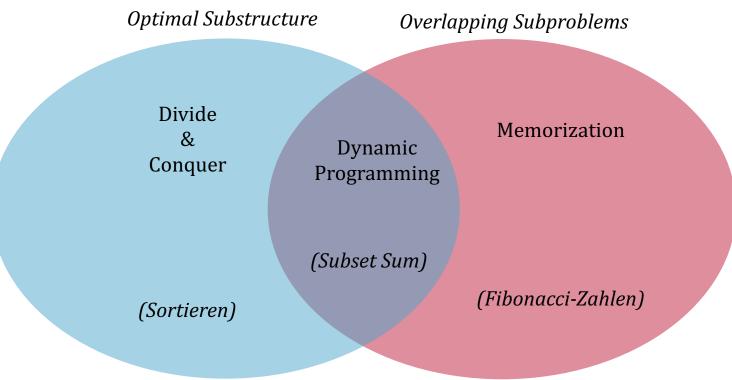
else if $\exists memo[n]$ then



 F_{n-2}

 F_{n-3}

Dynamic Programming



Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Die längst Teilsequenz von

CGCATT und GTCTAT:
GCTT

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Die längst Teilsequenz von

CGCATT und GTCTAT:
GCTT

Was sind Teilprobleme?

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Die längst Teilsequenz von

CGCATT und GTCTAT: GCTT

Was sind Teilprobleme?

O O Alle
Teilsequenzen?

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Die längst Teilsequenz von

CGCATT und GTCTAT: GCTT

Was sind Teilprobleme?

Alle Teilsequenzen?

Die ersten *i* Buchstaben?

Gegeben:

- Alphabet Z
- Sequenzen
 - $X := x_1 x_2 \dots x_n \text{ mit } x_i \in Z$
 - $Y := y_1 y_2 \dots y_m \text{ mit } y_i \in Z$

Gesucht:

• Eine längstmögliche Sequenz *T*, die eine *Teilsequenz* von *X* und *Y* ist.

Eine Teilsequenz eines Wortes entsteht durch Weglassen von Buchstaben.

Die längst Teilsequenz von

CGCATT und GTCTAT:
GCTT

Was sind Teilprobleme?

Alle Teilsequenzen?

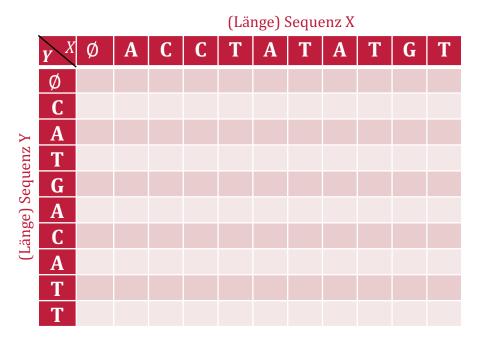
Die ersten *i* Buchstaben?

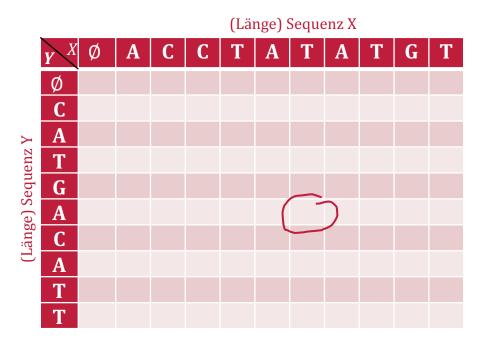
Für *beide* Sequenzen!

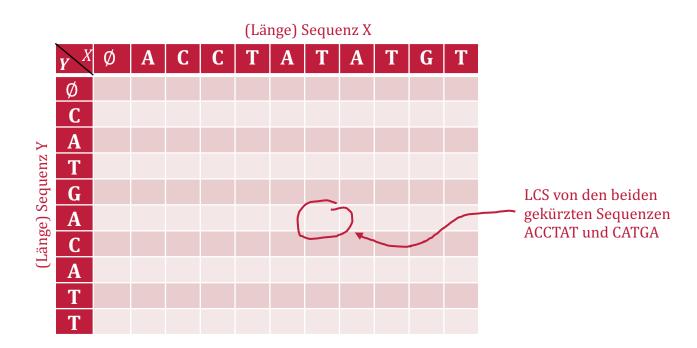
→ Berechne die Lösungen für alle Kombinationen von beiden.

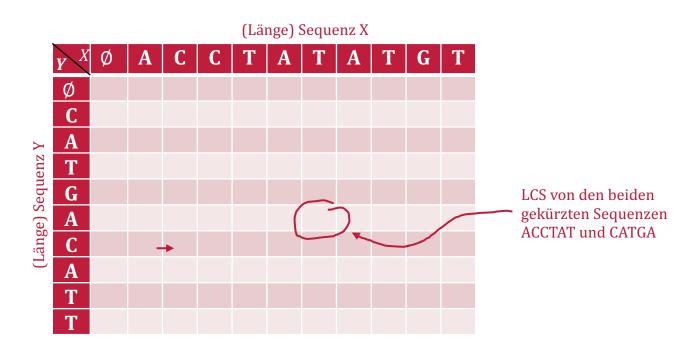
Y X	Ø	A	C	C	T	A	T	A	T	G	T
Ø											
Ø C A C A											
A											
T											
G											
A											
C											
A											
T											
T											

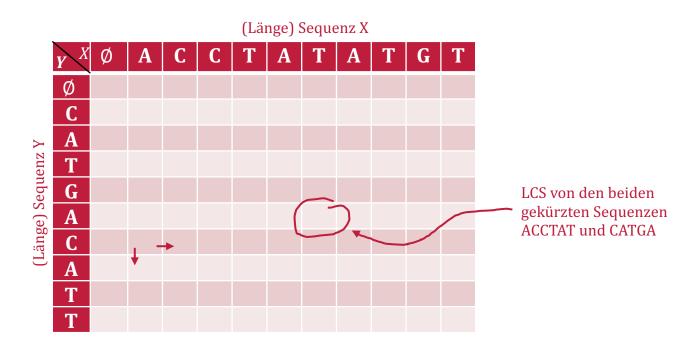
(Länge) Sequenz X G

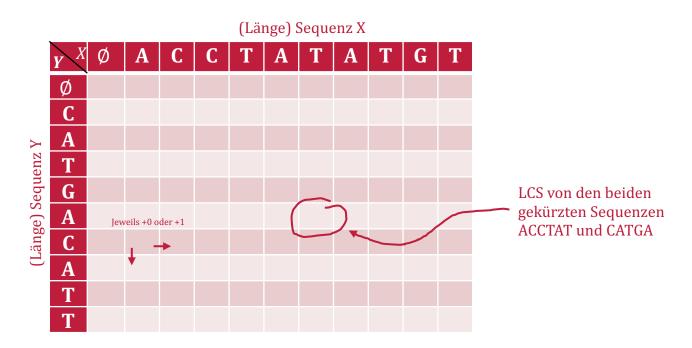


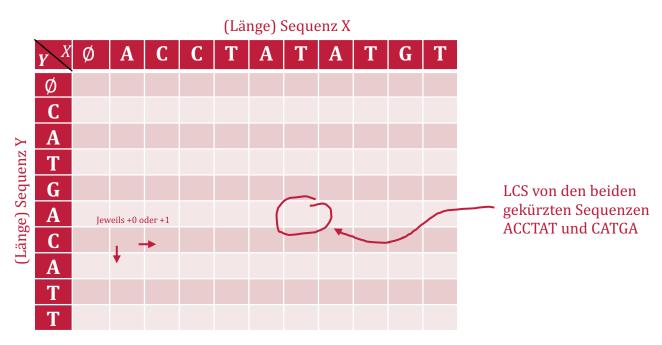








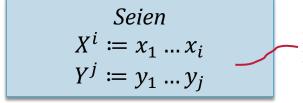




Jetzt brauchen wir noch Regeln, um diese Tabelle richtig zu füllen!

$$X^{i} \coloneqq x_{1} \dots x_{i}$$

$$Y^{j} \coloneqq y_{1} \dots y_{j}$$



Die Sequenz der ersten i Buchstaben von XDie Sequenz der ersten j Buchstaben von Y

Was sind die kleinsten Wörter, die wir direkt lösen können?

Seien
$$X^i \coloneqq x_1 \dots x_i$$
 Die Sequenz der ersten i Buchstaben von $X^i \mapsto y^j \mapsto y_1 \dots y_j$

Was sind die kleinsten Wörter, die wir direkt lösen können?

Einfach:
$$i = 0$$
 und $j = 0$

$$LCS(X^0, Y^0) = 0$$

Seien
$$X^i \coloneqq x_1 \dots x_i$$
 Die Sequenz der ersten i Buchstaben von $X^i \mapsto y^j \mapsto y_1 \dots y_j$

Was sind die kleinsten Wörter, die wir direkt lösen können?

Einfach:
$$i = 0$$
 und $j = 0$

$$LCS(X^0, Y^0) = 0$$

Das geht noch allgemeiner, oder?

Seien
$$X^{i} \coloneqq x_{1} \dots x_{i}$$

$$Y^{j} \coloneqq y_{1} \dots y_{j}$$

Die Sequenz der ersten *i* Buchstaben von *X* Die Sequenz der ersten *j* Buchstaben von *Y*

Was sind die kleinsten Wörter, die wir direkt lösen können?

Einfach:
$$i = 0$$
 und $j = 0$

$$LCS(X^0, Y^0) = 0$$

Das geht noch allgemeiner, oder?

Für alle
$$0 \le i \le n$$
 gilt $LCS(X^i, Y^0) = 0$ und für alle $0 \le j \le m$ gilt $LCS(X^0, Y^j) = 0$

Seien
$$X^{i} \coloneqq x_{1} \dots x_{i}$$

$$Y^{j} \coloneqq y_{1} \dots y_{j}$$

Die Sequenz der ersten *i* Buchstaben von *X* Die Sequenz der ersten *j* Buchstaben von *Y*

Was sind die kleinsten Wörter, die wir direkt lösen können?

Einfach:
$$i = 0$$
 und $j = 0$

$$LCS(X^0, Y^0) = 0$$

Das geht noch allgemeiner, oder?

Für alle
$$0 \le i \le n$$
 gilt $LCS(X^i, Y^0) = 0$ und für alle $0 \le j \le m$ gilt $LCS(X^0, Y^j) = 0$

Ja! Nur *eines* der beiden Wörter muss leer sein.

Y	Ø	A	C	C	T	A	T	A	T	G	T
Ø											
Ø C A C A C T											
A											
T											
G											
A											
C											
A											
T											
T											

Y	Ø	A	C	C	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0										
A	0										
T	0										
G	0										
Α	0										
С	0										
A	0										
T	0										
T	0										

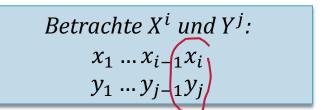
Betrachte X^i und Y^j :

$$x_1 \dots x_{i-1} x_i$$

$$y_1 \dots y_{j-1} y_j$$

Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_i - x_i \\ y_1 \dots y_j - x_j \end{array}$$



Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_j$$

Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_j$$

$$x_i = y_j$$

Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_i$$

 x_i oder y_i ist nicht in LCS

x_i	=	y_{i}
·		~ 1

Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_i$$

$$x_i = y_j$$

 x_i oder y_i ist nicht in LCS

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

Betrachte
$$X^i$$
 und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_i$$

 $x_i = y_j$

 x_i oder y_i ist nicht in LCS

 \downarrow

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

Nutze das Match oder lass es sein.

Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_i$$

 x_i oder y_i ist nicht in LCS

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

$$x_i = y_i$$

Nutze das Match oder lass es sein.

$$\downarrow \downarrow$$

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_i$$

 x_i oder y_i ist nicht in LCS

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

$$x_i = y_i$$

Nutze das Match oder lass es sein.

$$\downarrow$$

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

Betrachte X^i und Y^j :

$$\begin{array}{c} x_1 \dots x_{i-1} x_i \\ y_1 \dots y_{j-1} y_j \end{array}$$

$$x_i \neq y_i$$

 x_i oder y_i ist nicht in LCS

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

$$x_i = y_j$$

Nutze das Match oder lass es sein.

$$\downarrow \downarrow$$

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix}$$

Braucht man die?

Fall
$$\mathbf{x_i} = \mathbf{y_j}$$
:
$$LCS(X^i, Y^j) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^j), \\ LCS(X^i, Y^{j-1}) \end{pmatrix}$$

Fall
$$x_i = y_j$$
:

Fall
$$\mathbf{x_i} = \mathbf{y_j}$$
:
$$LCS(X^i, Y^j) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^j), \\ LCS(X^i, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^i, Y^j) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

Fall
$$x_i = y_j$$
:

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^{i}, Y^{j}) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

Fall $x_i = y_i$:

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^{i}, Y^{j}) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

$$LCS\big(X^i,Y^{j-1}\big) \leq LCS\big(X^{i-1},Y^{j-1}\big) + 1$$

Fall
$$x_i = y_i$$
:

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^{i}, Y^{j}) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

$$LCS(X^{i}, Y^{j-1}) \le LCS(X^{i-1}, Y^{j-1}) + 1$$

$$LCS(X^{i-1}, Y^j) \le LCS(X^{i-1}, Y^{j-1}) + 1$$

Fall $x_i = y_j$:

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^{i}, Y^{j}) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

$$LCS(X^i, Y^{j-1}) \le LCS(X^{i-1}, Y^{j-1}) + 1$$
: Betrachte LCS von X^i und Y^{j-1} und lasse ggf. x_i weg.

$$LCS(X^{i-1}, Y^j) \le LCS(X^{i-1}, Y^{j-1}) + 1$$

Fall $x_i = y_i$:

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^{i}, Y^{j}) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

$$LCS(X^i, Y^{j-1}) \le LCS(X^{i-1}, Y^{j-1}) + 1$$
: Betrachte LCS von X^i und Y^{j-1} und lasse ggf. x_i weg.

$$LCS(X^{i-1}, Y^j) \le LCS(X^{i-1}, Y^{j-1}) + 1$$
: Analog.

Fall $x_i = y_j$:

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^{i}, Y^{j}) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

... wir wissen nämlich:

$$LCS(X^i, Y^{j-1}) \le LCS(X^{i-1}, Y^{j-1}) + 1$$
: Betrachte LCS von X^i und Y^{j-1} und lasse ggf. x_i weg.

$$LCS(X^{i-1}, Y^j) \le LCS(X^{i-1}, Y^{j-1}) + 1$$
: Analog.

Wenn ich bei irgendeiner Sequenz ein Zeichen entferne oder hinzufüge, ändert sich die LCS maximal um 1!

Fall $x_i = y_j$:

$$LCS(X^{i}, Y^{j}) = \max \begin{pmatrix} LCS(X^{i-1}, Y^{j-1}) + 1, \\ LCS(X^{i-1}, Y^{j}), \\ LCS(X^{i}, Y^{j-1}) \end{pmatrix} \rightarrow \text{vereinfache zu } LCS(X^{i}, Y^{j}) = LCS(X^{i-1}, Y^{j-1}) + 1.$$

... wir wissen nämlich:

$$LCS(X^i, Y^{j-1}) \le LCS(X^{i-1}, Y^{j-1}) + 1$$
: Betrachte LCS von X^i und Y^{j-1} und lasse ggf. x_i weg.

$$LCS(X^{i-1}, Y^j) \le LCS(X^{i-1}, Y^{j-1}) + 1$$
: Analog.

Wenn ich bei irgendeiner Sequenz ein Zeichen entferne oder hinzufüge, ändert sich die LCS maximal um 1!

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j} \\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j} \\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø											
Ø C A C A											
A											
T											
G											
A											
C											
T											
T											

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	C	С	T	A	T	A	T	G	T
Ø											
Ø C A T G A C A											
A											
T											
G											
A											
C											
A											
T											
T											

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j} \\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y	Ø	A	C	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0										
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j} \\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y^X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0 •	0									
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1								
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1							
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1						
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y	Ø	A	C	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1					
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1				
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0										
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0										
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y^{X}	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0										
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y^{X}	Ø	A	С	С	T	Α	T	Α	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0										
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y^{X}	Ø	A	С	C	T	Α	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0										
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y^{X}	Ø	A	C	C	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
Α	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0										
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

YX	Ø	A	C	C	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0										
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	C	C	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0										

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y^{X}	Ø	A	C	C	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	(6)

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	(6)

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

T

Y X	Ø	Α	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	(5)	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

TT

Y^X	Ø	Α	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
(T)	0	1	2	2	3	3	4	4	(5)	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
(\mathbf{A})	0	1	2	2	2	3	3	(4)	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	(3)	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	(3)	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	(3)	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

TTAT

Y X	Ø	A	С	С	T	A	(T)	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	(3)	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

TTATA

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
(\mathbf{A})	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

TTATA

YX	Ø	A	С	С	Т	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	(1)	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

TTATAC

Y X	Ø	A	С	$\left(\mathbf{c}\right)$	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
(c)	0	0	1	(1)	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

TTATAC

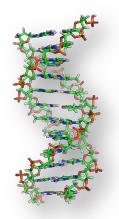
Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	$\left(\begin{array}{c} 0 \end{array}\right)$	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

$$LCS(X^{i}, Y^{j}) = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0\\ LCS(X^{i-1}, Y^{j-1}) + 1 & \text{, falls } x_{i} = y_{j}\\ \max\left(LCS(X^{i-1}, Y^{j}), LCS(X^{i}, Y^{j-1})\right) & \text{, sonst} \end{cases}$$

CATATT

Y X	Ø	A	С	С	T	A	T	A	T	G	T
Ø	0	0	0	0	0	0	0	0	0	0	0
C	0	0	1	1	1	1	1	1	1	1	1
A	0	1	1	1	1	2	2	2	2	2	2
T	0	1	1	1	2	2	3	3	3	3	3
G	0	1	1	1	2	2	3	3	3	4	4
A	0	1	1	1	2	3	3	4	4	4	4
C	0	1	2	2	2	3	3	4	4	4	4
A	0	1	2	2	2	3	3	4	4	4	4
T	0	1	2	2	3	3	4	4	5	5	5
T	0	1	2	2	3	3	4	4	5	5	6

CTTGCTCATTGGAGTTGACAGAGTACTGTTTCACATCTGATCAAGGTTATGCTAGC
ACGTCCCAATGCAGGATAACTCAATATGAACTCCTTATAAGGCGATGAATTTGTTT
CTATGGTTGCCACGCAGCTCTTGGTCGGGTCAGAAGGGGTTTCCTAGGTGTGGCG
TCATGTCCTTTCTGCGGCCACAGGCGTTTGTGGTGGATCTGCACCACGTGGGTGT
CTGGCTACGCACCGTTTGTACATCTTCAAAAAATCGAGCTTTGCACGGCTCAATTG
GCATAGACTGCCTGCCGTAATCTCGCTGAGTATAAGTTGATGTAATTTTCAAGACG
AGAGAGCTGGTATCCAGACAAGTCGGATGGTGAGGTTACTGAAGCGGATCCCGGA
CACTAGCTAAATATAATCGACGGATGAGACGAGGTGTAACAGGACTTTATCTCCGC
TTACGCCACACGTTCCCGGCCCTGCCGCTAGTTCCAATGTCCAAATGAGT



CTTGCTCATTGGAGTTGACAGAGTACTGTTTCACATCTGATCAAGGTTATGCTAGC
ACGTCCCAATGCAGGATAACTCAATATGAACTCCTTATAAGGCGATGAATTTGTTT
CTATGGTTGCCACGCAGCTCTTGGTCGGGTCAGAAGGGGTTTCCTAGGTGTGGCG
TCATGTCCTTTCTGCGGCCACAGGCGTTTGTGGTGGAATCTGCACCACGTGGGTGT
CTGGCTACGCACCGTTTGTACATCTTCAAAAAATCGAGCTTTGCACGGCTCAATTG
GCATAGACTGCCTGCCGTAATCTCGCTGAGTATAAGTTGATGTAATTTTCAAGACG
AGAGAGCTGGTATCCAGACAAGTCGGATGGTGAGGTTACTGAAGCGGATCCCGGA
CACTAGCTAAATATAATCGACGGATGAGACGAGGTGTAACAGGACTTTATCTCCGC
TTACGCCACACGTTCCCGGCCCTGCCGCTAGTTCCAATGTCCAAATGAGT

Hier hat die LCS eine Länge von 323

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} = \begin{pmatrix} ae + bh & af + bi & ag + bj \\ ce + dh & cf + di & cg + dj \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} = \begin{pmatrix} ae + bh & af + bi & ag + bj \\ ce + dh & cf + di & cg + dj \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 3$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} = \begin{pmatrix} ae + bh & af + bi & ag + bj \\ ce + dh & cf + di & cg + dj \end{pmatrix}$$

$$2 \times 2 \longrightarrow 2 \times 3 \longrightarrow 2 \cdot 2 \cdot 3 \longrightarrow 2 \times 3 \longrightarrow 2 \cdot 2 \cdot 3 \longrightarrow 2 \times 3 \longrightarrow 2$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} = \begin{pmatrix} ae + bh & af + bi & ag + bj \\ ce + dh & cf + di & cg + dj \end{pmatrix}$$

$$2 \times 2 \longrightarrow 2 \times 3$$

$$2 \times 2 \longrightarrow 2 \times 3$$

$$= 12 \text{ Multiplikationen}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} = \begin{pmatrix} ae + bh & af + bi & ag + bj \\ ce + dh & cf + di & cg + dj \end{pmatrix}$$

$$\alpha \times \beta \qquad \beta \times \gamma$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} = \begin{pmatrix} ae + bh & af + bi & ag + bj \\ ce + dh & cf + di & cg + dj \end{pmatrix}$$

$$\alpha \times \beta \longrightarrow \beta \times \gamma \longrightarrow \alpha \cdot \beta \cdot \gamma \longrightarrow \beta \times \gamma$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Operation	Dimensionen	Multiplikationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Operation	Dimensionen	Multiplikationen
$A \times B$		

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$		

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen
$B \times C$		

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen
$B \times C$	$(2\times3)\times(3\times2)$	

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen
$B \times C$	$(2\times3)\times(3\times2)$	12

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen
$B \times C$	$(2\times3)\times(3\times2)$	12
$A \times (B \times C)$		

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen
$B \times C$	$(2\times3)\times(3\times2)$	12
$A \times (B \times C)$	$(2\times2)\times(2\times2)$	

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen
$B \times C$	$(2\times3)\times(3\times2)$	12
$A \times (B \times C)$	$(2\times2)\times(2\times2)$	8

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} \times \begin{pmatrix} k & l \\ m & n \\ o & p \end{pmatrix}$$

Wie viele Multiplikationen werden benötigt?

Operation	Dimensionen	Multiplikationen
$A \times B$	$(2\times2)\times(2\times3)$	12
$(A \times B) \times C$	$(2\times3)\times(3\times2)$	12
		24

Operation	Dimensionen	Multiplikationen
$B \times C$	$(2\times3)\times(3\times2)$	12
$A \times (B \times C)$	$(2\times2)\times(2\times2)$	8
		20

Gegeben:

• Matrizen $M_1 \times M_2 \times \cdots \times M_n$ wobei M_i eine Matrix der Form $d_i \times d_{i+1}$ ist.

Gesucht:

 Eine Klammerung für die Multiplikation der Matrizen, sodass die Summe der benötigten Multiplikationen minimal ist.

Gegeben:

• Matrizen $M_1 \times M_2 \times \cdots \times M_n$ wobei M_i eine Matrix der Form $d_i \times d_{i+1}$ ist.

Gesucht:

 Eine Klammerung für die Multiplikation der Matrizen, sodass die Summe der benötigten Multiplikationen minimal ist.

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

Gegeben:

• Matrizen $M_1 \times M_2 \times \cdots \times M_n$ wobei M_i eine Matrix der Form $d_i \times d_{i+1}$ ist.

Gesucht:

 Eine Klammerung für die Multiplikation der Matrizen, sodass die Summe der benötigten Multiplikationen minimal ist. Die Anzahl der möglichen Klammerungen von n Matrizen kann durch die Folge der Catalan-Zahlen C_n beschrieben werden.

Die Folge beginnt mit

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,...

Gegeben:

• Matrizen $M_1 \times M_2 \times \cdots \times M_n$ wobei M_i eine Matrix der Form $d_i \times d_{i+1}$ ist.

Gesucht:

 Eine Klammerung für die Multiplikation der Matrizen, sodass die Summe der benötigten Multiplikationen minimal ist. Die Anzahl der möglichen Klammerungen von n Matrizen kann durch die Folge der Catalan-Zahlen C_n beschrieben werden.

Die Folge beginnt mit

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,...

$$((X*X)*X)*X \qquad (X*(X*X))*X \qquad (X*X)*(X*X) \qquad X*((X*X)*X) \qquad X*(X*(X*X))$$

Gegeben:

• Matrizen $M_1 \times M_2 \times \cdots \times M_n$ wobei M_i eine Matrix der Form $d_i \times d_{i+1}$ ist.

Gesucht:

 Eine Klammerung für die Multiplikation der Matrizen, sodass die Summe der benötigten Multiplikationen minimal ist. Die Anzahl der möglichen Klammerungen von n Matrizen kann durch die Folge der Catalan-Zahlen C_n beschrieben werden.

Die Folge beginnt mit

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,...

$$((X * X) * X) * X$$
 $(X * (X * X)) * X$

$$X * ((X * X) * X)$$
 $X * (X * (X * X))$

OPT(i,j) ist die Anzahl Multiplikationen, die für Matrizen M_i bis M_j benötigt werden.

OPT(i,j) ist die Anzahl Multiplikationen, die für Matrizen M_i bis M_j benötigt werden.

Was ist das kleinste Teilproblem, welches wir lösen können?

OPT(i, j) ist die Anzahl Multiplikationen, die für Matrizen M_i bis M_j benötigt werden.

Was ist das kleinste Teilproblem, welches wir lösen können?

Für i = j müssen keine Multiplikationen durchgeführt werden.

OPT(i,j) ist die Anzahl Multiplikationen, die für Matrizen M_i bis M_j benötigt werden.

Was ist das kleinste Teilproblem, welches wir lösen können?

Für i = j müssen keine Multiplikationen durchgeführt werden.

Für alle
$$i \in \{1, ... n\}$$
 gilt $OPT(i, i) = 0$

Betrachte

$$...\left((M_i\times M_{i+1}\times\cdots\times M_k)\times (M_{k+1}\times\cdots\times M_{j-1}\times M_j)\right)...$$

Betrachte

$$...\left(\underline{(M_i \times M_{i+1} \times \cdots \times M_k)} \times \underline{(M_{k+1} \times \cdots \times M_{j-1} \times M_j)}\right)...$$

 $M: d_i \times d_{k+1}$ $M': d_{k+1} \times d_{i+1}$

Betrachte

$$...\left(\underline{(M_i \times M_{i+1} \times \cdots \times M_k)} \times \underline{(M_{k+1} \times \cdots \times M_{j-1} \times M_j)}\right)...$$

 $M: d_i \times d_{k+1}$ $M': d_{k+1} \times d_{j+1}$

Wir brauchen $d_i \cdot d_{k+1} \cdot d_{j+1}$ Multiplikationen für die Multiplikation von M und M'.

Betrachte

$$...\left(\underline{(M_i \times M_{i+1} \times \cdots \times M_k)} \times \underline{(M_{k+1} \times \cdots \times M_{j-1} \times M_j)}\right)...$$

 $M: d_i \times d_{k+1}$ $M': d_{k+1} \times d_{j+1}$

Wir brauchen $d_i \cdot d_{k+1} \cdot d_{j+1}$ Multiplikationen für die Multiplikation von M und M'.

Wir brauchen insgesamt $d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j)$ Multiplikationen.

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1					
M_2					
M_3					
M_4					
M_5					

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0				
M_2		0			
M_3			0		
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0				
M_2		0			
M_3			0		
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0				
M_2		0			
M_3			0		
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$
• $k = 1$:

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0				
M_2		0			
M_3			0		
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$
• $k = 1: 3 \cdot 5 \cdot 10 + 0 + 0 = 150$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0 -	150			
M_2		0			
M_3			0		
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$
• $k = 1: 3 \cdot 5 \cdot 10 + 0 + 0 = 150$
 $i = 2; j = 3$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0 -	150			
M_2		0			
M_3			0		
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$

•
$$k = 1: 3 \cdot 5 \cdot 10 + 0 + 0 = 150$$

$$i = 2; j = 3$$

•
$$k = 2:5 \cdot 10 \cdot 2 + 0 + 0 = 100$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150			
M_2		0 -	→ 100		
M_3			0		
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$

•
$$k = 1: 3 \cdot 5 \cdot 10 + 0 + 0 = 150$$

$$i = 2; j = 3$$

•
$$k = 2:5 \cdot 10 \cdot 2 + 0 + 0 = 100$$

$$i = 3; j = 4$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150			
M_2		0 -	1 00		
M_3			0		
M_4				0	
M_5					0

i	d_i	
1	3	
2	5	
3	10	
4	2	
5	4	
6	3	

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$

•
$$k = 1: 3 \cdot 5 \cdot 10 + 0 + 0 = 150$$

$$i = 2; j = 3$$

•
$$k = 2: 5 \cdot 10 \cdot 2 + 0 + 0 = 100$$

$$i = 3; j = 4$$

•
$$k = 3: 10 \cdot 2 \cdot 4 + 0 + 0 = 80$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150			
M_2		0	100		
M_3			0 -	→ 80	
M_4				0	
M_5					0

i	d_i	
1	3	
2	5	
3	10	
4	2	
5	4	
6	3	

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$

•
$$k = 1: 3 \cdot 5 \cdot 10 + 0 + 0 = 150$$

$$i = 2; j = 3$$

•
$$k = 2: 5 \cdot 10 \cdot 2 + 0 + 0 = 100$$

$$i = 3; j = 4$$

•
$$k = 3: 10 \cdot 2 \cdot 4 + 0 + 0 = 80$$

$$i = 4; j = 5$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150			
M_2		0	100		
M_3			0 -	80	
M_4				0	
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 2$$

•
$$k = 1: 3 \cdot 5 \cdot 10 + 0 + 0 = 150$$

$$i = 2; j = 3$$

•
$$k = 2: 5 \cdot 10 \cdot 2 + 0 + 0 = 100$$

$$i = 3; j = 4$$

•
$$k = 3: 10 \cdot 2 \cdot 4 + 0 + 0 = 80$$

$$i = 4; j = 5$$

•
$$k = 4: 2 \cdot 4 \cdot 3 + 0 + 0 = 24$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150			
M_2		0	100		
M_3			0	80	
M_4				0 -	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$
• $k = 1$:

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150			
M_2		0	100		
M_3			0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$
• $k = 1$:

i∖j	M_1	M_2	M_3	\overline{M}_4	M_5
M_1	0	150			
M_2		0	100		
M_3			0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$

• $k = 1: 3 \cdot 5 \cdot 2 + 0 + 100 = 130$
 $A \times (B \times C)$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130		
M_2		0	100		
M_3			0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$

• $k = 1: 3 \cdot 5 \cdot 2 + 0 + 100 = 130$
 $A \times (B \times C)$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130		
M_2		0	100		
M_3			0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$
• $k = 1: 3 \cdot 5 \cdot 2 + 0 + 100 = 130$

$$A \times (B \times C)$$

$$(A \times B) \times C$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130		
M_2		0	100		
M_3			0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$
• $k = 1: 3 \cdot 5 \cdot 2 + 0 + 100 = 130$

$$A \times (B \times C)$$

$$(A \times B) \times C$$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	15 <u>0</u>	130		
M_2		0	100		
M_3			. 0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$

• $k = 1: 3 \cdot 5 \cdot 2 + 0 + 100 = 130$
 $A \times (B \times C)$

•
$$k = 2: 3 \cdot 10 \cdot 2 + 150 + 0 = 210$$

 $(A \times B) \times C$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	15 <u>0</u>	130		
M_2		0	100		
M_3			. 0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$

- $k = 1: 3 \cdot 5 \cdot 2 + 0 + 100 = 130$
- $k = 2: 3 \cdot 10 \cdot 2 + 150 + 0 = 210$

$$i = 2; j = 4$$

- $k = 2: 5 \cdot 10 \cdot 4 + 0 + 80 = 280$
- $k = 3:5 \cdot 2 \cdot 4 + 100 + 0 = 140$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130		
M_2		0	100	140	
M_3			0	80	
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 3$$

- $k = 1: 3 \cdot 5 \cdot 2 + 0 + 100 = 130$
- $k = 2: 3 \cdot 10 \cdot 2 + 150 + 0 = 210$

$$i = 2; j = 4$$

- $k = 2:5 \cdot 10 \cdot 4 + 0 + 80 = 280$
- $k = 3: 5 \cdot 2 \cdot 4 + 100 + 0 = 140$

$$i = 3; j = 5$$

- $k = 3: 10 \cdot 2 \cdot 3 + 0 + 24 = 84$
- $k = 4: 10 \cdot 4 \cdot 3 + 80 + 0 = 200$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130		
M_2		0	100	140	
M_3			0	80	84
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 4$$

- $k = 1: 3 \cdot 5 \cdot 4 + 0 + 140 = 200$
- $k = 2: 3 \cdot 10 \cdot 4 + 150 + 80 = 350$
- $k = 3: 3 \cdot 2 \cdot 4 + 130 + 0 = 154$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130	154	
M_2		0	100	140	
M_3			0	80	84
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 4$$

- $k = 1: 3 \cdot 5 \cdot 4 + 0 + 140 = 200$
- $k = 2: 3 \cdot 10 \cdot 4 + 140 + 80 = 340$
- $k = 3: 3 \cdot 2 \cdot 4 + 130 + 0 = 154$

$$i = 2; j = 5$$

- $k = 2: 5 \cdot 10 \cdot 3 + 0 + 84 = 234$
- $k = 3: 5 \cdot 2 \cdot 3 + 100 + 24 = 154$
- $k = 4:5 \cdot 4 \cdot 3 + 140 + 0 = 200$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130	154	
M_2		0	100	140	154
M_3			0	80	84
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 5$$

- $k = 1: 3 \cdot 5 \cdot 3 + 0 + 154 = 199$
- $k = 2: 3 \cdot 10 \cdot 3 + 150 + 84 = 324$
- $k = 3: 3 \cdot 2 \cdot 3 + 130 + 24 = 172$
- $k = 4: 3 \cdot 4 \cdot 3 + 154 + 0 = 190$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130	154	172
M_2		0	100	140	154
M_3			0	80	84
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 5$$

- $k = 1: 3 \cdot 5 \cdot 3 + 0 + 154 = 199$
- $k = 2: 3 \cdot 10 \cdot 3 + 150 + 84 = 324$
- $k = 3: 3 \cdot 2 \cdot 3 + 130 + 24 = 172$
- $k = 4: 3 \cdot 4 \cdot 3 + 154 + 0 = 190$

Ergebnis: 172 Multiplikationen

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130	154	172
M_2		0	100	140	154
M_3			0	80	84
M_4				0	24
M_5					0

, ,			

10

Online-Demo: https://rosulek.github.io/vamonos/demos/matrix-chain.html

$$OPT(i,j) = \begin{cases} 0 & \text{, falls } i = j \\ \min_{i \le k < j} d_i \cdot d_{k+1} \cdot d_{j+1} + OPT(i,k) + OPT(k+1,j) & \text{, sonst} \end{cases}$$

$$i = 1; j = 5$$

- $k = 1: 3 \cdot 5 \cdot 3 + 0 + 154 = 199$
- $k = 2: 3 \cdot 10 \cdot 3 + 150 + 84 = 324$
- $k = 3: 3 \cdot 2 \cdot 3 + 130 + 24 = 172$
- $k = 4: 3 \cdot 4 \cdot 3 + 154 + 0 = 190$

Ergebnis: 172 Multiplikationen

Reihenfolge: $(M_1 \times (M_2 \times M_3)) \times (M_4 \times M_5)$

i∖j	M_1	M_2	M_3	M_4	M_5
M_1	0	150	130	154	172
M_2		0	100	140	154
M_3			0	80	84
M_4				0	24
M_5					0

i	d_i
1	3
2	5
3	10
4	2
5	4
6	3

Online-Demo: https://rosulek.github.io/vamonos/demos/matrix-chain.html

- 1. Geeignete Teilprobleme definieren
- 2. Lösung für kleinste Teilprobleme definieren (Initialisierung)
- 3. Lösung für Problem aus gelösten Teilprobleme bestimmen (Rekursionsgleichung)
- 4. Algorithmus schreiben (wie läuft man durch die Tabelle?)

- 1. Geeignete Teilprobleme definieren
- 2. Lösung für kleinste Teilprobleme definieren (Initialisierung)
- 3. Lösung für Problem aus gelösten Teilprobleme bestimmen (Rekursionsgleichung)
- 4. Algorithmus schreiben (wie läuft man durch die Tabelle?)

- 1. Geeignete Teilprobleme definieren
- 2. Lösung für kleinste Teilprobleme definieren (Initialisierung)
- 3. Lösung für Problem aus gelösten Teilprobleme bestimmen (Rekursionsgleichung)
- 4. Algorithmus schreiben (wie läuft man durch die Tabelle?)

- 1. Geeignete Teilprobleme definieren
- 2. Lösung für kleinste Teilprobleme definieren (Initialisierung)
- 3. Lösung für Problem aus gelösten Teilprobleme bestimmen (Rekursionsgleichung)
- 4. Algorithmus schreiben (wie läuft man durch die Tabelle?)

- 1. Geeignete Teilprobleme definieren
- 2. Lösung für kleinste Teilprobleme definieren (Initialisierung)
- 3. Lösung für Problem aus gelösten Teilprobleme bestimmen (Rekursionsgleichung)
- 4. Algorithmus schreiben (wie läuft man durch die Tabelle?)

- 1. Geeignete Teilprobleme definieren
- 2. Lösung für kleinste Teilprobleme definieren (Initialisierung)
- 3. Lösung für Problem aus gelösten Teilprobleme bestimmen (Rekursionsgleichung)
- 4. Algorithmus schreiben (wie läuft man durch die Tabelle?)

Weitere Fragen:

- Wie bekommt man die Lösung und nicht nur den Wert?
- Gibt es mehrere mögliche dynamische Programme?
- Was ist mit der Effizienz?

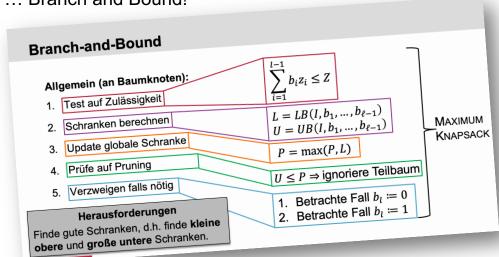
- 1. Geeignete Teilprobleme definieren
- 2. Lösung für kleinste Teilprobleme definieren (Initialisierung)
- 3. Lösung für Problem aus gelösten Teilprobleme bestimmen (Rekursionsgleichung)
- 4. Algorithmus schreiben (wie läuft man durch die Tabelle?)

Weitere Fragen:

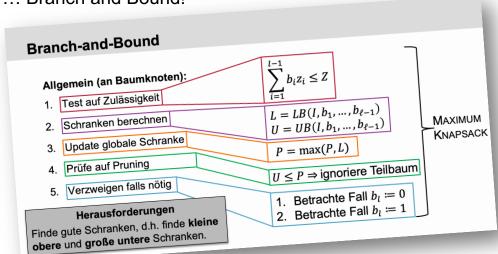
- Wie bekommt man die Lösung und nicht nur den Wert?
- Gibt es mehrere mögliche dynamische Programme?
- Was ist mit der Effizienz?

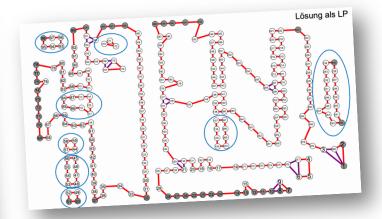
... Branch and Bound!

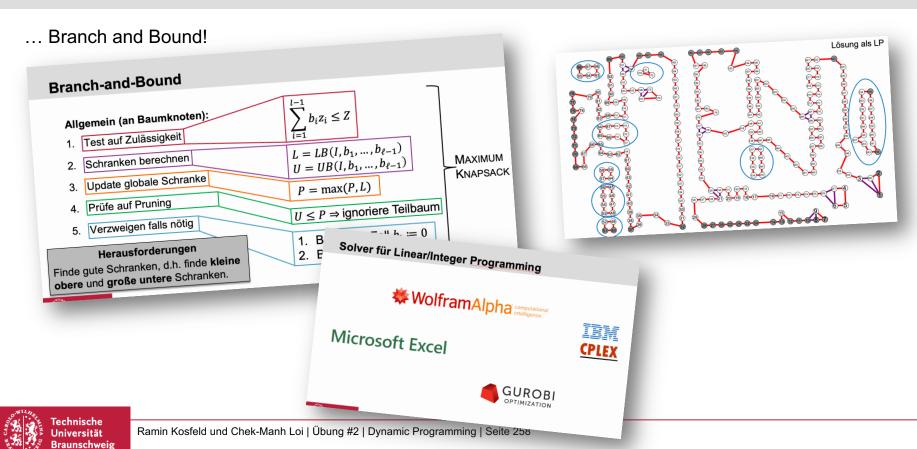
... Branch and Bound!



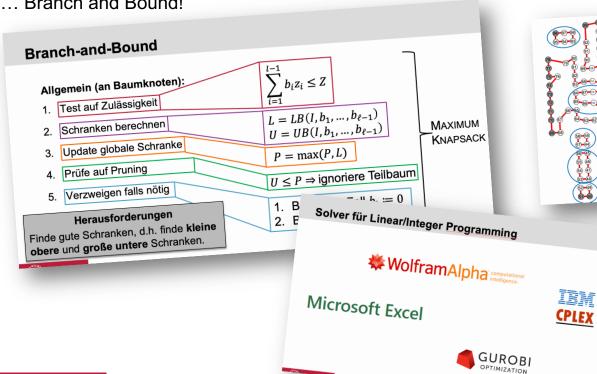
... Branch and Bound!

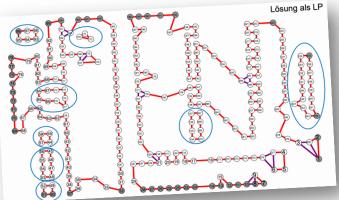












Schon nächste Woche 😡

