
Algorithmen und Datenstrukturen 2 – Übung #0

Ramin Kosfeld und Chek-Manh Loi 10.04.2024

Organisation

Homepage und Anmeldung

Stud.IP?

Homepage

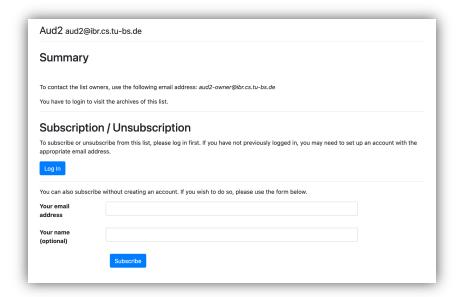
https://www.ibr.cs.tu-bs.de/courses/ss24/aud2/

Hier gibt es wirklich nichts zu sehen :)

Organisation

Kursseite

https://aud2.ibr.cs.tu-bs.de/

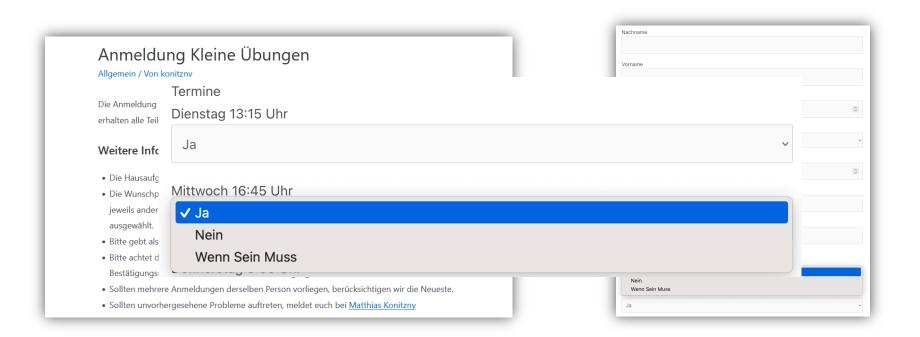


Dort findet ihr

- Aktuelle Informationen
- Vorlesungsvideos und Links zu den Live-Veranstaltungen
- Hausaufgaben
- Skript (bei Fehlern bitte Mail an uns)
- Literaturempfehlungen
- Weiterführende Links

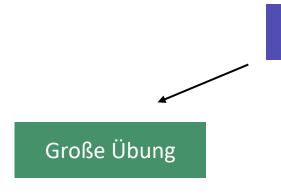
Mailingliste

- Anmeldung über Kursseite
- Kurzfristige Information zur Vorlesung/Übung/Klausur/etc.
- Bietet Möglichkeit Fragen zu stellen


Anmeldung

Anmeldung zu kleinen Übungen auf der Homepage

Gruppe	Termin (siehe Semesterplan)	Raum	Tutor
01	Dienstag, 13:15 – 14:45	IZ 305	Tobias Wallner
02	Mittwoch, 16:45 – 18:15	IZ 305	Lisa Glowczewski
03	Donnerstag, 08:00 – 09:30	IZ 305	Tilo Hoitz
04	Donnerstag, 13:15 – 14:45	IZ 305	Kai Kobbe
05	Freitag, 11:30 – 13:00	IZ 305	Benjamin Hennies
06	Freitag: 13:15 – 14:45	IZ 305	Lisa Glowczewski



Anmeldung

Formate

Tafelübungen im Hörsaal (mit allen)

- Aufarbeitung der Inhalte
- Beantwortung von Fragen
- Interaktion!

Kleingruppen (Seminarräume)

- Betreut von Übungsleiter*in
- Vertiefung der Inhalte
- Selbständiges Arbeiten
- Besprechung von Hausaufgaben
- Noch individueller auf Fragen eingehen

Hausaufgaben und Übungsblätter

5 verpflichtende Hausaufgabenblätter

- Studienleistung
- 20 Punkte pro Blatt
- Einzelabgabe

6 freiwillige Übungsblätter

- Zusätzliche Vertiefung
- Prüfungsvorbereitung

Algorithmen und Datenstrukturen 2 Sommer 2024 Prof. Dr. Sándor P. Fekete 02.05.2024 Abgabe: Ramin Kosfeld Rückgabe: ab 06.05.2023 Chek-Manh Loi Hausaufgabenblatt 1 Abgabe der Lösungen bis zum 02.05.2024 um 13:00 Uhr im Hausaufgabenschrank bei Raum IZ 337 (siehe Skizze rechts). Es werden nur mit einem dokumentenechten Stift (kein Rot!) geschriebene Lösungen gewertet. Auf deine Abgabe unbedingt Namen, Matrikelnummer und deine Gruppennummer schreiben! Die Blätter bitte zusammenheften!

- Studienleistung: 50% der Gesamtpunkte
 - Studienleistung ist keine Voraussetzung, um an der Prüfung teilzunehmen.
 - Studienleistung ist eine Voraussetzung, um das Modul abzuschließen.
 - Studienleistung ist nicht benotet und fließt nicht in die Prüfung ein.

Hausaufgaben

Wozu Hausaufgaben?


Die Hausaufgaben dienen *Euch* (nicht uns) zur Vorbereitung auf die Klausur.

- Ideale Nachbereitung der Vorlesungsinhalte
- Zeitersparnis bei der Prüfungsvorbereitung
- Direktes Feedback über euren aktuellen Lernstand

- Zu späte Abgaben: 0 Punkte
- Zusammen überlegen ist okay, ABER:
 Einzeln aufschreiben und abgeben, sonst:
 0 Punkte

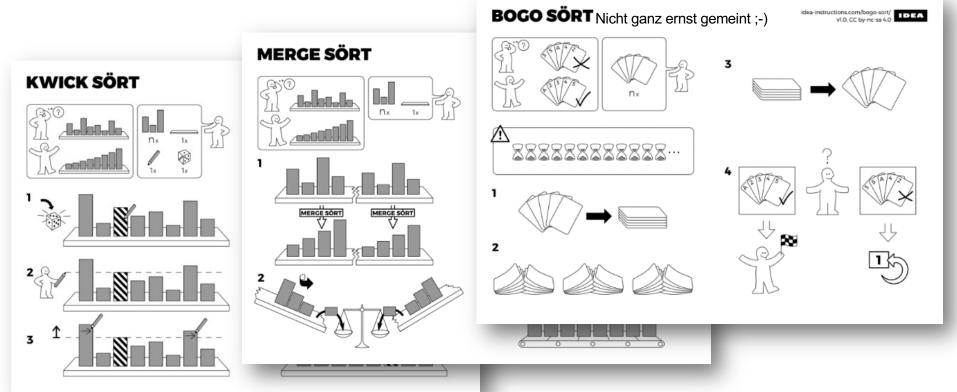
Hausaufgaben

Hausaufgabenschrank

Klausur

- Voraussichtlich 02.08.24, um 15:30-17:30 Uhr.
- Raumaufteilung und Beginn der Klausur folgen auf Webseite.
- Inhalt: Prinzipiell alles aus VL und Übung
- Dauer: 2 Stunden

Previously on AuD...


Problem vs Instanz

Problem	Instanz							
Allgemeine Formulierung der Ein- und Ausgabe	Konkrete Werte für Ein- und Ausgabe							
Eingabe	Eingabe	i	1	2	3	4	5	
$z_1, \ldots, z_n, Z, p_1, \ldots, p_n$	Z = 12 und Objekte	z_i	2	1	7	4	2	
		p_i	3	1	4	5	2	
Ausgabe $S \subseteq \{1,, n\}$ mit $\sum_{i \in S} z_i \leq Z$ und $\sum_{i \in S} p_i$ maximal.	Ausgabe $S = \{1,2,4,5\}$ denn $\sum_{i \in S} z_i = 9 \le 12$ und $\sum_{i \in S} p_i = 11$	Ist	das	s be	esti	mö	glich	?
Lösung: Angabe eines Algorithmus	Lösung: Angabe kon	krete	er V	Ver	te			


```
Eingabe: z_i, ..., z_n, Z, p_i, ..., p_n
Ausgabe: x_i, ..., x_n \in [0, 1]
     mit
              \sum_{i=1}^{n} z_i x_i \le Z
          \sum_{i=1}^{n} p_i x_i = Maximal
  1: Sortiere 1,...,n} nach \frac{z_i}{p_i} aufsteigend;
     Dies ergibt die Permutation \pi(1), ..., \pi(n).
     Setze j = 1.
  2: while (\sum_{i=1}^{j} z_{\pi(i)} \leq Z) do
 x_{\pi(j)} := 1
 4: j := j + 1
 5: Setze x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(i)}}
  6: return
```

Ein paar Sortierverfahren

Laufzeit - Sortieren

Wie lange dauern diese Algorithmen?

Algorithmus	Best-Case	Average- Case	Worst-Case
Quicksort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$
Mergesort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$

Theorem:

Jedes vergleichsbasierte Verfahren benötigt $\Omega(n \log n)$ Schritte.

Laufzeit

Sei f(n) die Laufzeit eines Algorithmus mit Inputgröße n.

Maximale Laufzeit

0-Notation

Können wir garantieren, dass

$$f(n) \le c_1 \cdot g(n)$$

ab einem n_0 gilt, so schreiben wir

$$f(n) \in O(g(n)).$$

Mindestlaufzeit

Ω -Notation

Können wir garantieren, dass

$$f(n) \ge c_2 \cdot g(n)$$

ab einem n_0 gilt, so schreiben wir

$$f(n) \in \Omega(g(n)).$$

i					5
z_i	2	1	7	4	2
p_i	3	1	4	5	2

$$Z = 12$$
 und

Eingabe:
$$z_i, ..., z_n, Z, p_i, ..., p_n$$
Ausgabe: $x_i, ..., x_n \in [0, 1]$
mit
$$\sum_{i=1}^n z_i x_i \le Z$$

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j=1.

2: while
$$(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$$
 do

$$3: \qquad x_{\pi(j)} := 1$$

$$j:=j+1$$

5: Setze
$$x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$$

Z = 12 und

Eingabe:
$$z_i, ..., z_n, Z, p_i, ..., p_n$$

Ausgabe:
$$x_i, ..., x_n \in [0, 1]$$

mit

$$\sum_{i=1}^{n} z_i x_i \le Z$$

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend;

Dies ergibt die Permutation $\pi(1), ..., \pi(n)$.

Setze
$$j = 1$$
.

- 2: while $(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$ do
- $x_{\pi(i)} := 1$

4:
$$j := j + 1$$

5: Setze $x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$

Z = 12 und

Eingabe:
$$z_i, ..., z_n, Z, p_i, ..., p_n$$

Ausgabe: $x_i, ..., x_n \in [0, 1]$

mit

$$\sum_{i=1}^{n} z_i x_i \le Z$$

una

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

1: Sortiere $\{1, ..., n\}$ nach $\frac{z_i}{p_i}$ aufsteigend:

Dies ergibt die Permutation $\pi(1), ..., \pi(n)$.

Setze
$$j=1$$
.

2: while
$$(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$$
 do

- $x_{\pi(j)} := 1$
- 4: j := j + 1

5: Setze
$$x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$$

<i>Eingabe</i> : $z_i,, z_n, Z, p_i,, p_n$	Z :
- [0 1]	

Ausgabe:
$$x_i, ..., x_n \in [0, 1]$$

mit
$$\sum_{i=1}^{n} z_i x_i \le Z$$

und
$$\sum_{i=1}^{n} p_i x_i = Maximal$$

- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1),...,\pi(n)$. Setze j=1.
- 2: while $(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$ do
- $x_{\pi(j)} := 1$
- $4: \qquad j := j+1$
- 5: Setze $x_{\pi(j)} := \frac{Z \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$
- 6: return

			5	5	5
j	$\pi(j)$	$x_{\pi(j)}$	$\sum x_i z_i$	$Z-\sum x_i z_i$	$\sum x_i p_i$

12 und

i	1	2	3	4	5
z_i	2	1	7	4	2
p_i	3	1	4	5	2
$\frac{z_i}{p_i}$	$\frac{2}{3}$	1	$\frac{7}{4}$	$\frac{4}{5}$	1
RF	1	3	5	2	4

7 —	12	und
$_{L} =$	$\perp Z$	una

0	of,, off,, I'll
Ausgabe:	$x_i,, x_n \in [0, 1]$
mit	
	$\sum_{i=1}^{n} z_i x_i \le Z$
und	
$\sum_{n=1}^{\infty}$	$p_i x_i = Maximal$

- 1: Sortiere {1,...,n} nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1),...,\pi(n)$. Setze j=1.
- 2: while $(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$ do

Eingabe: $z_1, \dots, z_n, Z, p_1, \dots, p_n$

- $x_{\pi(j)} := 1$
- $4: \qquad j := j+1$
- 5: Setze $x_{\pi(j)} := \frac{Z \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$
- 6: return

j	$\pi(j)$	$x_{\pi(j)}$	$\sum_{i=1}^{5} x_i z_i$	$Z - \sum_{i=1}^{5} x_i z_i$	$\sum_{i=1}^{5} x_i p_i$
1	1	1	2	10	3

i	1	2	3	4	5
z_i	2	1	7	4	2
p_i	3	1	4	5	2
$\frac{z_i}{p_i}$	$\frac{2}{3}$	1	$\frac{7}{4}$	$\frac{4}{5}$	1
RF	1	3	5	2	4

Eingabe: $z_i,,z_n,Z,p_i,,p_n$	Z =
[0 4]	

$$mit$$

$$\sum_{i=1}^{n} z_i x_i \le Z$$

Ausgabe: $x_i, ..., x_n \in [0, 1]$

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j=1.
- 2: while $(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$ do
- $x_{\pi(i)} := 1$

4:
$$j := j + 1$$

5: $Setze \ x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$

6: return

j	$\pi(j)$	$x_{\pi(j)}$	$\sum_{i=1}^{5} x_i z_i$	$Z - \sum_{i=1}^{5} x_i z_i$	$\sum_{i=1}^{5} x_i p_i$
1	1	1	2	10	3
2	4	1	6	6	8

und

i	1	2	3	4	5
z_i	2	1	7	4	2
p_i	3	1	4	5	2
$\frac{z_i}{p_i}$	$\frac{2}{3}$	1	$\frac{7}{4}$	$\frac{4}{5}$	1
RF	1	3	5	2	4

Eingabe:	$z_i,,z_n,Z,p_i,,p_n$
Ausgabe:	$x_i,, x_n \in [0, 1]$

mit

$$\sum_{i=1}^{n} z_i x_i \le Z$$

and
$$\sum_{i=1}^{n} p_i x_i = Maximal$$

- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j=1.
- 2: while $(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$ do
- $x_{\pi(i)} := 1$

4:
$$j := j + 1$$

5: Setze $x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$

6: return

j	$\pi(j)$	$x_{\pi(j)}$	$\sum_{i=1}^{5} x_i z_i$	$Z - \sum_{i=1}^{5} x_i z_i$	$\sum_{i=1}^{5} x_i p_i$
1	1	1	2	10	3
2	4	1	6	6	8
3	2	1	7	5	9

Z=12 und

i	1	2	3	4	5
z_i	2	1	7	4	2
p_i	3	1	4	5	2
$\frac{z_i}{p_i}$	$\frac{2}{3}$	1	$\frac{7}{4}$	$\frac{4}{5}$	1
RF	1	3	5	2	4

7.	=	12	und
L		14	unu

Eingabe:	$z_i,, z_n, Z, p_i,, p_n$
Ausgabe:	$x_i,, x_n \in [0, 1]$
mit	

$$\sum_{i=1}^{n} z_i x_i \le Z$$

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j = 1.
- 2: **while** $(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$ **do**
- $x_{\pi(i)} := 1$

5.
$$x_{\pi(j)} := 1$$
4: $j := j+1$
5: $Setze \ x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$

j	$\pi(j)$	$x_{\pi(j)}$	$\sum_{i=1}^{5} x_i z_i$	$Z - \sum_{i=1}^{5} x_i z_i$	$\sum_{i=1}^{5} x_i p_i$
1	1	1	2	10	3
2	4	1	6	6	8
3	2	1	7	5	9
4	5	1	9	3	11

i	1	2	3	4	5
z_i	2	1	7	4	2
p_i	3	1	4	5	2
$\frac{z_i}{p_i}$	$\frac{2}{3}$	1	$\frac{7}{4}$	$\frac{4}{5}$	1
RF	1	3	5	2	4

Eingabe:	$z_i,,z_n,Z,p_i,,p_n$
Ausgabe:	$x_i,, x_n \in [0, 1]$

mit

$$\sum_{i=1}^{n} z_i x_i \le Z$$

and
$$\sum_{i=1}^{n} p_i x_i = Maximal$$

- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j=1.
- 2: while $(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$ do
- 3: $x_{\pi(j)} := 1$

4:
$$j := j + 1$$

5: Setze $x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$

6: return

j	$\pi(j)$	$x_{\pi(j)}$	$\sum_{i=1}^{5} x_i z_i$	$Z - \sum_{i=1}^{5} x_i z_i$	$\sum_{i=1}^{5} x_i p_i$
1	1	1	2	10	3
2	4	1	6	6	8
3	2	1	7	5	9
4	5	1	9	3	11
5	3	3/7	12	0	12 + 5/7

Z=12 und