

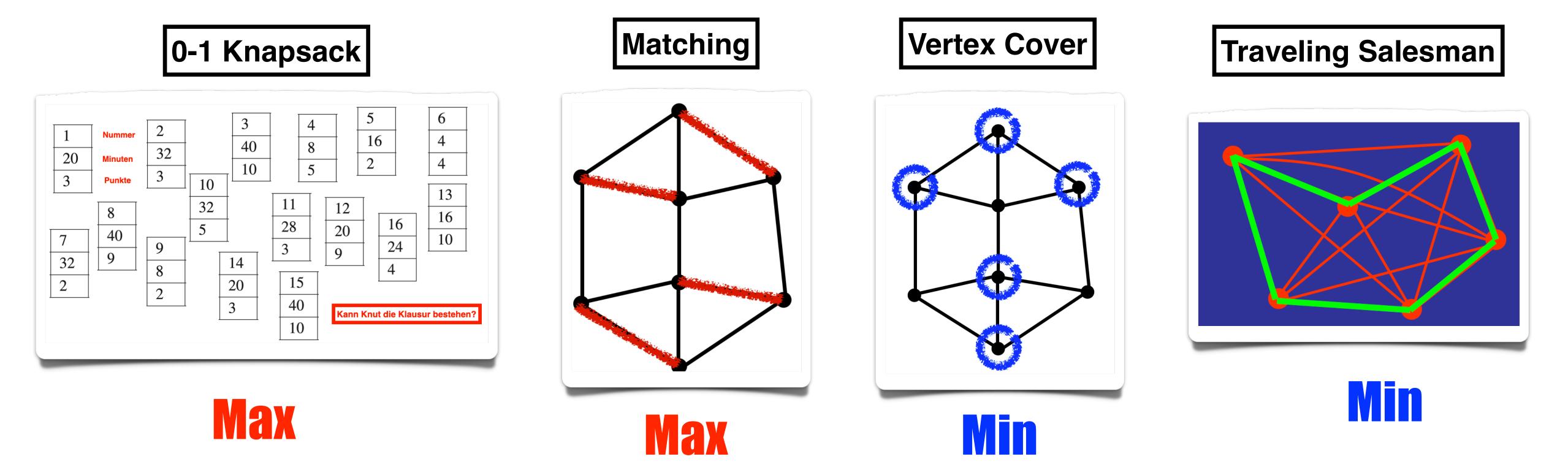
4 Approximation

Algorithmen und Datenstrukturen 2 Sommer 2024

Prof. Pr. Sándor Fekete

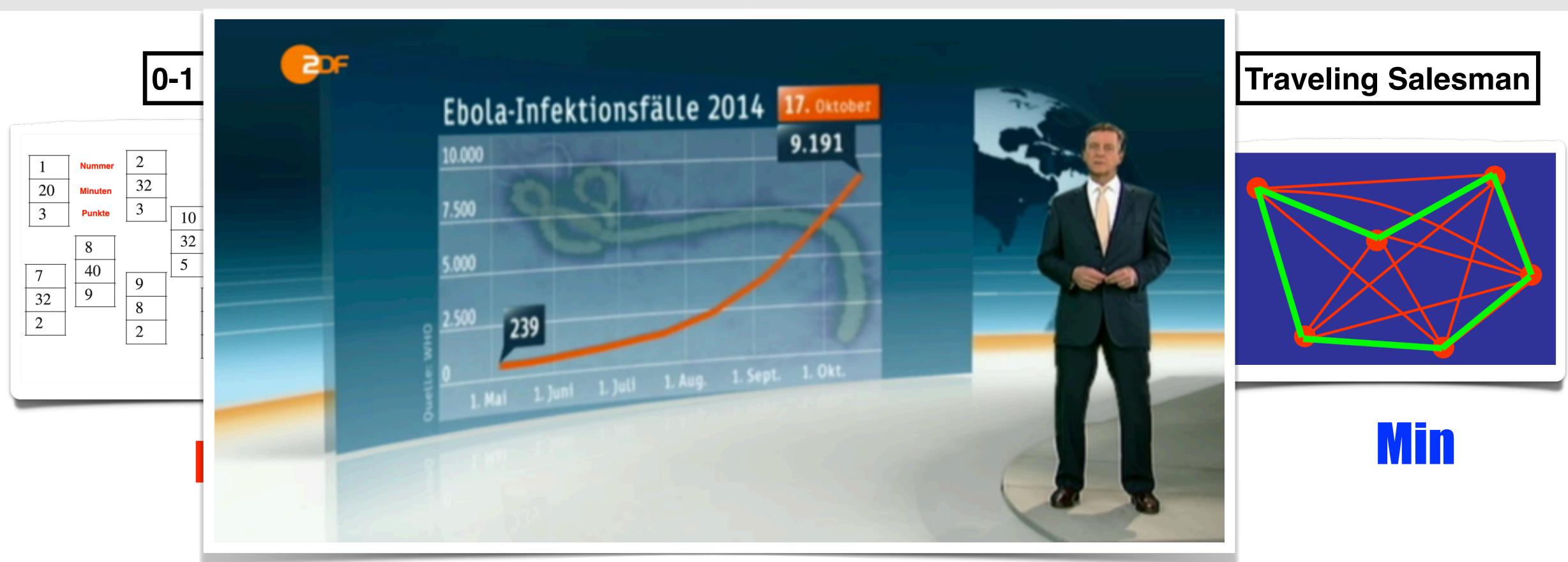
4.1 Motivation

Optimierungsprobleme



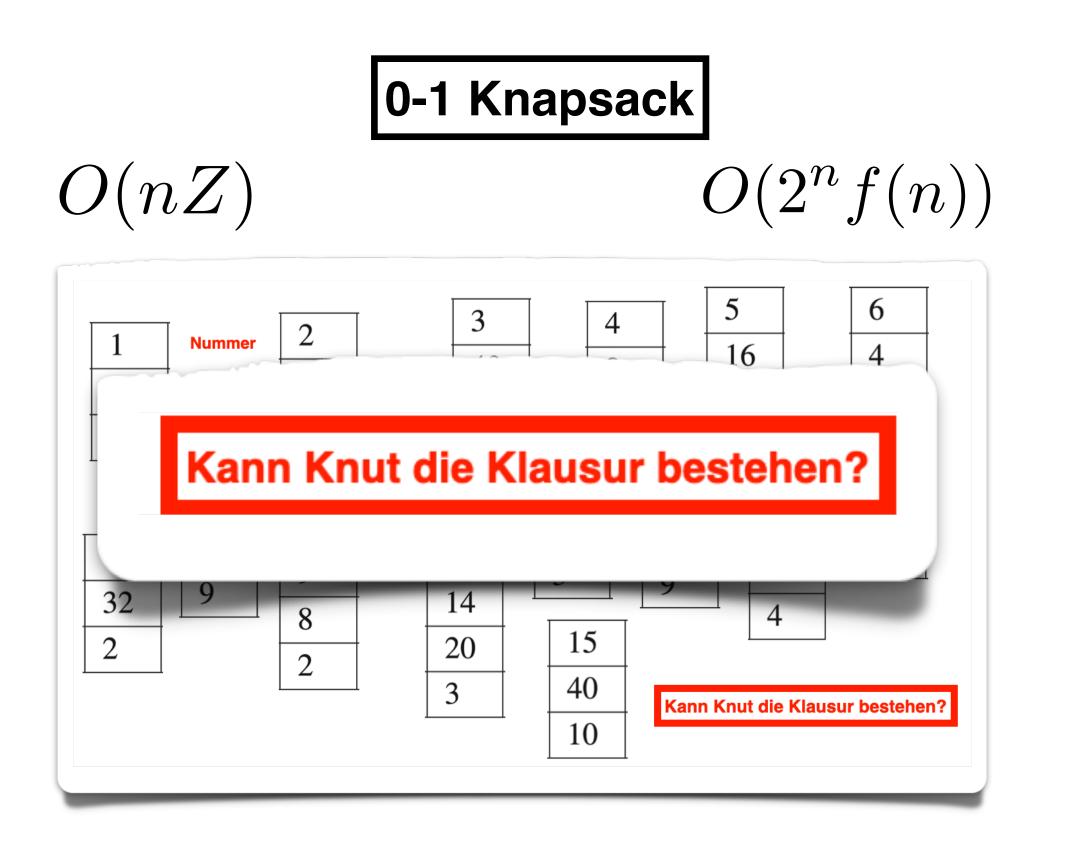
Ziel: Finde eine bestmögliche Lösung unter exponentiell vielen möglichen!

Optimierungsprobleme

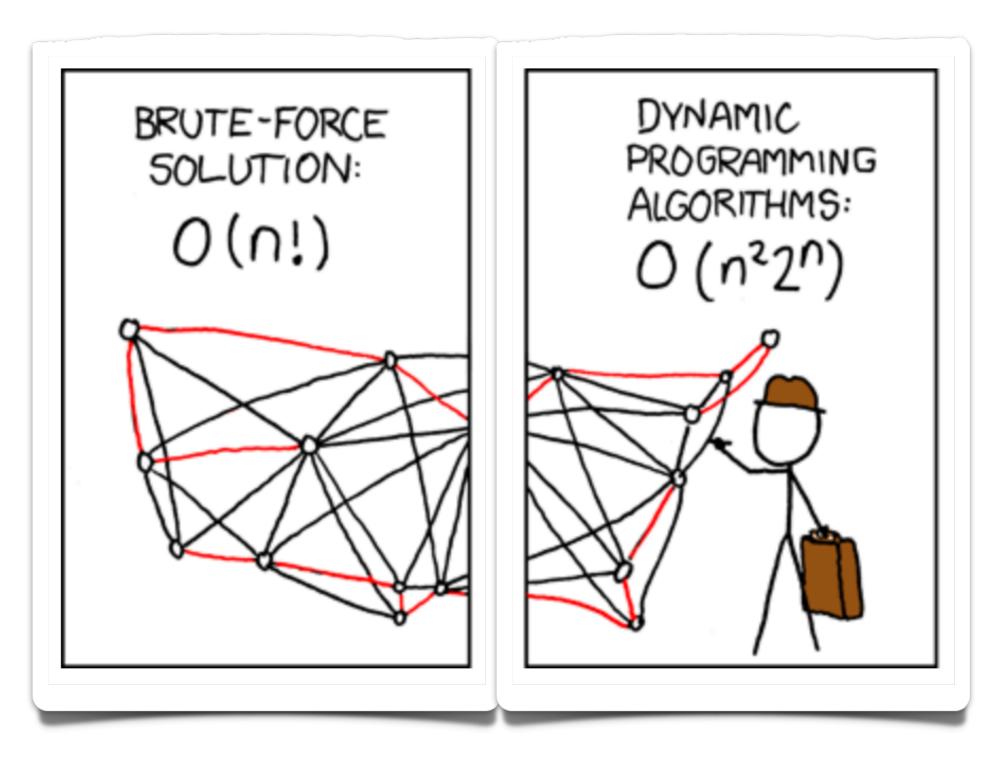


Ziel: Finde eine bestmögliche Lösung unter exponentiell vielen möglichen!

Laufzeit?

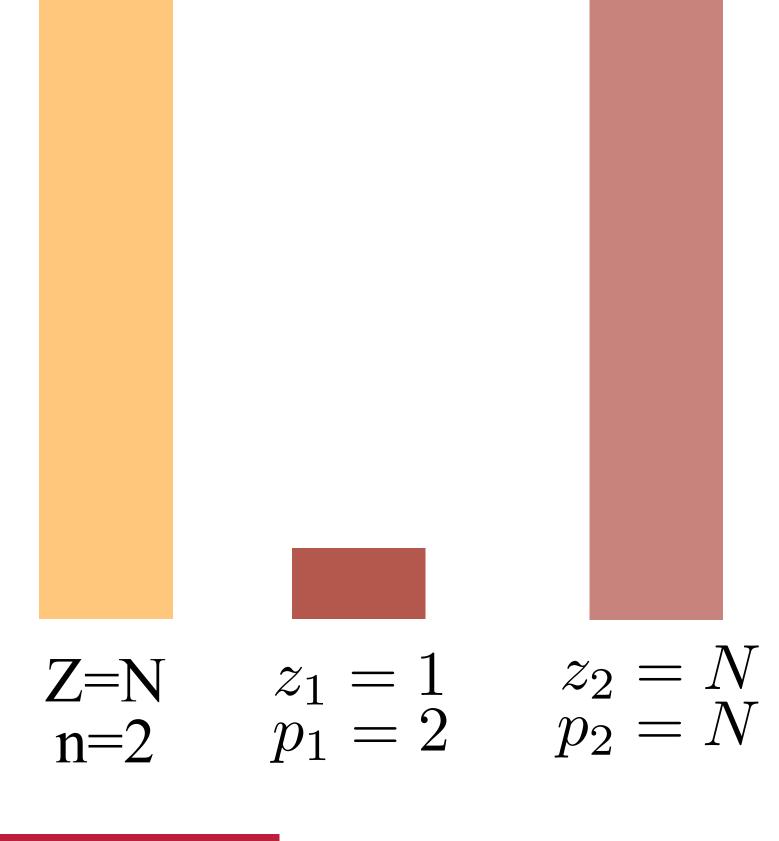


Traveling Salesman



Ziel: Vielleicht nicht die bestmögliche Lösung, sondern eine gute, aber dafür schneller...?!

4.2 Greedy und Approximation



Algorithmus 4.2 GREEDY₀

Eingabe: $z_1, ..., z_n, Z, p_1, ..., p_n$ **Ausgabe:** $S \subseteq \{1,...,n\}$ und G_0 mit

$$\sum_{i \in S} z_i \le Z$$

und

$$G_0 := \sum_{i \in S} p_i = Maximal$$

1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j = 1.

2: while $(j \leq n)$ do

2: While
$$(j \le n)$$
 do
3: if $\left(\sum_{i=1}^{j-1} z_{\pi(i)} x_{\pi(i)} + z_{\pi(j)} \le Z\right)$ then
4: $x_{\pi(j)} := 1$

5:
$$j := j + 1$$

Greedy: 2

$$z_1 = 1$$
 $z_2 = 1$ $p_1 = 2$ $p_2 = 1$

Algorithmus 4.2 GREEDY₀

Eingabe: $z_1, ..., z_n, Z, p_1, ..., p_n$ **Ausgabe:** $S \subseteq \{1,...,n\}$ und G_0 mit

$$\sum_{i \in S} z_i \le Z$$

und

$$G_0 := \sum_{i \in S} p_i = Maximal$$

1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j = 1.

2: while $(j \leq n)$ do

2: **while**
$$(j \le n)$$
 do
3: **if** $\left(\sum_{i=1}^{j-1} z_{\pi(i)} x_{\pi(i)} + z_{\pi(j)} \le Z\right)$ **then**
4: $x_{\pi(j)} := 1$

j := j + 1

Greedy: 2

$$Z=N$$
 $n=2$

$$z_1 = 1$$

$$p_1 = 2$$

$$\begin{array}{c} z_2 = N \\ p_2 = N \end{array}$$

Algorithmus 4.2 GREEDY₀

Eingabe:
$$z_1, ..., z_n, Z, p_1, ..., p_n$$

Ausgabe:
$$S \subseteq \{1,...,n\}$$
 und G_0

$$\operatorname{mit}$$

$$\sum_{i \in S} z_i \le Z$$

und

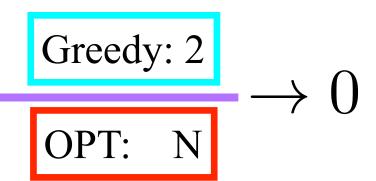
$$G_0 := \sum_{i \in S} p_i = Maximal$$

- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j = 1.
- 2: while $(j \leq n)$ do

2: **while**
$$(j \le n)$$
 do
3: **if** $\left(\sum_{i=1}^{j-1} z_{\pi(i)} x_{\pi(i)} + z_{\pi(j)} \le Z\right)$ **then**
4: $x_{\pi(j)} := 1$

4:
$$x_{\pi(i)} := 1$$

5:
$$j := j + 1$$



Algorithmus 4.2 GREEDY₀

Eingabe: $z_1, ..., z_n, Z, p_1, ..., p_n$ **Ausgabe:** $S \subseteq \{1,...,n\}$ und G_0 mit

$$\sum_{i \in S} z_i \le Z$$

und

$$G_0 := \sum_{i \in S} p_i = Maximal$$

1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j = 1.

2: while $(j \leq n)$ do

2: While
$$(j \le n)$$
 do
3: if $\left(\sum_{i=1}^{j-1} z_{\pi(i)} x_{\pi(i)} + z_{\pi(j)} \le Z\right)$ then
4: $x_{\pi(j)} := 1$

5:
$$j := j + 1$$

Verbesserung?!

Greedy: 2

$$p^*: N$$

Eingabe: $z_1, ..., z_n, Z, p_1, ..., p_n$

Ausgabe: $S \subseteq \{1,...,n\}$ und G_0

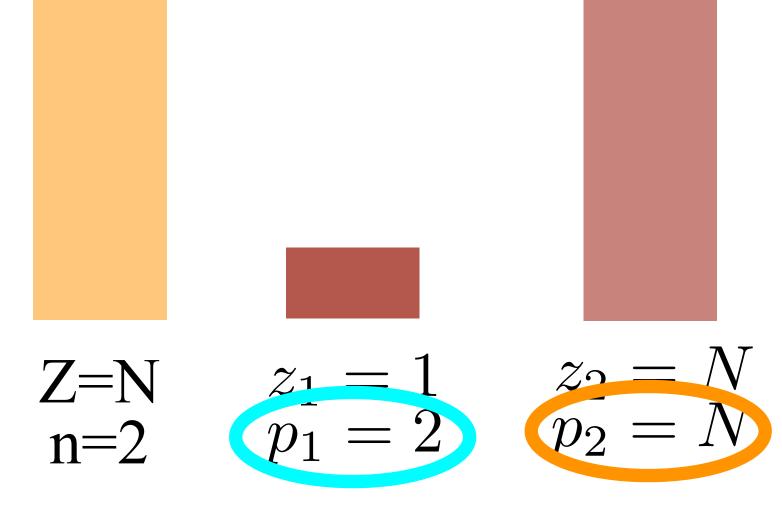
 mit

$$\sum_{i \in S} z_i \le Z$$

und

$$G_0 := \sum_{i \in S} p_i = Maximal$$

- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j = 1.
- 2: while $(j \leq n)$ do
- if $\left(\sum_{i=1}^{j-1} z_{\pi(i)} x_{\pi(i)} + z_{\pi(j)} \le Z\right)$ then $x_{\pi(j)} := 1$
- 5: j := j + 1



Verbesserung?!

$$p^*: N$$

Eingabe:
$$z_1,...,z_n,Z,p_1,...,p_n$$

Ausgabe: $S \subseteq \{1,...,n\}$ und G_0
mit

$$\sum_{i \in S} z_i \le Z$$

und

$$G_0 := \sum_{i \in S} p_i = Maximal$$

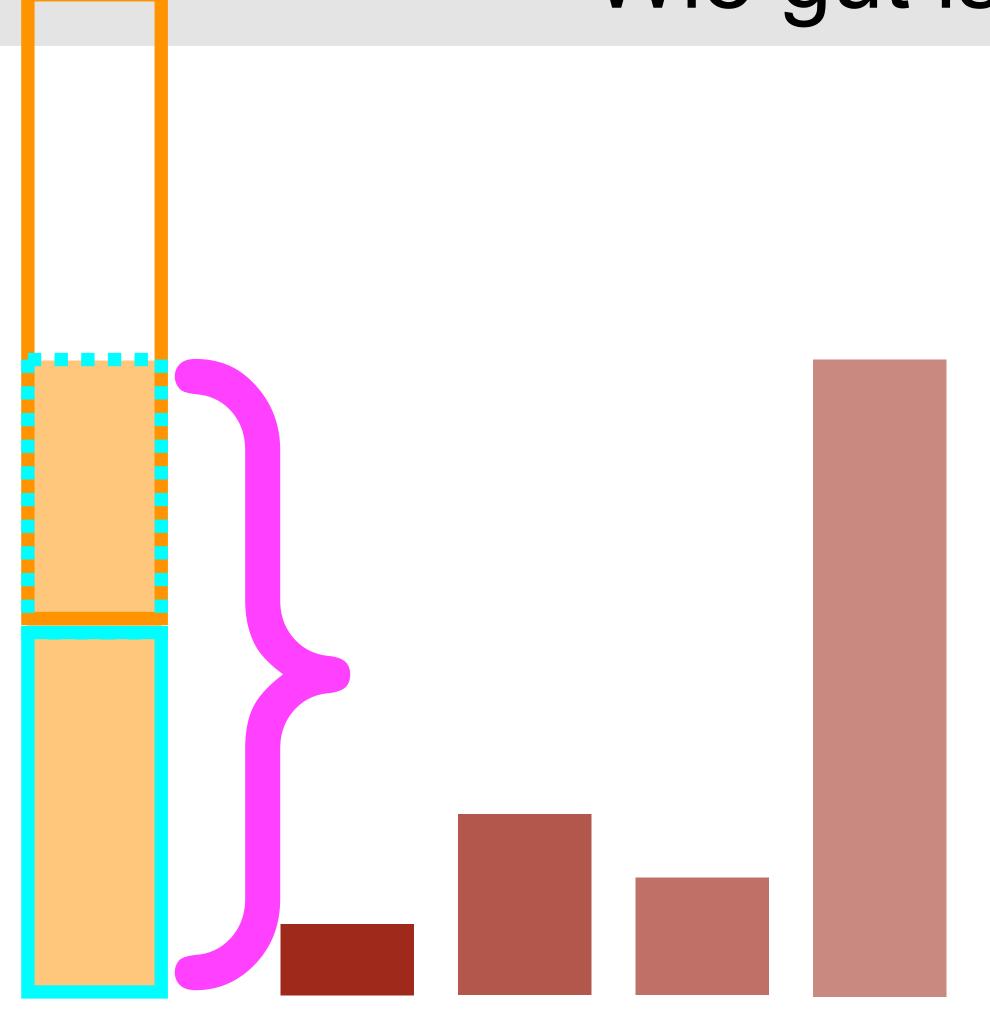
- 1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$. Setze j = 1.
- 2: while $(j \leq n)$ do

2: **while**
$$(j \le n)$$
 do
3: **if** $\left(\sum_{i=1}^{j-1} z_{\pi(i)} x_{\pi(i)} + z_{\pi(j)} \le Z\right)$ **then**
4: $x_{\pi(j)} := 1$

- 5: j := j + 1
- 6: $G'_0 := max\{G_0 \mid z_i < Z, i \in \{1, ..., n\}\}$
- 7: return

Z=N

Wie gut ist das allgemein?



Algorithmus 4.3 Greedy-Approximation

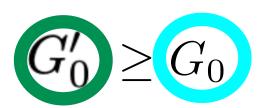
Eingabe: $z_1, ..., z_n, Z, p_1, ..., p_n$

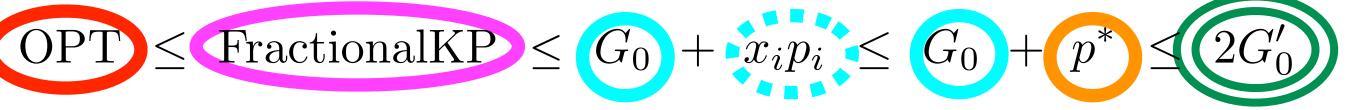
Ausgabe: $S \subseteq \{1,...,n\}$ mit $\sum_{i \in S} z_i \leq Z$ und Wert $G'_0 := \sum_{i \in S} p_i$

1: $G_0' = max G_0 nax\{p_i \mid z_i < Z, i \in \{1, ..., n\}\}$

2: return

Satz 4.4. Algorithmus 4.3 berechnet eine Lösung mit G'_0 ; im Vergleich mit dem Optimalwert OPT gilt: $G'_0 \ge \frac{1}{2}OPT$.





4.3 Approximationsalgorithmen

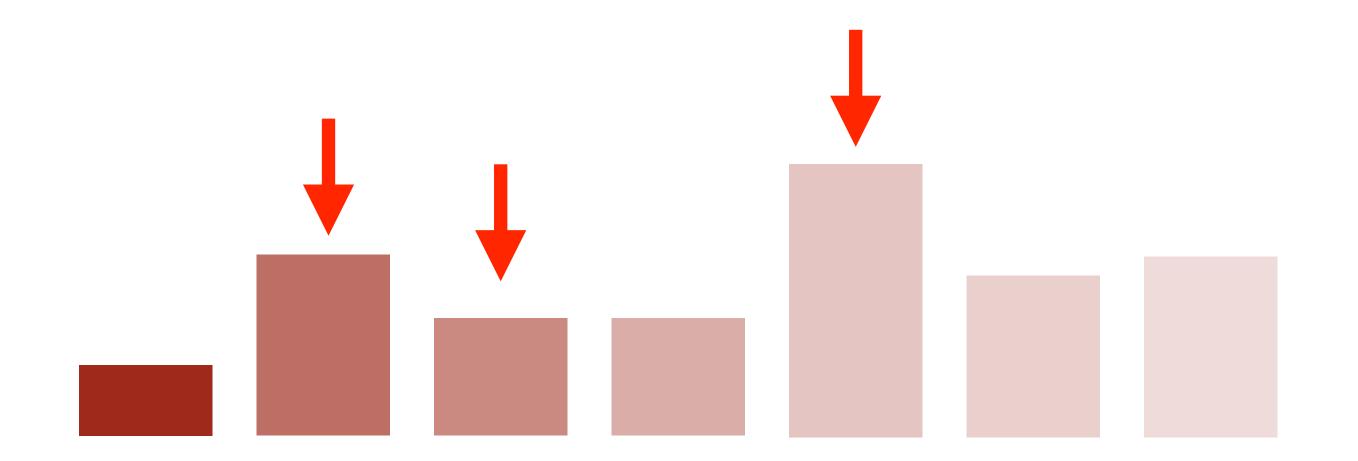
Approximation

Definition 4.5 (Approximationsalgorithmus).

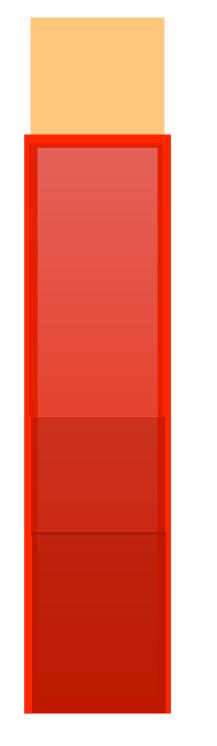
- 1. Für ein Maximierungsproblem MAX ist ein Algorithmus alg ein c-Approximations algorithmus für MAX, wenn für jede Instanz I von MAX
 - a) alg in polynomieller Zeit in der Größe von I eine zulässige Lösung mit Wert alg liefert
 - b) für den Vergleich mit dem zugehörigen Optimalwert opt(I) gilt ALG $(I) \ge c \cdot \text{Opt}(I)$ (dabei ist $c \le 1$
- 2. Entsprechend für Minimierungsproblem wiederum:
 - a) alg liefert in polynomieller Zeit in der Größe von I eine zulässige Lösung mit Wert Alg(I)
 - b) es gilt für den Vergleich mit dem zugehörigen Optimalwert OPT(I): ALG(I) $\leq c \cdot \text{OPT}(I)$ (dabei ist $c \geq 1$

4.4 Bessere Approximation

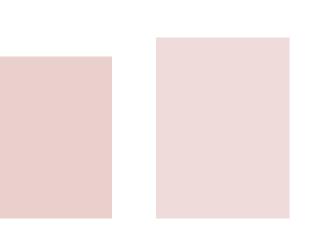
Verwende die k wertvollsten Objekte aus einer Optimallösung.



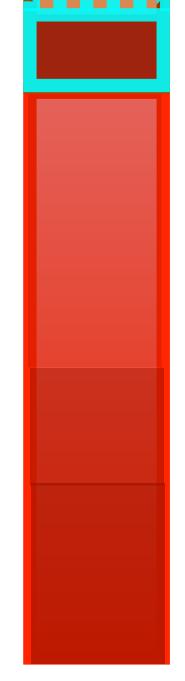
Verwende die k wertvollsten Objekte aus einer Optimallösung.



- Verwende die k wertvollsten Objekte aus einer Optimallösung.
- Wende Greedy auf den Rest an.



- Verwende die k wertvollsten Objekte aus einer Optimallösung.
- Wende Greedy auf den Rest an.
- Der Fehler ist durch ein Objekt beschränkt.



- Wende Greedy auf den Rest an.
- Der Fehler ist durch ein Objekt beschränkt.

Wie findet man die k wertvollsten Objekte?

ullet Enumeriere alle Teilmengen der Größe k $! o O(n^k)$ Teilmengen

Bessere Approximation von Knapsack

```
Algorithmus 4.6 Greedy_k
Eingabe: z_1, ..., z_n, Z, p_1, ..., p_n [Parameter k fixiert]
Ausgabe: S \subseteq \{1,...,n\} mit \sum_{i \in S} z_i \leq Z und Wert G_k := \sum_{i \in S} p_i
 1: G_k := 0, S := \emptyset
 2: for all S \subseteq \{1, ..., n\} mit |\overline{S}| \leq k do
 3: if (\sum_{i \in \overline{S}} z_i \leq Z) then
               G_k := \max\{G_k, \sum_{i \in \overline{S}} p_i + \text{GREEDY}_0(\{z_i | i \notin \overline{S}\}, Z - \sum_{i \in \overline{S}} z_i | \{p_i | i \notin \overline{S}\})\};
               Update S;
 6: return G_k, S
```


Satz 4.7. Greedy ist ein $(1 - \frac{1}{k+1})$ -Approximationsalgorithmus.

Definition 4.5 (Approximationsalgorithmus).

1. Für ein Maximierungsproblem MAX ist ein Algorithmus ALG ein c-Approximationsalgorithmus für MAX, wenn für jede Instanz I von MAX

- a) alg in polynomieller Zeit in der Größe von I eine zulässige Lösung mit Wert alg liefert
- b) für den Vergleich mit dem zugehörigen Optimalwert opt
(I) gilt: $\text{Alg}(I) \geq c \cdot \text{opt}(I)$ (dabei ist
 $c \leq 1)$
- (a) Die Laufzeit ist nicht mehr als $\,O(n^{k+2})\,$ also polynomiell.

Nicht 2^n , sondern n^2

Gütegarantie

Satz 4.7. Greedy ist ein $(1 - \frac{1}{k+1})$ -Approximationsalgorithmus.

b) für den Vergleich mit dem zugehörigen Optimalwert OPT(I) gilt: $ALG(I) \ge$ $c \cdot \text{OPT}(I)$ (dabei ist $c \leq 1$)

Betrachte OPT mit $S^* \subseteq \{1, \ldots, n\}$.

$$|S^*| \le k \implies$$

Gütegarantie

Satz 4.7. Greedy ist ein $(1 - \frac{1}{k+1})$ -Approximationsalgorithmus.

b) für den Vergleich mit dem zugehörigen Optimalwert opt
(I) gilt: $\text{Alg}(I) \geq c \cdot \text{opt}(I)$ (dabei ist $c \leq 1)$

Betrachte OPT mit $S^* \subseteq \{1, \ldots, n\}$.

$$|S^*| \le k \implies \text{OPT wird gefunden.}$$

Gütegarantie

Satz 4.7. Greedy ist ein $(1 - \frac{1}{k+1})$ -Approximationsalgorithmus.

 $i_{k+(l+1)}$

b) für den Vergleich mit dem zugehörigen Optimalwert opt
(I) gilt: $\text{Alg}(I) \geq c \cdot \text{opt}(I)$ (dabei ist
 $c \leq 1)$

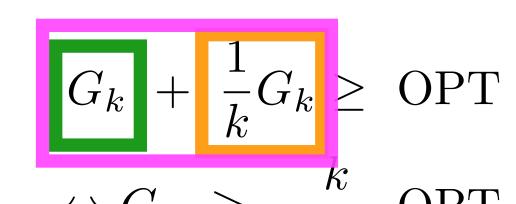
Betrachte OPT mit $S^* \subseteq \{1, \dots, n\}$.

$$|S^*| > k \implies$$

a)
$$\sum_{j=1}^{k} p_{i_j} + \sum_{j=1}^{l} p_{i_{k+j}} + p_{i_{k+(l+1)}} \ge OPT$$

b)
$$\sum_{j=1}^{k} p_{i_j} + \sum_{j=1}^{l} p_{i_{k+j}} \le G_k$$

$$c) p_{i_{k+(l+1)}} \le \frac{1}{k} G_k$$



$$= \left(1 - \frac{1}{k+1}\right) \text{OPT}$$

Zusatzbemerkungen

Man kann zeigen:

- Für Greedy_k ist der Faktor $(1 \frac{1}{k+1})$ bestmöglich.
- Wenn man G_0 in Zeile 4 von Algorithmus 4.6 durch G'_0 ersetzt, bekommt man einen Approximationsalgorithmus mit Gütegarantie $(1 \frac{1}{k+2})$.

Approximationschemata

Man sieht: Für jedes feste $\epsilon > 0$ gibt es einen polynomiellen Algorithmus für Knapsack, der eine $(1 - \epsilon)$ -Approximation liefert. Das motiviert:

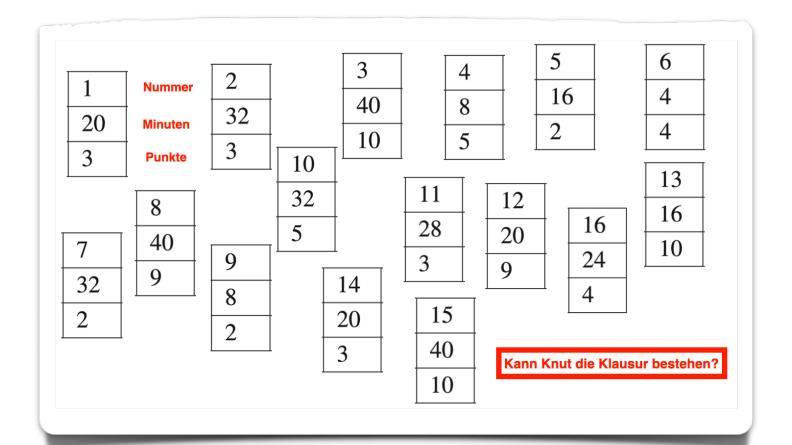
Definition 4.8 (PTAS). Ein polynomielles Approximationsschema (Engl.: Polynomialtime approximation scheme. Kurz: PTAS) für ein Optimierungsproblem ist eine Familie von Algorithmen, die für jedes beliebige, aber feste $\epsilon > 0$ einen $(1 - \epsilon)$. Approximationsalgorithmus (bzw. $(1 + \epsilon)$) liefert.

Korollar 4.9. {Greedy_k | $k \in \mathbb{N}$ } ist ein PTAS für Knapsack.

4.4 Ausblicke

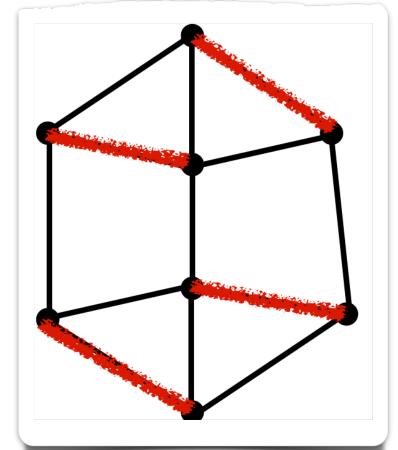
Approximationsfaktoren

0-1 Knapsack



Max

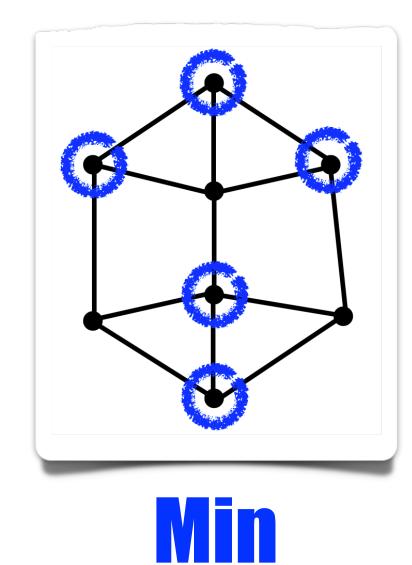
Matching



Max

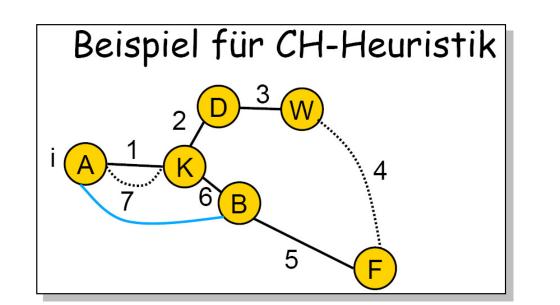
1

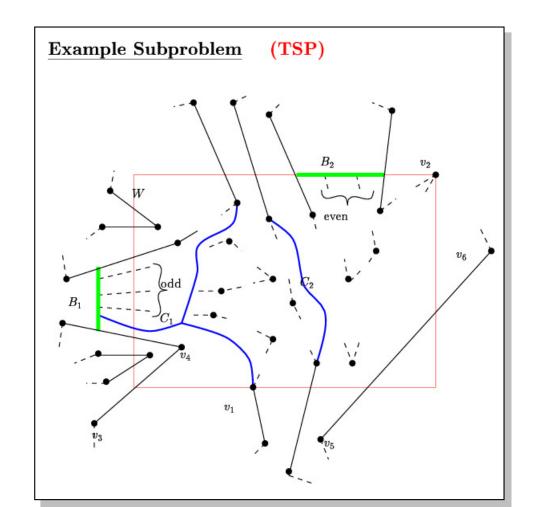
Vertex Cover



2

Traveling Salesman





Min

 $\frac{3}{2}$

 $1+\varepsilon$

Sándor Fekete | Approximation | AuD2 2024

Vielen Dank!

s.fekete@tu-bs.de