

Algorithmen und Datenstrukturen 2

Sommer 2024

Prof. Dr. Sándor Fekete

Startseite

Veranstaltungen

Organisation

Kapitel ~

Kontakt

Archiv

Startseite

Algorithmen und Datenstrukturen 2

Die Vorlesung **Algorithmen und Datenstrukturen 2** ist eine Wahlpflichtveranstaltung für Studierende der Informatik, Wirtschaftsinformatik, Informations- und Systemtechnik; außerdem ist sie offen für interessierte Studierende anderer Studiengänge.

Letzte Veranstaltungen

Anmeldung Kleine Übungen

Herzlich Willkommen bei AuD2!

Zeiten

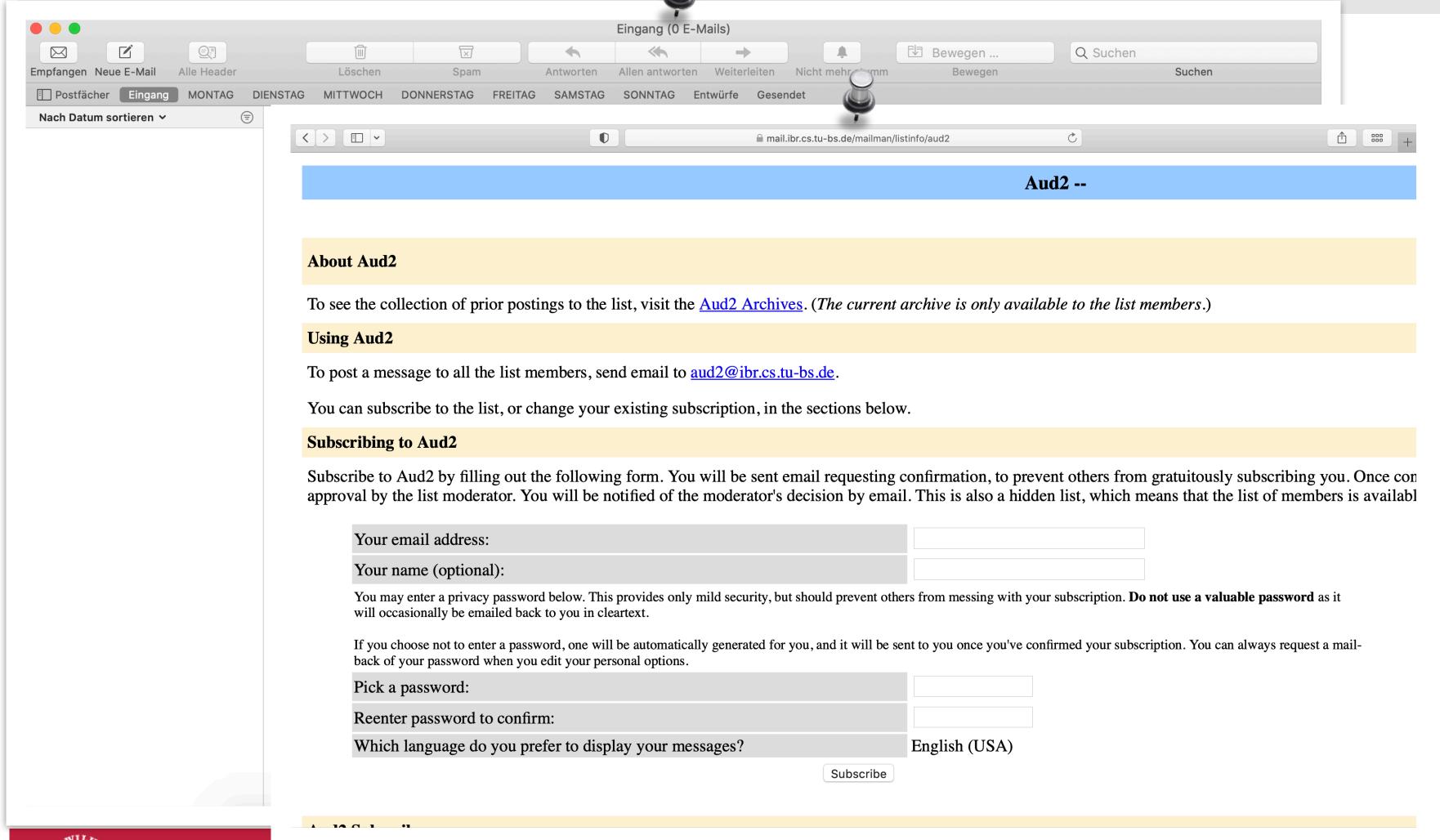
Vorlesung

Dienstag 9:45-11:15 Uhr, SN 19.1

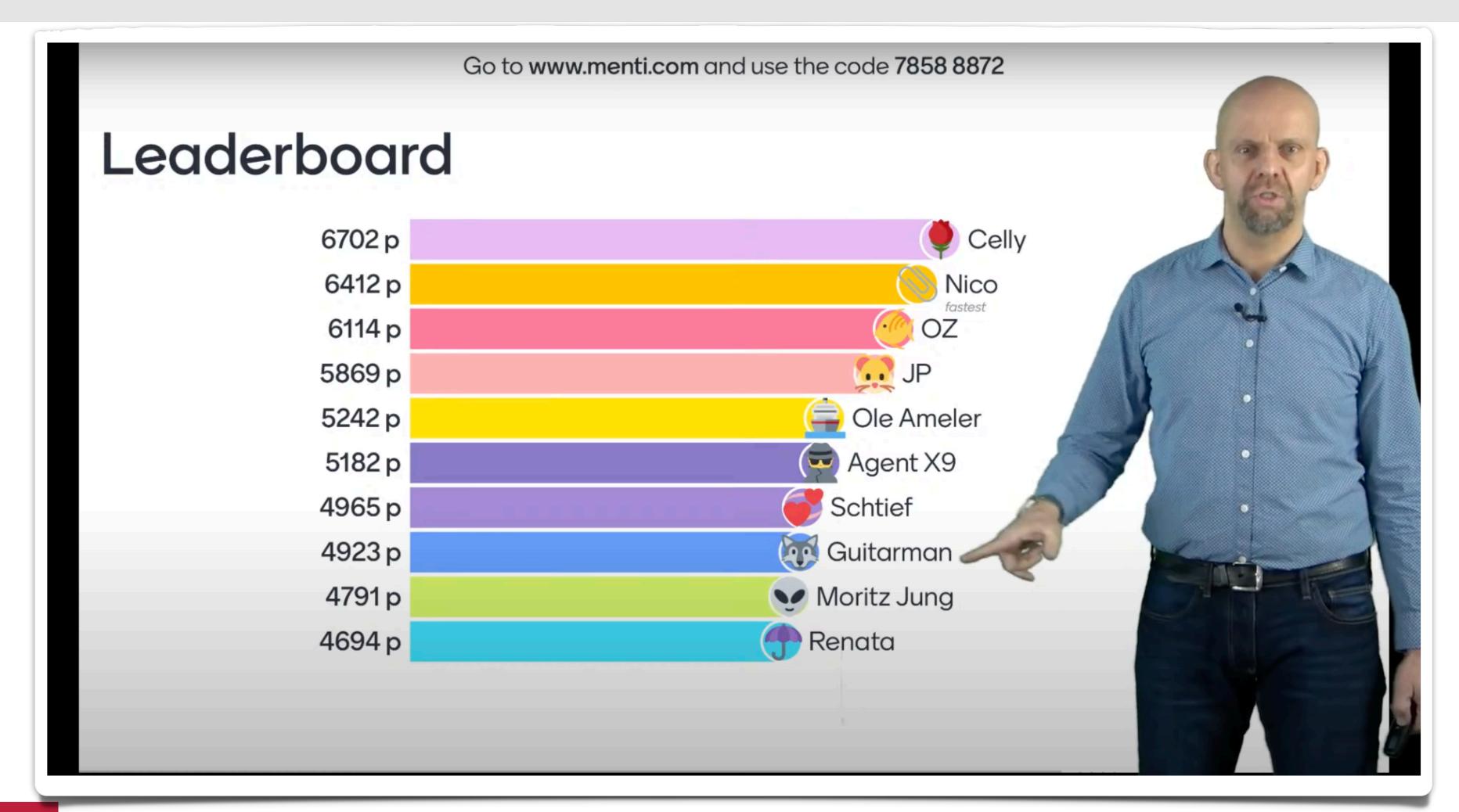
s.fekete@tu-bs.de

Fragen von Ihnen?

kosfeld@ibr.tu-bs.de loi@ibr.tu-bs.de

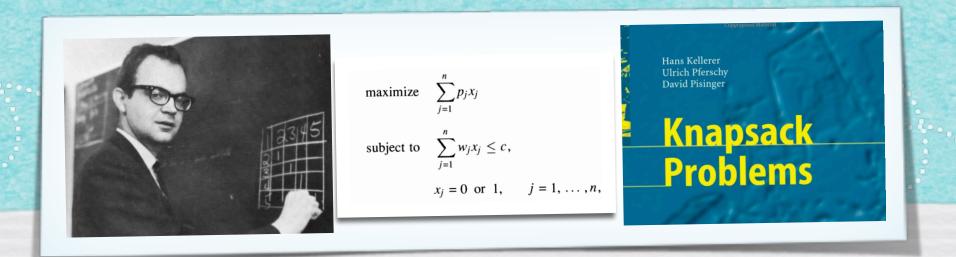


Fragen an Sie!



Fragen an Sie!

Join at menti.com | use code 6286 1050

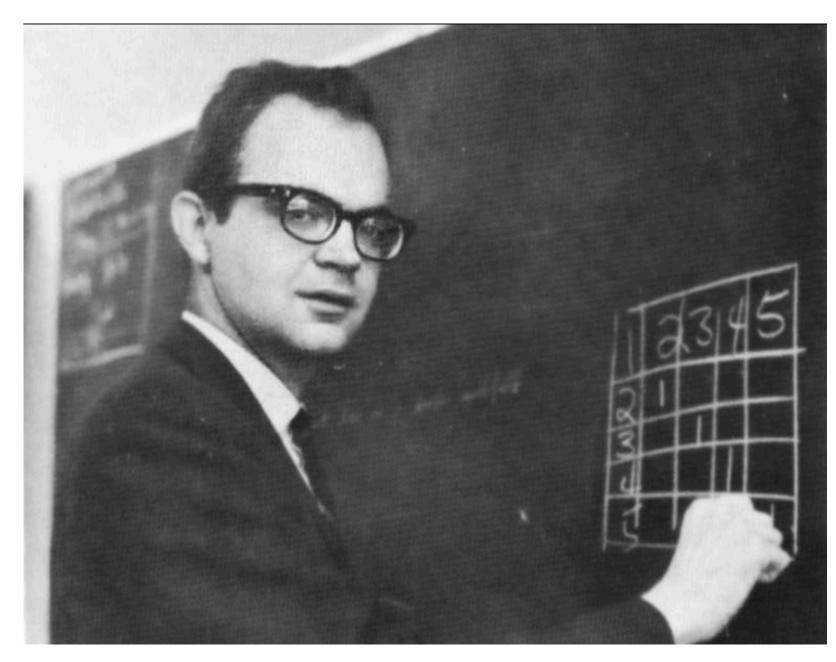


1 Einführung: Knapsack-Probleme

Algorithmen und Datenstrukturen 2 Sommer 2024

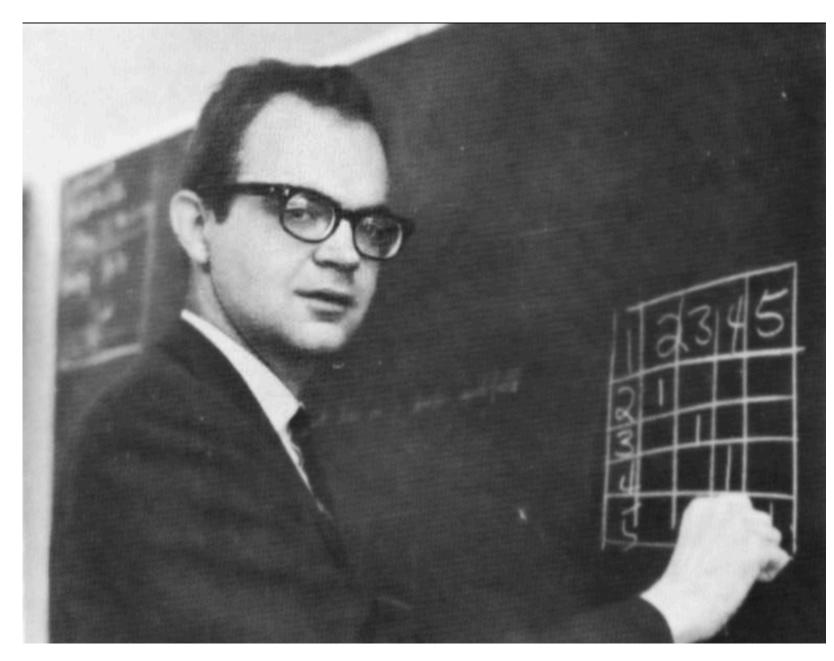
Prof. Pr. Sándor Fekete

Eine Klausursituation



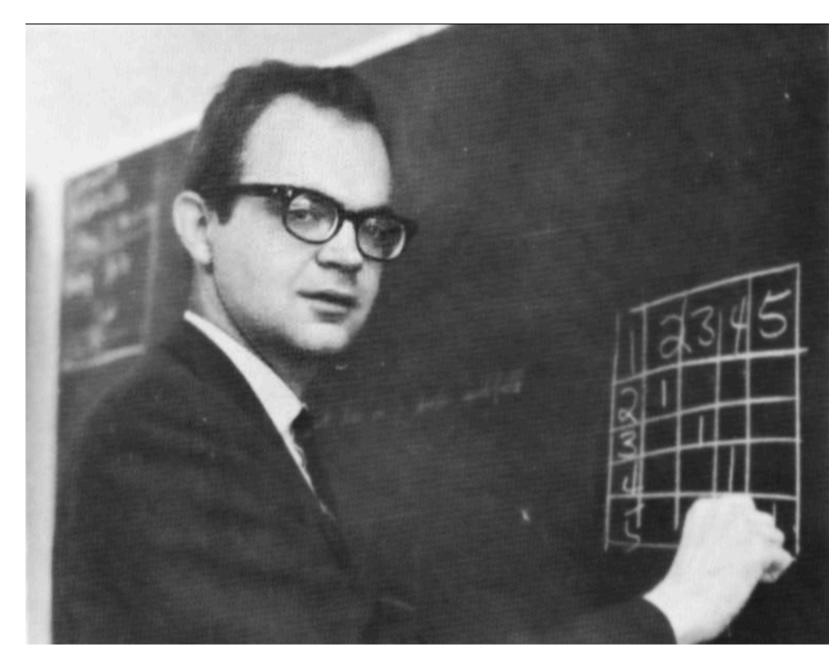
Knut Donald, erster Studierender der Informatik

- 150 Minuten
- 20 Aufgaben
- 100 Punkte
- 50 Punkte zum Bestehen
- Die Zeit läuft!



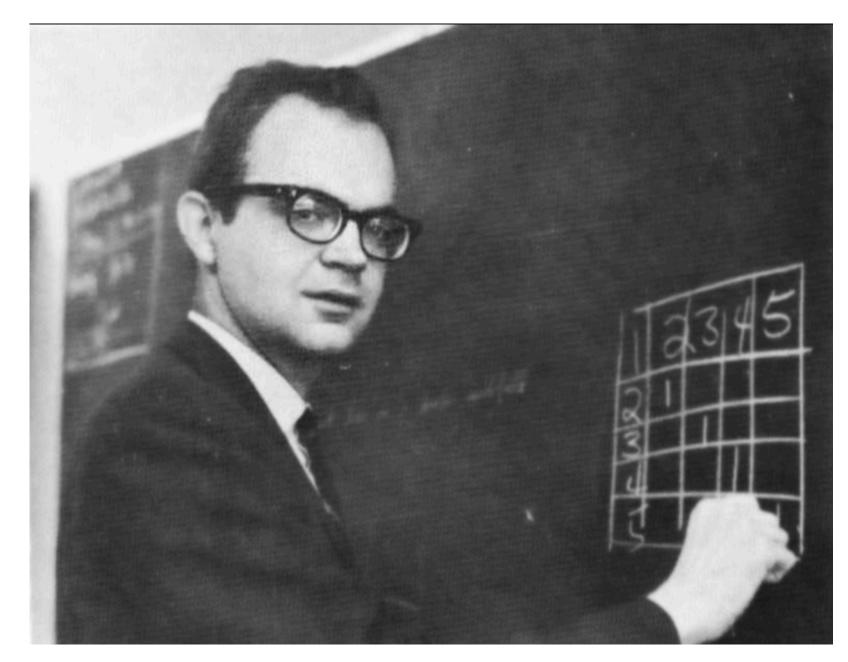
Knut Donald, erster Studierender der Informatik

- 150 Minuten
- 20 Aufgaben
- 100 Punkte
- 50 Punkte zum Bestehen
- Die Zeit läuft!



Knut Donald, erster Studierender der Informatik

- 150 Minuten
- 20 Aufgaben
- 100 Punkte
- 50 Punkte zum Bestehen
- Die Zeit läuft!

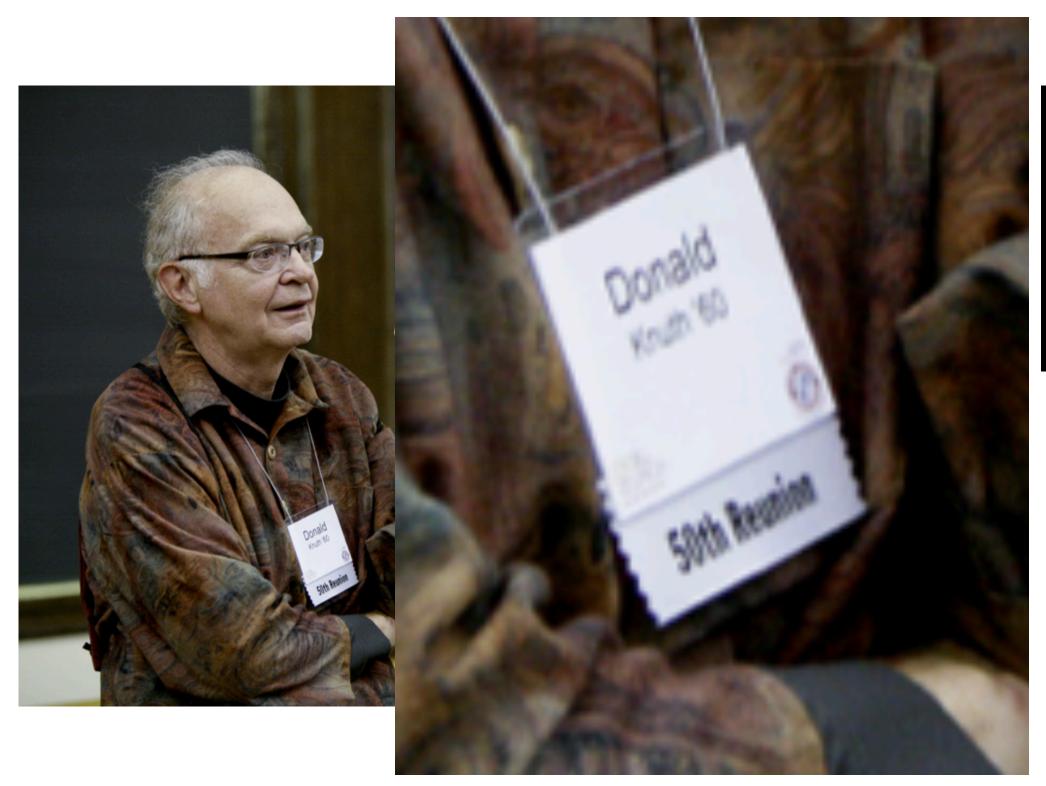


Knut Donald, erster Studierender der Informatik

- 150 Minuten
- 20 Aufgaben
- 100 Punkte
- 50 Punkte zum Bestehen
- Die Zeit läuft!

30 Minuten später:

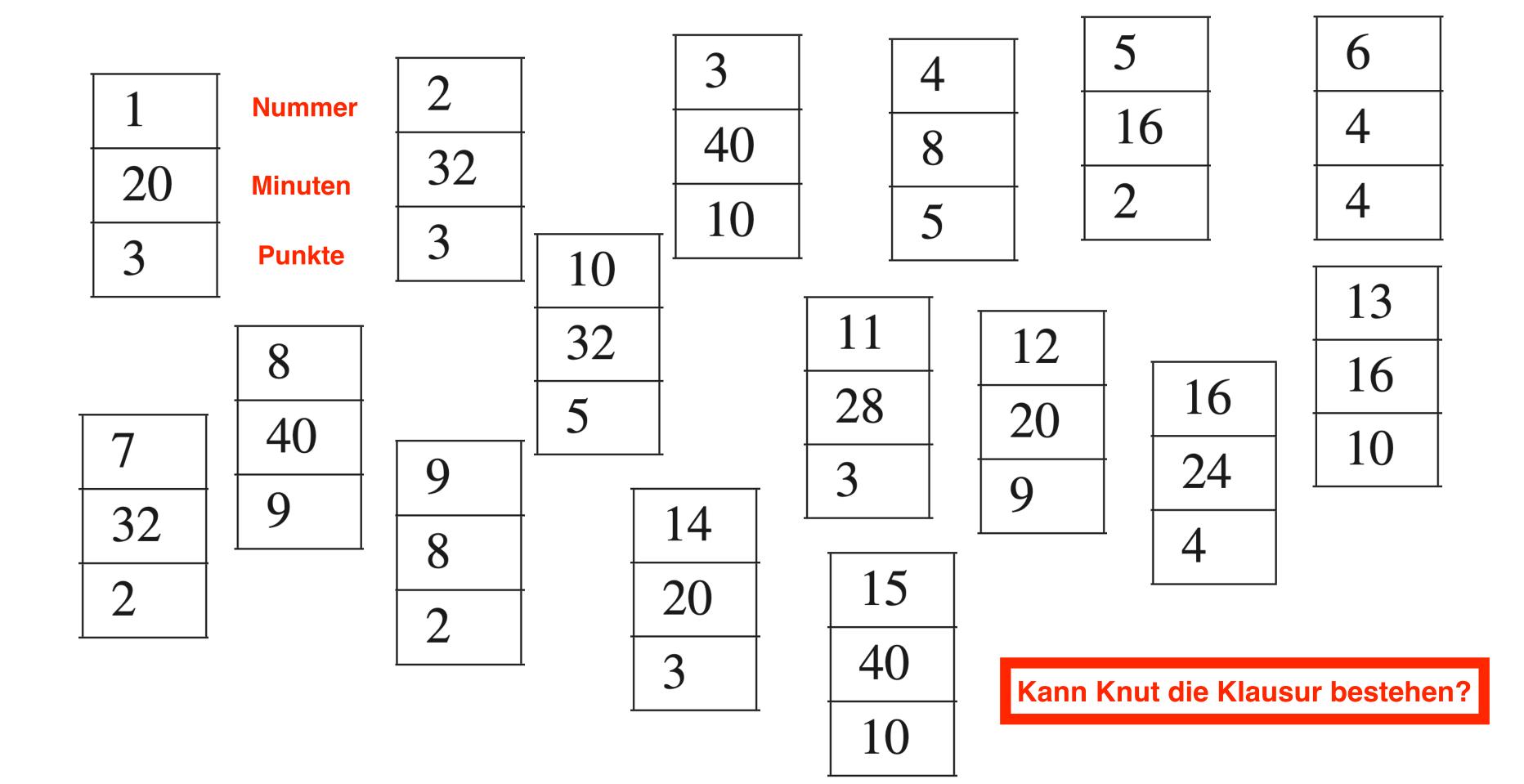
30 Minuten später:



30 Minuten später:

- 6 sichere Punkte
- 10 hoffnungslose Punkte
- Noch 44 Punkte zum Bestehen
- Restliche Aufgaben…

Restliche Aufgaben



Problemstellung

Gegeben:

i Aufgabe	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
z_i Zeit	20	32	40	8	16	4	32	40	8	32	28	20	16	20	40	24
p _i Punkte	3	3	10	5	2	4	2	9	2	5	3	9	10	3	10	4

Zeitschranke: Z = 120**Punkteschranke:** P = 44

Gesucht:

Eine Menge $S \subseteq \{1, ..., 16\}$ mit $\sum_{i \in S} z_i \le 120$ und $\sum_{i \in S} p_i \ge 44$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i$$

$$\sum_{i=1}^{n} p_i x_i$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 4$$

$$\sum_{i=1}^{n} p_i x_i = 4$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 12$$

$$\sum_{i=1}^{n} p_i x_i = 9$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 28$$

$$\sum_{i=1}^n p_i x_i = 19$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 48$$

$$\sum_{i=1}^{n} p_i x_i = 28$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_{i} x_{i} = 56$$

$$\sum_{i=1}^{n} p_{i} x_{i} = 30$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_{i} x_{i} = 96$$

$$\sum_{i=1}^{n} p_{i} x_{i} = 40$$

nach Wert $\left(\frac{z_i}{p_i}\right)$ sortieren:

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 120$$

$$\sum_{i=1}^{n} p_i x_i = 44$$

Knut kann die Klausur bestehen!

Problemdefinition

Problem 1.2 (Rucksackproblem, 0-1-KNAPSACK).

Gegeben:

- n Objekte 1, ..., n mit jeweils $Gr\"{o}\beta e$ z_i Gewinn p_i
- Größenschranke Z
- Gewinnschranke P

Gesucht:

Eine Menge

 $S \subseteq \{1, ..., n\}$

mit

$$\sum_{i \in S} z_i \le Z$$

und

$$\sum_{i \in S} p_i \ge P$$

Optimierungsvariante

Problem 1.2' (MAXIMUM KNAPSACK).

Gegeben:

- n Objekte 1, ..., n mit jeweils Größe z_i Gewinn p_i
- Größenschranke Z

Gesucht:

Eine Menge

 $S \subseteq \{1, ..., n\}$

mit

 $\sum_{i \in S} z_i \le Z$

und

$$\sum_{i \in S} p_i = Maximal$$

Problem 1.3 (Fractional Knapsack).

Gegeben:

- n Objekte 1, ..., n mit jeweils Größe $z_i > 0$ Gewinn $p_i > 0$
- Größenschranke Z

Gesucht:

Für jedes Objekt ein Wert

sodass

und

$$x_i \in [0, 1]$$

$$\sum_{i=1}^{n} z_i x_i \le Z$$

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

Algorithmus

Algorithmus 1.4. (Greedy-Algorithmus)

Eingabe:
$$z_i, ..., z_n, Z, p_i, ..., p_n$$

Ausgabe: $x_i, ..., x_n \in [0, 1]$
mit

$$\sum_{i=1}^{n} z_i x_i \le Z$$

und

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$.

Setze
$$j = 1$$
.

2: **while**
$$(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$$
 do

$$3: \qquad x_{\pi(j)} := 1$$

4:
$$j := j + 1$$

5:
$$x_{\pi(j)} := 1$$
4: $j := j + 1$
5: $Setze \ x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$
6: return

6: return

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i$$

$$\sum_{i=1}^{n} p_i x_i$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 4$$

$$\sum_{i=1}^{n} p_i x_i = 4$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 12$$

$$\sum_{i=1}^{n} p_i x_i = 9$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 28$$

$$\sum_{i=1}^{n} p_i x_i = 19$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 48$$

$$\sum_{i=1}^{n} p_i x_i = 28$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 56$$

$$\sum_{i=1}^{n} p_i x_i = 30$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 96$$

$$\sum_{i=1}^{n} p_i x_i = 40$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	40	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	10	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 96$$

$$\sum_{i=1}^{n} p_i x_i = 40$$

$$X_{15}$$

i	6	4	13	12	9	3	15	8	16	10	1	14	5	11	2	7
z_i	4	8	16	20	8	40	24	40	24	32	20	20	16	28	32	32
p_i	4	5	10	9	2	10	6	9	4	5	3	3	2	3	3	2

$$\sum_{i=1}^{n} z_i x_i = 120$$

$$\sum_{i=1}^{n} p_i x_i = 46$$

$$X_{15} = 0,6$$

Algorithmus

Algorithmus 1.4. (Greedy-Algorithmus)

Eingabe:
$$z_i, ..., z_n, Z, p_i, ..., p_n$$

Ausgabe: $x_i, ..., x_n \in [0, 1]$
mit

$$\sum_{i=1}^{n} z_i x_i \le Z$$

und

$$\sum_{i=1}^{n} p_i x_i = Maximal$$

1: Sortiere $\{1,...,n\}$ nach $\frac{z_i}{p_i}$ aufsteigend; Dies ergibt die Permutation $\pi(1), ..., \pi(n)$.

Setze
$$j = 1$$
.

2: **while**
$$(\sum_{i=1}^{j} z_{\pi(i)} \leq Z)$$
 do

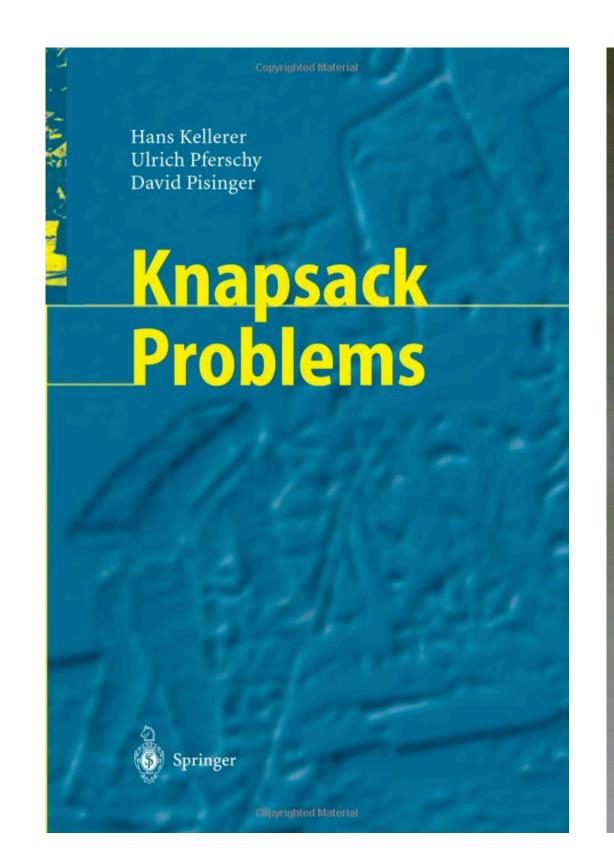
$$x_{\pi(j)} := 1$$

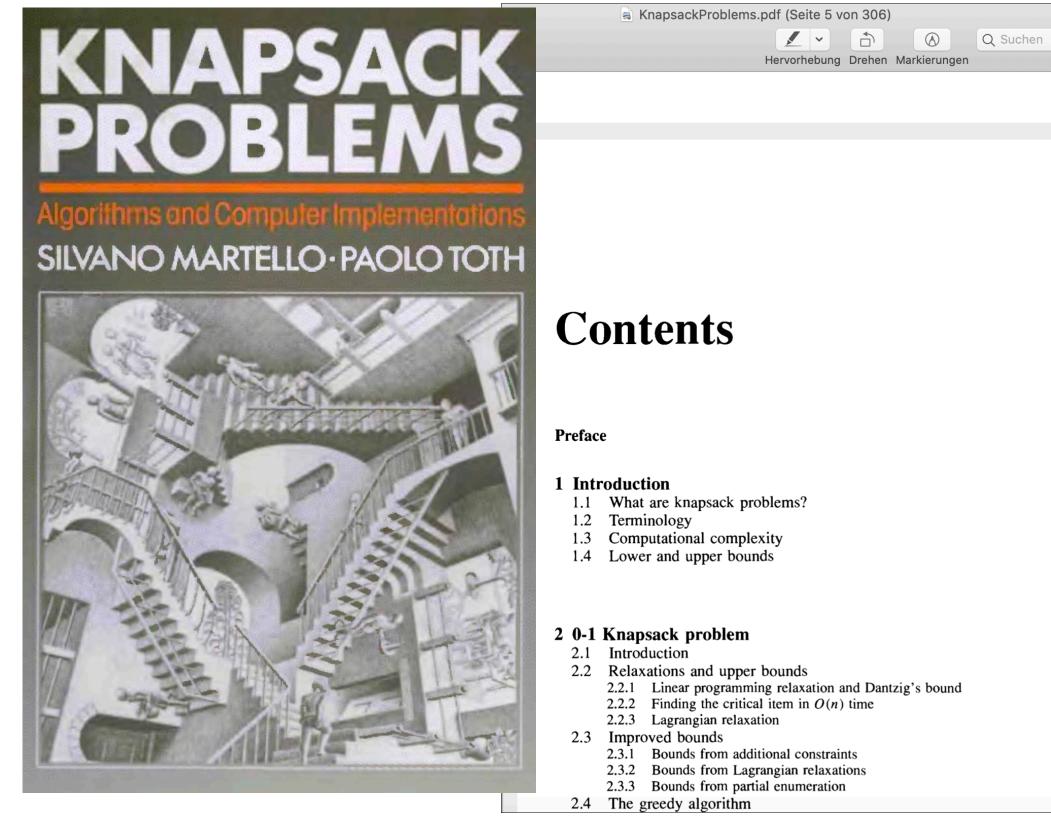
$$4: \qquad j := j+1$$

5:
$$x_{\pi(j)} := 1$$
4: $j := j + 1$
5: $Setze \ x_{\pi(j)} := \frac{Z - \sum_{i=1}^{j-1} z_{\pi(i)}}{z_{\pi(j)}}$
6: return

6: return

Literatur





Suchen nach

хi

Literatur

Algorithmen und Datenstrukturen 2

Sándor P. Fekete

LATEX Version: Arne Schmidt

30. Juni 2020

Vielen Dank!

s.fekete@tu-bs.de