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Review: Tour Problems

Think Globally

Consider a grid graph
embedded on a sphere.

* Add second copy at the
antipodes.
Longest connections are
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= Highly focused antennas.

= Expensive rotations.

How can we quickly distribute
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Algorithmica (2001) 30: 451-470

DOI: 10.1007/500453-001-0022-x Algor ithmica

@© 2001 Springer-Verlag New York Inc.

Approximation of Geometric Dispersion Problems'
C.Baur? and S. P. Fekete?

Abstract. We consider problems of distributing a number of points within a polygonal region P, such that
the points are “far away” from each other. Problems of this type have been considered before for the case where
the possible locations form a discrete set. Dispersion problems are closely related to packing problems. While
Hochbaum and Maass [20] have given a polynomial-time approximation scheme for packing, we show that
geometric dispersion problems cannot be approximated arbitrarily well in polynomial time, unless P = NP. A
special case of this observation solves an open problem by Rosenkrantz et al. [31]. We give a -§- approximation
algorithm for one version of the geometric dispersion problem. This algorithm is strongly polynomial in the
size of the input, i.e., its running time does not depend on the area of P. We also discuss extensions and open
problems.

Key Words. Packing, Dispersion, Location problems, Geometric optimization, Bounds on approximation
factors.
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PACK(k, L)
Input. A polygonal region P with n vertices, a parameter &, a parameter L.
Question: Can k many L-squares be packed into P?
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Input: A polygonal region P with n vertices.
Task: Pack k many L-squares into P, such that £ 1s as big as possible.

max ; PACK (k)
Input: A polygonal region P with n vertices.
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Dispersion (3)

THEOREM 1. Unless P = NP, there is no polynomial algorithm that finds a solution
within more than % of the optimum for rectilinear geometric dispersion with boundaries.
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Dispersion (3)

THEOREM 1. Unless P = NP, there is no polynomial algorithm that finds a solution
within more than % of the optimum for rectilinear geometric dispersion with boundaries.

T —

Fig. 1. The graph G, representing the PLANAR 3SAT instance (x7 vV x2 VX3) A (X VX3V Xq) A (X2 VX3 Vxg).
Edges are distinguished according o the logical parity of the corresponding literals.
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—  Connectors

Fig. 3. Part of a connector component (right) for representing an edge between variable nodes and clause nodes
(left).
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"1 Clauses

(a) (b)

Fig. 4. A clausc componcnt for dispersion with boundarics and its receptor region (a); a satisfying placcment
(b); and an unsatis{ying placement (c).
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Smaller Squares (2)

~— 5=T7+200 —-

-— =T+~

(a) (b)

Fig.7. An upper bound on the approximation factor: clause components (a) and connector components (b)
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Other Metrics

Fig. 9. A variable gadget for the case where the unit ball is an ellipse.
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Approximation

THEOREM 9. For rectilinear geometric dispersion with boundaries of k locations in a
rectilinear polygon P with n vertices, Algorithm 8 computes a solution Ap;s(P, k), such

that
Apis(P,k) = OPT(P, k).

The running time is strongly polynomial.
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Approximation

THEOREM 9. For rectilinear geometric dispersion with boundaries of k locations in a

rectilinear polygon P with n vertices, Algorithm 8 computes a solution Ap;s(P, k), such
that

Apis(P,k) = OPT(P, k).

The running time is strongly polynomial.

B ——

ALGORITHM 8.
Input: rectilinear polygon P, positive integer k.

Output: a set of k locations, such that Ap;(P, k) := d is the minimum L., distance
between a location and the boundary, or between two locations.

1. For all (¢;, ¢;) € Par(P) do
(a) Perform binary search for the smallest integer m,2 < m < k + 1, with the
following property:
e Ford;j, := Dist(e;, ej)/m,AS(P —d;jm /2, d;jm, 6) returns a feasible solution
for at least k locations at distance d; j, .
(b) Let d;; be the distance d;;, for the critical value m.
2. Let d be the maximum d;; for any (¢;, €;).
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THEOREM 9. For rectilinear geometric dispersion with boundaries of k locations in a
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THEOREM 9. For rectilinear geometric dispersion with boundaries of k locations in a
rectilinear polygon P with n vertices, Algorithm 8 computes a solution Ap;s(P, k), such

that
Apis(P,k) = OPT(P, k).

The running time is strongly polynomial.
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Average Distance

Algorithmica (2004) 38: 501-511 . °
DOI: 10.1007/s00453-003-1074-x Algorlthmlca

© 2003 Springer-Verlag New York Inc.

Maximum Dispersion and Geometric
Maximum Weight Cliques’

Sandor P. Fekete? and Henk Meijer’

Abstract. We consider a facility location problem, where the objective is to “disperse” a number of facilities,
i.e., select a given number k of locations from a discrete set of n candidates, such that the average distance
between selected locations is maximized. In particular, we present algorithmic results for the case where
vertices are represented by points in d-dimensional space, and edge weights correspond to rectilinear distances.
Problems of this type have been considered before, with the best result being an approximation algorithm with
performance ratio 2. For the case where k is fixed, we establish a linear-time algorithm that finds an optimal
solution. For the case where k is part of the input, we present a polynomial-time approximation scheme.

Key Words. Dispersion, Facility location, Maximum weight cliques, Remote clique, Heaviest subgraph,
Geometric optimization, Approximation, PTAS.
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Lawn Mowing (1)

L
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Theory and Applicas ons
FLSEVIER Computational Geometry 17 (2000) 25-50 d
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Approximation algorithms for lawn mowing and milling *

Esther M. Arkin *!, Sindor P. Fekete ™*, Joseph S.B. Mitchell *2

© Depariment of Applicd Maihematics and Siatisiics, SUNY Stony Brook, NY 11794-3000, USA
" Deparment of Marhematics, TU Berlin, 10522 Beriin, Germany

Communicared by K. Mchlhorn: reccived 18 Mearch 1997; accepted 12 Avgust 1599

Abstract

We study the problem of Einding shortast tours/paths for *kiwn mowing™ and “milling” problems: Given a region
in the plane, and given the shape of a “‘cutter” (tvpically, a circle or a square), find a shortest tour/path for the cutter
such that every point within the region is covered by the cutter at some position along the tour/path. In the milling
version of the problem, the cutter 1s constramed to stay within the region. ‘I'he milling problem arises naturally in
the arca of automatic veol path gencration for NC pocket machining. The lawn mowing problem arises in optical
imspection, spray paintmg , and eptimal search planning.
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Lawn Mowing (2)

EM. Arkin et al. [ Compurational Geomenrv 17 (2000) 25-50

Fig. 1. The lawn mowing problem.
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Lawn Mowing (2)

EM. Arkin et al. [ Compurational Geomenrv 17 (2000) 25-50

Fig. 1. The Jawn mowing problem.
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Lawn Mowing (2)

EM. Arkin et al. | Compurational Geomenrv 17 (2000) 25-50

Fig. 1. The Jawn mowing problem.
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Lawn Mowing (3)

EM. Arkin et al./ Computational Geometry 17 (2000) 25-50

Fig. 4. Left: Contour-parallel milling. Right: Axis-parallel milling.
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Lawn Mowing (4)

Theorem 1. The lawn mowing problem for a connected polygonal region is NP-hard for the case of an
aligned unit square cutter .

4

Fig. 5. A planar bipartite graph G, with maximum vertex degree 3.
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Lawn Mowing (5)
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Lawn Mowing (5)

Corollary 1. The lawn mowing problem is NP-hard even for simple polygonal regions R.
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Lawn Mowing (5)

Corollary 1. The lawn mowing problem is NP-hard even for simple polygonal regions R.
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Lawn Mowing (6)
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Lawn Mowing (6)

Theorem 2. Finding a rectilinear TSP approximation (with factor atsp) on the set of centerpoints S
vields a lawn mowing tour of length at most aysp(3€* + 6), where £* is the length of an optimal lawn

mowing tour.
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Lawn Mowing (6)

Theorem 2. Finding a rectilinear TSP approximation (with factor atsp) on the set of centerpoints S
yields a lawn mowing tour of length at most aysp(3€* + 6), where £* is the length of an optimal lawn
mowing tour.
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Lawn Mowing (6)

Theorem 2. Finding a rectilinear TSP approximation (with factor atsp) on the set of centerpoints S

yields a lawn mowing tour of length at most atsp(3€* + 6), where £* is the length of an optimal lawn
mowing tour.
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Theorem 3. The lawn mowing problem has a constant-factor approximation algorithm that runs in
polynomial time (dependent on the TSP heuristic employed). For the case of an aligned unit square
cutter, the approximation factor is 3atsp for rectilinear motion, and is 3 Batsp for arbitrary translational
motion. For the case of a unit circular cutter, with arbitrary motion, the approximation factor is 3y atsp.
Here, B = ~ 1.08 andy=243é%1.15.
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Lawn Mowing (7)

Theorem 4. In time O(nlogn), one can decide whether a (multiply) connected region with n sides
(straight or circular arc) can be milled by a unit disk or unit square, and, within the same time bound,

one can construct a tour of length at most 2% times the length of an optimal milling tour.

wita,
| % Technische

oy
"%&%f Universitit

5 Braunschweig
36

UV 4.
¥
A B

"'\‘3 cd




Lawn Mowing (7)

Theorem 4. In time O(nlogn), one can decide whether a (multiply) connected region with n sides
(straight or circular arc) can be milled by a unit disk or unit square, and, within the same time bound,
one can construct a tour of length at most 2% times the length of an optimal milling tour.
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Lawn Mowing (8)
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Lawn Mowing (8)

Theorem 5. Let G be a simple grid graph, having N nodes at the centerpoints, V, of pixels within a
simple rectilinear polygon, R, having n (integer-coordinate) sides. Assume that G has no cut vertices.

Then, in time O(n), one can find a representation of a tour, T, that visits all N nodes of G, of length at

most % .
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Lawn Mowing (8)

Theorem 5. Let G be a simple grid graph, having N nodes at the centerpoints, V, of pixels within a
simple rectilinear polygon, R, having n (integer-coordinate) sides. Assume that G has no cut vertices.
Then, in time O(n), one can find a representation of a tour, T, that visits all N nodes of G, of length at

most 6NT_4
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Fig. 15. Six cases for incorporating internal nodes into the modified contour tour. Hollow circles denote internal
nodes, V/, and sclid circles denote nodes of C'. Solid edges are drawn where there musr be edges of C’.
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Approximation Algorithms for
Relay Placement in the Plane

Alon Efrat, Sandor P. Fekete, Joe Mitchell, Valentin Polishchuk,
G. R. Poornananda, and Jukka Suomela
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Relay Placement



Relay Placement

Input: V' = set of n sensors (points in R2)
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Relay Placement

Input: V' = set of n sensors (points in R?) <9
(=(¥E) = unit disk graph > ’
F=(V,F) = radius-2 disk graph g
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Relay Placement

Input: V' = set of n sensors (points in R2)
B=(V,E) = unit disk graph

F=(VF) =radius-2 disk graph

Add: relays with communication radius r
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Relay Placement

Input: V' = set of n sensors (points in R2)
B=(VE) = unit disk graph
F=(VF) = radius-2 disk graph

Add: relays with communication radius r
Goal: min # relays (communication radius r)
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Relay Placement

Input: V' = set of n sensors (points in R?) <9
@=(V,E) = unit disk graph

F=(VF) =radius-2 disk graph

Add: relays with communication radius r ————©O
Goal: min # relays (communication radius r)
to achieve connectivity between any 2 sensor

G @RS
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Model of Communication

« Sensor and relay: communicate if dist < 1 @
* Relay and relay: communicate if dist < r <r

.—.
e TwoO sensors:
— One-tier: ifdist<1

— Two-tier: no direct communication (only via a path of relays)
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Steiner trees with min # Steiner points, edge length < 1

(same as one-tier, r=1):

— NP-hard, 5-approx [Lin, Xue '99]

— [Lin,Xue] is actually a 4-approx; also give 3-approx [Chen et al '00]
— Faster 3-approx, randomized 2.5-approx [Cheng et al '07]

7-approx for one-tier, arbitrary r (time O(n log n))
[Lloyd, Xue '07
(5+¢)-approx for two-tier, any r 21 [Lloyd, Xue '07
(4+¢)-approx for two-tier, any r 2 2
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Our Contributions

Simple O(n log n)-time 6.73-approx for one-tier
relay placement |[vs. previous 7-approx]

Poly-time 3.11-approx for one-tier, any » = 1

No PTAS for one-tier (» is part of input), assuming P =
NP

PTAS for two-tier relay placement

[Vs. previous (5+¢)-approx]
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Terminology: Blobs and Clouds
Input: V' = set of n sensors (points in R2) @

3=(V,E): unit disk graph @
Blob: connected component in <‘

F=(V.F): radius-2 disk graph | @
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Terminology: Blobs and Clouds

Input: V' = set of n sensors (points in R?) @
B=(V,E): unit disk graph @
Blob: connected component in

F=(V,F): radius-2 disk graph
Cloud: connected component in F
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@ S
@ Added relays

k=4 conn comp
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Lemma 1

Lemma 1: To connect all sensors within a cloud C,
it suffices to take a set S that stabs all blobs,
and add at most |S|-1 relays.

@ S
@ Added relays

k=4 conn comp
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Steiner Forests and Spanning Trees
with Neighborhoods

Let O = family of planar subsets (neighborhoods)
Minimum Steiner Forest for the Neighborhoods in P

MStFN(P) : min-length plane graph G s.t.
o=(P,E(G)) is connected @ @
o
(vs. MStTN) @

Minimum Spanning Forest for the Neighborhoods in P

MSFN(P) : min spanning tree in graph on b

edge weights = distance between sets @ @
Lemma 2: For any P, @ @

&0



Steiner Forests and Spanning Trees
with Neighborhoods

Let O = family of planar subsets (neighborhoods)
Minimum Steiner Forest for the Neighborhoods in P

MStFN(P) : min-length plane graph G s.t.

o=(P,E(G)) is connected @ @ @
N
2

(vs. MStTN)

Minimum Spanning Forest for the Neighborhoods in P

MSFN(P) : min spanning tree in graph on b

edge weights = distance between sets @ @
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V3 &
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Simple 6.73-Approximation (V)

* Running time:
— Build Delaunay of n sensors  O(n log n)
— ldentify blobs and clouds O(n)
— Greedy to stab blobs (<5 perrelay) O@m)
— MSFN(C) is subgraph of Delaunay O log n)

— Total: O log n)
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For any constant &, determine those clouds CeCi whose

Then use Lemma 1 to complete connection:

< 2i-1 red relays to interconnect each Ce(i

Let Ck+ be the set of clouds requiring = k stabs
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Consider clouds CcE Ck+ that need more than k stabs.

Use greedy set cover for those clouds.

Lemma 3: For each cloud C, 37
|4 |s=—|R,NC|-1
12

Jr1_37
.

1
2 12°

| 1
Proof: Omitted. Notethat 'T7 3+
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Cloud Clusters: Green Relays

* Add green relays to form cloud clusters: @
— Place 2 relays to connect 2 clusters; repeat

— Then, place 4 relays to interconnect 3 clusters; repeat

— Then, place 6 relays to interconnect 4 clusters; repeat
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* Add green relays to form cloud clusters: @
— Place 2 relays to connect 2 clusters; repeat

— Then, place 4 relays to interconnect 3 clusters; repeat
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 Compute MSFN on set of clusters

Ll —
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 Compute MSFN on set of clusters
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Analysis: Yellow Relays

Lemma 4: 4 spanning forest with neighborhoods on clusters
requiring

4 4

Al|ls | —=+—
A (ﬁs

yellow relays.

)|R;’; |<3.11| R |

Proof: Omitted.

(Combines Steiner tree ratio with degree arguments.).
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PTAS: Two-Tier Relay Placement

Steiner spanning tree

Edges of length < » between relays,
< 1 between a relay and a sensor

A sensor has degree 1 (cannot relay data)
Goal: Min # Steiner points (relays)
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PTAS: Outline

Spanning tree has red edges (incident on sensors)
and blue edges (between relays)

Round OPT to a poly-size grid, G, of candidate
locations for relays

Set of blue edges of OPT can be made m-guillotine,
increasing length by only factor (1+¢) by the added

bridges
Bridges can be replaced by a set of relays

Optimize over all m-guillotine spanning trees using
dynamic programming
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Summary

Simple O(n log n)-time 6.73-approx for one-tier
relay placement

Poly-time 3.11-approx for one-tier, any r 2 1

No PTAS for one-tier (r is part of input),
assuming P = NP

PTAS for two-tier relay placement
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Concluding Remarks



Concluding Remarks

 |sthere a PTAS for constant values of r ?

— Our hardness of approximation relies on large r.
— Problem is related to TSP/MST with Neighborhoods.
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Concluding Remarks

 |sthere a PTAS for constant values of r ?

— Our hardness of approximation relies on large r.
— Problem is related to TSP/MST with Neighborhoods.

» Fault tolerance: k-connectivity
— [Bredin, Demaine, Hajiaghayi, Rus, MobiHoc’ 05, Zhang,
Xue, Misra]
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Coordinated Motion Planning: The Video

Aaron Becker, Sandor P. Fekete, Phillip Keldenich,
Matthias Konitzny, Lillian Lin, Christian Scheffer
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