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Input: V = set of n sensors (points in R2)
 G=(V,E) = unit disk graph
 F=(V,F) = radius-2 disk graph

Add:  relays with communication radius r
Goal: min # relays (communication radius r)
          to achieve connectivity between any 2 sensors

1

≤ r

≤ 2
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• Two sensors:  
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       [Lloyd, Xue ’07]
• (5+ε)-approx for two-tier, any r ≥ 1    [Lloyd, Xue ’07]
• (4+ε)-approx for two-tier, any r ≥ 2  
        [Srinivas, Zussman, Modiano ’06]
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Our Contributions
• Simple O(n log n)-time 6.73-approx for   one-tier 

relay placement   [vs. previous 7-approx]
• Poly-time 3.11-approx for one-tier, any r ≥ 1 
• No PTAS for one-tier (r is part of input),  assuming P ≠ 

NP
• PTAS for two-tier relay placement
  [vs. previous (5+ε)-approx]
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Terminology: Blobs and Clouds
1

≤ 2

Input: V = set of n sensors (points in R2)
      G=(V,E): unit disk graph 
Blob: connected component in G
      F=(V,F): radius-2 disk graph 
Cloud: connected component in F
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Lemma 1: To connect all sensors within a cloud C,
   it suffices to take a set S that stabs all blobs,
  and add at most |S|-1 relays. 

Lemma 1

S
Added relays

k=4 conn comp 

|S|≥ k

Each added relay reduces the 
number of connected 
components by 1 

Thus, at most k-1 ≤ |S|-1 
additional relays needed to 
connect the relays within C
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Let P = family of planar subsets (neighborhoods)
Minimum Steiner Forest for the Neighborhoods in P

 MStFN(P) :  min-length plane graph G s.t. 

  GP=(P,E(G)) is connected

Minimum Spanning Forest for the Neighborhoods in P
 MSFN(P) : min spanning tree in graph on P,
  edge weights = distance between sets

Lemma 2: For any P, 
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Counts only length outside P 
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Simple 6.73-Approximation (V)

• Running time: 
– Build Delaunay of n sensors    O(n log n) 
– Identify blobs and clouds         O(n) 
– Greedy to stab blobs (≤5 per relay)    O(n) 
– MSFN(C) is subgraph of Delaunay     O(n log n) 

– Total:   O(n log n)
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For any constant k, determine those clouds C∈Ci whose 
blobs can be stabbed with i<k relays:

Then use Lemma 1 to complete connection:

 ≤ 2i-1  red relays to interconnect each C∈Ci 

Let Ck+ be the set of clouds requiring ≥ k stabs  
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Interconnecting the Clusters
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Interconnecting the Clusters
• Compute MSFN on set of clusters
• Put relays along edges: 

– 2 green relays at ends of each edge
–          yellow relays along each edge e
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Lemma 4: ∃ spanning forest with neighborhoods on clusters 
  requiring                                             

  yellow relays.

Analysis: Yellow Relays

Proof: Omitted.  

(Combines Steiner tree ratio with degree arguments.).



62

Summary: 3.11-Approximation



62

Approximation bound:

Summary: 3.11-Approximation



62

Approximation bound:

Summary: 3.11-Approximation

***
ld RRR ∪= .



62

Approximation bound:

Summary: 3.11-Approximation

dark

***
ld RRR ∪= .

Within clouds



62

Approximation bound:

Summary: 3.11-Approximation

dark light

***
ld RRR ∪= .

Within clouds Outside clouds



62

Approximation bound:

We showed:

Summary: 3.11-Approximation

dark light

***
ld RRR ∪= .

Within clouds Outside clouds



62

Approximation bound:

We showed:

Summary: 3.11-Approximation

||)/1084.3(|||| *
dgr RkAA +≤+

dark light

***
ld RRR ∪= .

Within clouds Outside clouds



62

Approximation bound:

We showed:

Summary: 3.11-Approximation

||)/1084.3(|||| *
dgr RkAA +≤+

dark light

***
ld RRR ∪= .

Within clouds Outside clouds

||11.3|| *
ly RA ≤



62

Approximation bound:

We showed:

Theorem:  Total # of relays we compute in poly time

Summary: 3.11-Approximation

||)/1084.3(|||| *
dgr RkAA +≤+

dark light

***
ld RRR ∪= .

Within clouds Outside clouds

||11.3|| *
ly RA ≤



62

Approximation bound:

We showed:

Theorem:  Total # of relays we compute in poly time

Summary: 3.11-Approximation

||)/1084.3(|||| *
dgr RkAA +≤+

dark light
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ld RRR ∪= .
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Approximation bound:

We showed:

Theorem:  Total # of relays we compute in poly time

Summary: 3.11-Approximation

||)/1084.3(|||| *
dgr RkAA +≤+

dark light

***
ld RRR ∪= .

||11.3|)||(|11.3|||||||| *** RRRAAAA ldygr =+≤++=

Within clouds Outside clouds

||11.3|| *
ly RA ≤
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PTAS: Two-Tier Relay Placement

• Steiner spanning tree
• Edges of length ≤ r between relays,   
≤ 1 between a relay and a sensor

• A sensor has degree 1 (cannot relay data)
• Goal: Min # Steiner points (relays)
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PTAS: Outline
• Spanning tree has red edges (incident on sensors) 

and blue edges (between relays)
• Round OPT to a poly-size grid, G, of candidate 

locations for relays
• Set of blue edges of OPT can be made m-guillotine, 

increasing length by only factor (1+ε) by the added 
bridges

• Bridges can be replaced by a set of relays
• Optimize over all m-guillotine spanning trees using 

dynamic programming



66

Summary



66

Summary

• Simple O(n log n)-time 6.73-approx for one-tier 
relay placement



66

Summary

• Simple O(n log n)-time 6.73-approx for one-tier 
relay placement

• Poly-time 3.11-approx for one-tier, any r ≥ 1 



66

Summary

• Simple O(n log n)-time 6.73-approx for one-tier 
relay placement

• Poly-time 3.11-approx for one-tier, any r ≥ 1 
• No PTAS for one-tier (r is part of input), 

assuming P ≠ NP



66

Summary

• Simple O(n log n)-time 6.73-approx for one-tier 
relay placement

• Poly-time 3.11-approx for one-tier, any r ≥ 1 
• No PTAS for one-tier (r is part of input), 

assuming P ≠ NP
• PTAS for two-tier relay placement
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Concluding Remarks
• Is there a PTAS for constant values of r ? 

– Our hardness of approximation relies on large r. 
– Problem is related to TSP/MST with Neighborhoods.

• Fault tolerance: k-connectivity 
– [Bredin, Demaine, Hajiaghayi, Rus, MobiHoc’05, Zhang, 

Xue, Misra]



1. Introduction 

2.   Review 

3.   Extra Packing: Dispersion 

4.   Extra Tours: Lawn Mowing 

5.   Relay Placement 

6.   Coordinated Motion Planning
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Thank you!


