

Online Algorithms - Tutorial 03

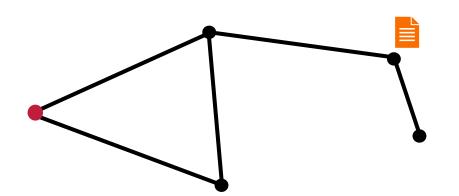
Summer term 2022, 30. May 2022

Distributed data management

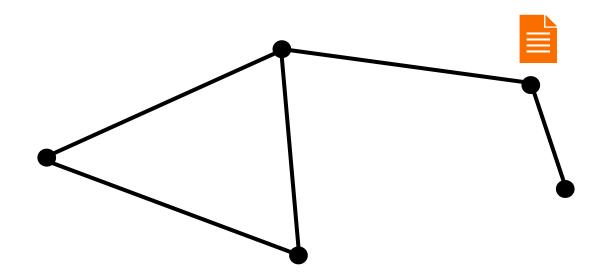
Distributed data management

- Consider a network of processors with local memory
- Global shared memory is modeled by distributing the physical pages among the local memories

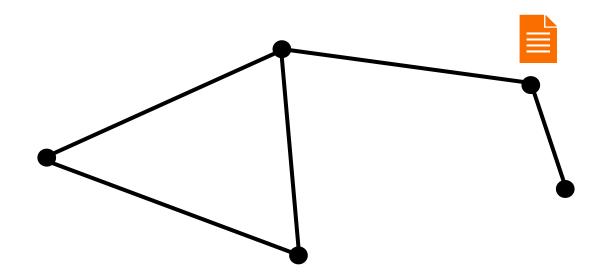
010001010100101011011



File replication



Online Algorithms | Summer term 2022 | Michael Perk



Online Algorithms | Summer term 2022 | Michael Perk

- Undirected graph G with edge lengths (metric distance function)
- A read/write request occurs at some node v
 - Cost 0 if v holds the page
 - Cost $\delta(v, w)$ if w holds the page
- After the request is satisfied, the page may be migrated from w to v
- We only consider centralized migration (each node always knows the location of p)

Formal definition: See board.

Randomized Algorithm COUNTER

- Global counter $C \in [0,k]$ for some value k
- Counter initialized uniformly at random to an integer in [1,k]
- On each request decrement C by 1

• If C = 0

• Move page to the requesting node and set C = k

Theorem 3.1: COUNTER is *c*-competitive, where
$$c = \max\left\{2 + \frac{2d}{k}, 1 + \frac{k+1}{2d}\right\}$$

Proof: See board.

Two types of events:

1. COUNTER and OPT serve the request. COUNTER may move the page

2. OPT moves the page

Theorem 3.1: COUNTER is *c*-competitive, where
$$c = \max\left\{2 + \frac{2d}{k}, 1 + \frac{k+1}{2d}\right\}$$

For
$$k = d + \frac{1}{2}(\sqrt{20d^2 - 4d + 1} - 1)$$
:

$$\lim_{d \to \infty} \max\left\{2 + \frac{2d}{k}, 1 + \frac{k+1}{2d}\right\} = 1 + \Phi$$
$$\Phi = \frac{1 + \sqrt{5}}{2} \approx 1.618 \text{ is the golden ratio}$$

Bin Packing

Online Algorithms | Summer term 2022 | Michael Perk

Bin Packing

- Among the first and best studied online problems
- Pack items of different sizes into bins
- Goal: Minimize the number of bins
- Offline variant: NP-hard
 - Reduction to Partition or Subset Sum
 - Strong NP-hardness: 3-Partition

Formal definition: See board.

Bin Packing - Lower Bound

<u>Theorem 3.2</u>: No deterministic online algorithm can achieve a better competitive ration than $\frac{5}{3}$ **Proof**: See board.

<u>**Theorem 3.3:**</u> There is an online algorithm for Bin Packing that is $\frac{5}{3}$ -competitive

- Is this definition of a competitive ration sensible?
- What if we are interested in large instances?
- What if we ignore a constant number of inputs?
- ➡ Asymptotic competitive ratio

Bin Packing - Next Fit

Algorithm Next Fit

- Keep only one open bin at a time
- If the σ_i fits into the bin: Pack it
- Else: Close the bin and start a new bin

Question: What is the (asymptotic) competitive ratio of Next Fit?

<u>Theorem 3.4</u>: Next Fit is c^{∞} -competitive, where $c^{\infty} = 2$.

Proof: See board.

