

Online Algorithms - Tutorial 01

Summer term 2022, 02. May 2022

Part I - Organization

Organization

Small tutorial

- Held by Peter Kramer (kramer@ibr.cs.tu-bs.de)
- Monday, every other week, starting from 09. May 2022
- Same time & place as the big tutorial

Exercises

- Will appear after the small tutorial to be handed in one week later
- Exercise sheet 0 is not graded
- Hand them in either
 - Via box in front of IZ337
 - Email to both Peter and me (<u>mperk@ibr.cs.tu-bs.de</u>)
- At the end of semester: quizzes and preparation for the exam

Material and Videos

Course Website

- <u>https://www.ibr.cs.tu-bs.de/courses/ss22/oa/index.html</u>
- Material: https://www.ibr.cs.tu-bs.de/courses/ss22/oa/material/
- Register for the mailing list: https://mail.ibr.cs.tu-bs.de/mailman/listinfo/oa
- No script, but there are books
- · Referenced on the website, full-text access via eduroam

Videos of lectures and tutorials

- We are videotaping lectures & tutorials
- · Accessible shortly after the event on the material site

Passing the module

Exercise sheets

- You hand in your solutions to the exercises
- They will be graded individually
- To pass the module, you need 50% of the points

<u>Exam</u>

- Oral or written exam at the end
- You do not need 50% of the exercise points to take the exam
- Grade only depends on the exam

Part II - Introduction

Introduction

Online Algorithm

Informally: Algorithm that works with incomplete knowledge **Formal definition:** See board.

Often criticized: focus on the worst case

- We only look at the worst case is that sensible?
- Do we play against an adversary in the real world? In security contexts, we might!
- May restrict our view to unlikely inputs
- Average case analysis but what is a likely input?

Tankstellen

Ist der Spritpreis derzeit zu hoch?

Warum Tanken in Deutschland besonders teuer ist

Teure Energie

Spritpreise sinken nur leicht

»Krisenprofit« von mehr als 100 Millionen Euro pro Tag

So verdienen Mineralölkonzerne Milliarden am Spritpreisanstieg

ADAC

Diesel und Benzin im März laut ADAC so teuer wie nie

Copyright: Tobias Hase | Credit: dpa

Copyright: Markus Mainka via www.imago-images.de | Credit: Aviation-Stock / imago images

Online Algorithms | Summer term 2022 | Michael Perk

Part III - The BahnCard Problem

The BahnCard Problem

- Generalization of Ski Rental
- Buying only reduces cost by a factor
- Only lasts for a finite time (e.g., a year)
- Different costs for different travels

Formal definition: See board.

BahnCard 50 BahnCard 50 BahnCard 50 BahnN 50 BahnNN 50

Tim Reckmann | ccnull.de | CC-BY 2.0

Cheap and expensive intervals: See board.

The BahnCard Problem - Offline Algorithm

Naive Offline Algorithm

- For every request (t_i, c_i) , check whether we have a valid BahnCard
 - If yes, simply buy the reduced ticket
 - Otherwise, buy a BahnCard if $[t_i, t_i + T)$ is expensive

Question: Is this algorithm optimal? Answer: No! Proof: See board.

Correct algorithm: Homework :)

Use the following facts:

- In each expensive interval of length at most T, the optimal offline solution owns a BahnCard at some point.
- The optimal solution never buys a BahnCard if it still owns one.

The BahnCard Problem - Lower Bound

Theorem 1.1: No deterministic online algorithm can achieve a competitive ratio better than $2 - \beta$.

Question: If you were an evil adversary, what would you do?

Proof: See board.

The BahnCard Problem - Online Algorithm

Question: How do we apply the idea for Ski Rental to the BahnCard Problem? Ski Rental buys when it notices OPT would have bought...

Algorithm SUM

- For a request (t_i, c_i) , buy BahnCard iff
 - we do not own one,
 - the cost of all regular requests in $(t_i T, t_i]$ is at least the critical cost c*

<u>Theorem 1.2:</u> SUM is $(2 - \beta)$ -competitive. **Proof: Homework :)**

