

Online Algorithms 2022

Sándor P. Fekete

Online Navigation for Robots

Pravesh Agrawal, Aaron Becker, Erik D. Demaine Sándor P. Fekete
Golnaz Habibi, Rolf Klein, Alexander Kröller, Andreas Nüchter Seoung Kyou Lee, James McLurkin, Christiane Schmidt

Part 1.2: Exploring rectilinear polygons

- Watchman problem
- Online, continuous vision:

- Watchman problem
- Online, continuous vision:
- optimum watchman route (L_{1}-metric) in simple rectilinear polygons (Deng et al.)

- Watchman problem
- Online, continuous vision:
- optimum watchman route (L_{1}-metric) in simple rectilinear polygons (Deng et al.)
- c=26.5 in simple polygons (Hoffmann et al.)

- Watchman problem
- Online, continuous vision:
- optimum watchman route (L_{1}-metric) in simple rectilinear polygons (Deng et al.)
- c=26.5 in simple polygons (Hoffmann et al.)
- No competitive online algorithm for polygons with holes (Albers et al.)

Motivation

Motivation

- Autonomous robot without continuous vision (scan costs)
- Watchman route

Motivation

- Autonomous robot without continuous vision (scan costs)
- Watchman route
- Online problem

- Autonomous robot without continuous vision (scan costs)
- Watchman route
- Online problem
- Several classes of polygons
- Is it possible to achieve a competitive strategy?

Polygons with holes

Proposition:
There is no strategy that achieves a bounded competitive ratio for the watchman problem with scan costs in case of a polygon with holes/obstacles.
This statement holds even if the polygon is rectilinear.

Proof of the proposition

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

- Show: competitive ratio $\Omega(\sqrt{n})$
- Polygon with obstacles (panpipe)
- Further obstacles: placed depending on the strategy of the robot

Proof of the proposition

Proof of the proposition

- The shape of the inserted objects depends on the path of the robot.

\square A Competitive Strategy for
 Simple Rectilinear Polygons

Extensions

Extensions

Extensions

- Two subpolygons
- Necessary and essential extensions

Extensions

- Two subpolygons
- Necessary and essential extensions
- Advantage in rectilinear polygons

Extensions

- Two subpolygons
- Necessary and essential extensions
- Advantage in rectilinear polygons

Extensions

- Two subpolygons
- Necessary and essential extensions
- Advantage in rectilinear polygons

Extensions

- Two subpolygons
- Necessary and essential extensions
- Advantage in rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

- Problem with niches
- It is necessary to limit the number of scan points

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"
- Adapt the step length of the robot to the minimal necessary step length

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"
- Adapt the step length of the robot to the minimal necessary step length
- Move to the projection of a corner and not to the corner itself

A competitive strategy for simple rectilinear polygons

- Minimum side length a
- Consider the distance to the next corner (reflex vertex): walk beyond the corner if the distance to it is "short"
- Adapt the step length of the robot to the minimal necessary step length
- Move to the projection of a corner and not to the corner itself
- Do not scan on each necessary extension

Order of extensions

Order of extensions

Optimum?

Order of extensions

- GREEDY-ONLINE algorithm for a robot with continuous vision.
- Based on a proposition of Chin and Ntafos:

Order of extensions

- GREEDY-ONLINE algorithm for a robot with continuous vision.
- Based on a proposition of Chin and Ntafos:

Any optimum watchman route in P, a simple rectilinear polygon, will have to visit the essential edges in the order in which they appear on the boundary of P' (the new polygon obtained by removing the "non-essential" portions of the polygon).

- Transfer of this proposition.

Order of extensions

- GREEDY-ONLINE algorithm for a robot with continuous vision.
- Based on a proposition of Chin and Ntafos:

Any optimum watchman route in P, a simple rectilinear polygon, will have to visit the essential edges in the order in which they appear on the boundary of P' (the new polygon obtained by removing the "non-essential" portions of the polygon).

- Transfer of this proposition.

GREEDY-ONLINE algorithm

GREEDY-ONLINE algorithm

- Taut-Thread-Principle
- Consider the contiguous part of the boundary that was already visible from some point of the route
- Either f is a 270° corner or a corner blocks the sight such as only f - is visible

GREEDY-ONLINE algorithm

- Taut-Thread-Principle
- Consider the contiguous part of the boundary that was already visible from some point of the route
- Either f is a 270° corner or a corner blocks the sight such as only f - is visible

- Taut-Thread-Principle
- Consider the contiguous part of the boundary that was already visible from some point of the route
- Either f is a 270° corner or a corner blocks the sight such as only f - is visible

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

A competitive strategy for simple rectilinear polygons

- Extensions of the GREEDYONLINE algorithm
- Interval case vs. extension case

A competitive strategy for simple rectilinear polygons

- Extensions of the GREEDYONLINE algorithm
- Interval case vs. extension case
- Reaching the extension on an axisparallel path without a change of direction is possible/impossible

A competitive strategy for simple rectilinear polygons

- Extensions of the GREEDYONLINE algorithm
- Interval case vs. extension case
- Reaching the extension on an axisparallel path without a change of direction is possible/impossible
- In all cases of the case differentiation:
- In case the robot runs beyond the extension: the robot is (is not) able to cover the total planned length
- Positive line creation vs. negative line creation

Binary search in the strategy

- Non-visible region (NVR): An area in which the parts of the boundary, which would be visible by simply passing them with continuous vision, are not yet completely visible.
- Discover passed nonvisible regions with binary search.

Binary search in the strategy

- Non-visible region (NVR): An area in which the parts of the boundary, which would be visible by simply passing them with continuous vision, are not yet completely visible.
- Discover passed nonvisible regions with binary search.

Binary search in the strategy

- Non-visible region (NVR): An area in which the parts of the boundary, which would be visible by simply passing them with continuous vision, are not yet completely visible.
- Discover passed nonvisible regions with binary search.

Binary search in the strategy

- Non-visible region (NVR): An area in which the parts of the boundary, which would be visible by simply passing them with continuous vision, are not yet completely visible.
- Discover passed nonvisible regions with binary search.

Binary search in the strategy

- If the optimum nees k scans in an interval, the robot which uses the strategy will need maximum
- k binary searches (for each an upper bound is given) or
- 2k binary searches if the NVRs may appear on two sides

Turn adjustments

- The optimum may have the opportunity to turn off before the robot, following the strategy, does.
- The robot may discover a corridor inside a nonvisible region.
\varnothing Adjustments to have the best basic position for the next turn

Turn adjustments

The strategy

$a \leq 1$:
A. An axis-parallel move to E is possible without a turn

- $\quad e \geq 2 a+1$: interval case

Let d_{i} be the actual distance to the perpendicular of the next counterclockwise extension

- If $d_{i}>2 a+1$, move to the perpendicular of the corner
- If $d_{i} \leq 2 a+1$: If $d_{i}>a$: cover a distance of $2 d_{i}+1$

If $d_{i} \leq a$: cover a distance of $2 a+1$
Apply binary search if necessary, that means, if non-visible regions appear.

- If no corner appears on the counterclockwise side, move directly to E .

In case we run beyond E with a step of length $2 d_{i}+1 / 2 a+1$:
i. If we do not cover the total distance, because of the boundary: Run as far as possible, go back to E, move back in steps of length 1, apply binary search for NVRs (on the counterclockwise side till E, on both sides beyond E) and if a corridor is identified, use it and make turn adjustments
ii. If we may cover the total distance:
I. negative line creation: Apply binary search, if a corridor is discovered inside a NVR, use it and make turn adjustments.
II. Positive line creation: Go back to E, move back in steps of length 1, apply binary search and search for a corridor and the critical extension, make turn adjustments.

- $\quad \mathrm{e}<2 a+1$: extension case

Cover a distance of $2 \mathrm{e}+1$. In case:..($\mathrm{i} .$, ii.)

The strategy

$a \leq 1$:
A. An axis-parallel move to E is possible without a turn

- $\quad e \geq 2 a+1$: interval case
- $\quad \mathrm{e}<2 a+1$: extension case
B. An axis-parallel move to E is not possible without a change of direction: Let b_{i} be the distance to the sight-blocking corner.
- $\quad \mathrm{e} \geq a+1$: interval case
- No non-visible region up to the sight-blocking corner
- Along the boundary up to the sight-blocking corner occur non-visible regions
- e<a+1: extension case
$a>1$:
Similar; with scans every time a distance of a is covered.

The strategy

$a \leq 1$:
A. An axis-parallel move to E is possible without a turn

- $\quad e \geq 2 a+1$: interval case
- $\mathrm{e}<2 a+1$: extension case
B. An axis-parallel move to E is not poss direction: Let b_{j} be the distance to the sig $\mathrm{e} \geq a+1$: interval case
- No non-visible region up to the sight-b
- Along the boundary up to th $\sqrt{\text { e sight-blo }}$ - $\quad \mathrm{e}<a+1$: extension case
$a>1$:
Similar; with scans every time a

-

ing corn

The strategy

$a \leq 1$:
A. An axis-parallel move to E is possible without a turn

- $\quad e \geq 2 a+1$: interval case
- $\quad \mathrm{e}<2 a+1$: extension case
B. An axis-parallel move to E is not possible without a change of direction: Let b_{i} be the distance to the sight-blocking corner.
- $\quad \mathrm{e} \geq a+1$: interval case
- No non-visible region up to the sight-blocking corner
- Along the boundary up to the sight-blocking corner occur non-visible regions
- e<a+1: extension case
$a>1$:
Similar; with scans every time a distance of a is covered.

An example

The competitive ratio of the strategy

$\begin{array}{\|c\|} 80 \\ 75 \\ 70 \\ 75 \\ 65 \\ 60 \\ 55 \\ 50 \end{array}$			
	0.4	6	1.2
	a	upper bound for c	
	1	55.2294	
	0.8	51.8168	
	0.7	50.2083	
	0.5	50.0000	
	0.1	54.8000	
	0.01	67.0336	
	0.0001	93.4919	
	0.000001	120.0661	

- If we assume $a=a_{k}$:
$C \leq\left\{\begin{array}{l}8 a+34+4 \frac{\ln \left(\frac{2 a+3}{a} \frac{1}{j}\right.}{\ln (2)}, 0 \leq a<0.70043 \\ 20 a+24+4 \frac{\ln \left(\frac{4 a+3}{a}\right)}{\ln (2)},\end{array}, 0.70043 \leq a \leq 1\right.$

Part 1.3: Searching with turn cost

Online Searching

Online Searching

Online Searching

Online Searching

Online Searching

Online Searching

Given : A starting position 0 on a line.
Mission: Find an object at an unknown location.

UnkNown: (1) Direction of the object
(2) Distance OPT of the deject

WANTED! A competitive strategy for the searcher that will guarantee that the object is found in time at most C.OPT for some constant "competitive" factor c.

BELLMAN 1963: Introduced the problem

BECK and NewMAN 1970: Solved the problem

GAL 1974: Solved a generalization:

Search on m rays
Optimal competitive ratio: $1+\frac{2 m^{m}}{(m-1)^{m-1}}$
Optimal strategy: Geometric series with
ratio $\left(\frac{m}{m-1}\right)$

Literature

KAO Also known as the cow-path problem
GAL 1980: Optimal trajectory to this type of problem is always a geometric series 3aeza-Yates, Culberson, Rawlings 1988: (and various others independently)

Rediscovered problem and solution

Many variations and applications, in particular for geometric searching.

Doubling
keep doubling the search distance before returning:

Known: This guarantees a competitive factor of 9 , and this is best possible!

Keep doubling the search distance before returning:

Disadvantage: There is no real "start" of the trajectory - it's just a geometric series, and each previous step was half as long as the latest one!

Turn Cost

Immediate implictions:

(1) There has to be a first move.
(2) A competitive fector is no longer possible:

Turn Cost

Immediate implications:
(1) There has to be a first move.
(2) A competitive factor is no longer possible:

object

Searching in the wrong direction takes at least one turn, for a cost of d, compared to optimal ε

Fix: Consider $\quad c \cdot O P T+F(d)$

- and possibly C.OPT $+\lambda \cdot d$

An Open Problem

If is morth noting that the worst possible cutcone of using the search strategy
$s_{0}(\bar{a}=3.6)$ is a loss of

$$
1+2 \sum_{j=-\infty}^{1} a^{\prime} \approx 10.9 .
$$

while the expected cost of the stratcgy ys, which uses only minimax trajectories $(a=2)$
 the maximal corst (which in this case is is equal to to 9). The expected ocos of any search strategy s, with $2<a<0$ lies between 4.6 and 53 , while the maximal cour lies
 maximal come.
8.4 Search with a Turning Cost

In this section we consider a moxe realisicic version of the LSP, which has sot been
considered before in the literaure. In this moxdel the time spent in then cossidered before in the liereraure. In this model the time spent in changing the direction of moving is not 0 , as is usually assumed in the $L S P$, but a constant $d>0$. Here, any
search trijectory with a finite expected search time must have a firs step becuse Glarting wiflion in iffinite number of occillations takes inffitite lime. Therefore, , secume for convenience that the search trajectory starts by going to $x 0>0$, then turning and going to $-x_{1}$, then turning add going to x_{2}, etce. (We can obviousty assume that the earcher aimays goes with his maximal speed, 1 , as is always the case with an immobile
$s=\left.|x|\right|_{i=0} ^{\infty}$.
and denole

$$
n_{n}=x_{1}+\frac{d}{2}, \quad i=1,2, .
$$

In this case the normalized cost function (in the worst case) is not bounded near 0 . Thus the reasomble coss function is the tine to reach the targer, $C(S, H)$, under the restriction $E|H| \leq \lambda$. For conencicnce we assume $\lambda=1$. Thus we are interested in

We shall show that
$9+d \leq \hat{\nu} \leq 9+2 d$.
(8.13)

Thic left inequality follows from equality (8.7), which implies that for any S and any 8 , there always exist an x, as lwree as destired, with $\frac{2 \sum_{j=0}^{j+1} y_{j}+x_{i}}{x_{i}} \sim \frac{2 \sum_{j+-1}^{+1} y_{j}+y_{n}}{y_{i}}>9-8$.

CHAPTER \&. SEARCH ON THE INTINTE LINE
Thes, if the hidere chooses h as

$$
H=\left\{\begin{array}{l}
-\varepsilon \text { with protability } 1-\frac{1}{x^{\prime}} \\
x_{1}+\varepsilon \text { wilh probability } \frac{1}{x_{1}} .
\end{array}\right.
$$

```
then E|H|}=1\mathrm{ and, for a large enought x
```

$$
c(S, h) \approx\left(2 x_{0}+d+\varepsilon\right)\left(1-\frac{1}{x_{j}}\right)+\left(2 \sum_{j=0}^{1+1} y_{j}+x_{j}\right) \frac{1}{x_{i}} \geq 9-\delta+d
$$

with $8>0$ atbitraily small.

for all $x_{l}<|H| \leq x_{1}$. for all $x_{l}<|H| \leq x_{I+2}$
so thet for any h with $E \mid H_{1} \leq 1$

$$
c(S, h) \leq 9+2 d .
$$

We use the following approach. For any real γ, a sufficient conddition for $v(S) \leq 9+\gamma$ is the condition

$$
\text { for all }|M|=x_{i}(+\varepsilon): \quad C(s, H) \leq 9 x_{i}+\gamma(+\varepsilon) \text {. }
$$

which will hold if the following conditions hold:

$$
\begin{aligned}
& 2 \sum_{0}^{i+1} y_{j}=8\left(y_{i}-\frac{d}{2}\right)+\gamma, \quad i=0,1, \ldots \quad \text { (8.14) } \\
& 2_{30}=\gamma, \quad(y>d / 2) \\
& y_{i} \geq d / 2 \quad i=0,1 \ldots \\
& n+1=3 n-\sum_{j=0}^{t-1} n+b, \quad i=0,1, \ldots \\
& \text { (8.15) } \\
& 2=b+2 d\left(-\frac{\gamma}{2}\right)
\end{aligned}
$$

We now look for the minimal b wtich satisfes (8.15). It wums out that the general
solution of (8.15$)$ is
$y_{i}=\left(y_{0}+(\phi) z\right.$,
(8.16)

An Open Problem

where $\beta \geq 0$ is a nonnegative parameter. (Because by (8.15) $y_{i+1}-y_{i}=3 y_{i}-4 y_{i-1}$, denoting $y_{i}=2^{i} \alpha_{i}$ it easily follows that $\alpha_{i+1}-\alpha_{i}=\alpha_{i}-\alpha_{i-1}$, which leads to (8.16).)

Using (8.16) for $i=0,1$ in (8.15) it follows that $\beta=y_{0}-d$. Since $\beta \geq 0$ and $\gamma=2 y_{0}$, it easily follows that $\gamma \geq 2 d$. On the other hand, the value $9+2 d$ can be achieved by the following trajectory

$$
y_{i}=d 2^{i}, \quad x_{i}=d 2^{i}-d / 2, \quad i=0,1, \ldots
$$

with the time to reach $x_{i}+\varepsilon$ being (neglecting $O(\varepsilon)$)

$$
2 \sum_{0}^{i+1} y_{i}+x_{i}=2 d\left(2^{i+2}-1\right)+d 2^{i}-d / 2=9 x_{i}+2 d
$$

Since $E|H| \leq 1$, the last equation guarantees expected time not exceeding $9+2 d$.
Is $9+2 d$ the best possible constant? This is still an open problem. (Note that (8.14) is a sufficient but not a necessary condition.)

The factor c can be at best 9 ! (\rightarrow Consider d arbitrarily small compared to OPT.)

Suppose the searcher moves
x_{1} to the right and returns,
x_{2} to the left and returns, x_{3} to the right (etc.)

The factor c can be at best 9 ! (\rightarrow Consider d arbitrarily small compared to OPT.)

Suppose the searcher moves
x_{1} to the right and returns,
x_{2} to the left and returns,
x_{3} to the right (etc.)

Critical positions for hiding:

$$
\begin{aligned}
y_{0}= & -\varepsilon \\
y_{1}= & x_{1}+\varepsilon \\
y_{2}= & -x_{2}-\varepsilon \\
y_{3}= & x_{3}+\varepsilon \\
& (\text { etc. })
\end{aligned}
$$

More Conditions
\% must be reached in time:

$$
2 x_{1}+d+\varepsilon \leq q \varepsilon+\lambda d
$$

y_{1} must be reached in time:

$$
2 x_{1}+2 x_{2} \quad+2 d+x_{1}+\varepsilon \leq 9\left(x_{1}+\varepsilon\right)+2 d
$$

y_{2} :

$$
2 x_{1}+2 x_{2}+2 x_{3}+3 d+x_{2}+\varepsilon \leqslant 9\left(x_{2}+\varepsilon\right)+2 d
$$

$y_{n}:$

$$
2 x_{1}+\ldots+2 x_{n+1}+(n+1) d \leq 8 x_{n}+\lambda d
$$

This aust hold for all $\varepsilon>0$, so we get

$$
\begin{aligned}
& \min \lambda \\
& 2 x_{1} \\
& 2 x_{1}+2 x_{2} \\
& 2 x_{1}+2 x_{2}+2 x_{3} \\
& 2 x_{1}+2 x_{2}+2 x_{3} \\
& +2 x+1 \\
& +(x+1) d \leq 8 x_{n}+\lambda d \\
& x_{i} \geqslant 0
\end{aligned}
$$

(1) Infinite primal optimal solution describes optimal strategy of searcher.
(2) Optimal λ is tight value of twin cost penalty.
(3) Infinite dual optimal solution gives explicit proof of tightness.

Solving the Infinite LP

Solving Subsystems

Only using the first a constraints yields a relaxation, with solutions $x_{i}^{(n)}$ and λ_{n}. Each λ_{n} is a lover bound for λ.

Approach:
(1) Run CPLEX on sobsystems
(2) Consider convergence of solutions
(3) Construct infinite solution
(4) Verify solution

Solutions

Solutions

			$x_{2}^{(n)}$	$x_{3}^{(n)}$	$x_{4}^{(n)}$	$c_{1}^{(n)}$	${ }_{2}^{(n)}$	$C_{3}^{(n)} C_{4}^{(n)}$
1	1.0000	0.0000				1.0000		
2	1.2500	0.1250	0.0000			0.1500	0. 0.500	
3	1.4166	0.2083	0.3333	0.0000		0.6666	6.2500	0.0833
4	1.5313	0.2656	0.545	0.6975	0.000	0.625	0.2500	0.09378
5	1.6125	0.3062	0.78∞	1.1750	1.3000	0.6000	0.2500	0.10000 .0315
10	1.8001	0.4000	1.1003	23001	4.3031	0.5500	0.250	0.175
20	1.9000	0.4500	1.3000	2.9000	5.100	0.5250	0.250	0.11870 .0562
40	1.9500	0.4750	1.4000	3.600	6.4383	0.5125	0.2500	0.12180 .0573
50	1.9600	0.4800	1.4200	3.6600	6.1850	0.5100	0.25000.	0.12250 .0000
100	1.9800	0.4900	1.4600	3.3800	7.400	0.5050	0.25000	0.12370 .0612
200	1.9900	0.4950	1.4800	3.4400	7.4500	0.50250	0.2500 0,	0.2430 .0618
400	1.9950	0.4975	1.4900	3.4700	7.4200	050120.2	0.25000 .12	0.12450 .0621

Solutions

Table 1
Solutions for a number of linear subsystems

n	λ_{n}		$x_{1}^{(n)}$		$x_{2}^{(n)}$		$x_{3}^{(n)}$			$x_{4}^{(n)}$	$x_{5}^{(n)}$
1	1.0000		0.0000								
2	1.2500		0.1250		0.0000						
3	1.4166		0.2083		0.3333		0.000				
4	1.5312		0.2656		0.5625		0.687			0.0000	
5	1.6125		0.3062		0.7250		1.175			1.3000	0.0000
6	1.6718		0.3359		0.8437		1.531			2.2500	2.3750
7	1.7165		0.3582		0.9330		1.799			2.9642	4.1607
8	1.7509		0.3754		1.0019		2.005			3.5156	5.5930
9	1.7782		0.3891		1.0563		2.169			3.9130	6.6284
10	1.8001		0.4000		1.1003		2.301			4.3031	7.5078
20	1.9000		0.4500		1.3000		2.900			5.9000	11.5000
30	1.9333		0.4666		1.3666		3.1000			6.4333	12.8333
40	1.9500		0.4750		1.4000		3.2000			6.7000	13.5000
50	1.9600		0.4800		1.4200		3.2600			6.8600	13.9000
100	1.9800		0.4900		1.4600		3.3800			7.1800	14.7000
200	1.9900		0.4950		1.4800		3.4400			7.3400	15.1000
400	1.9950		0.4975		1.4900		3.470			7.4200	15.3000
	U	1.1000	0.4700	1.4600	2.500	4.800	U.SOSO	0.000	vicst	U.U61C	
	200	1.9900	0.4950	1.4800	3.4600	7.3400	0.5025	0.2500	01243	0.0618	
	400	1.9950	0,4975	1.4400	3.4700	7.4200	0.5012	0.2500	0.1245	0.0621	

Solutions

$$
\begin{array}{llllll}
n & \lambda_{n} & x_{1}^{(n)} & x_{2}^{(n)} & x_{3}^{(n)} & x_{4}^{(n)}
\end{array} c_{1}^{(n)} c_{2}^{(n)} c_{3}^{(n)} c_{4}^{(n)}
$$

Table 1
Solutions for a number of linear subsystems

n	λ_{n}		$x_{1}^{(n)}$		$x_{2}^{(n)}$		$x_{3}^{(n)}$			$x_{4}^{(n)}$	$x_{5}^{(n)}$
1	1.0000		0.0000								
2	1.2500		0.1250		0.0000						
3	1.4166		0.2083		0.3333		0.000				
4	1.5312		0.2656		0.5625		0.687			0.0000	
5	1.6125		0.3062		0.7250		1.175			1.3000	0.0000
6	1.6718		0.3359		0.8437		1.531			2.2500	2.3750
7	1.7165		0.3582		0.9330		1.799			2.9642	4.1607
8	1.7509		0.3754		1.0019		2.005			3.5156	5.5930
9	1.7782		0.3891		1.0563		2.169			3.9130	6.6284
10	1.8001		0.4000		1.1003		2.301			4.3031	7.5078
20	1.9000		0.4500		1.3000		2.900			5.9000	11.5000
30	1.9333		0.4666		1.3666		3.100			6.4333	12.8333
40	1.9500		0.4750		1.4000		3.2000			6.7000	13.5000
50	1.9600		0.4800		1.4200		3.260			6.8600	13.9000
100	1.9800		0.4900		1.4600		3.380			7.1800	14.7000
200	1.9900		0.4950		1.4800		3.440			7.3400	15.1000
400	1.9950		0.4975		1.4900		3.470			7.4200	15.3000
	U	1.1000	0.4700	1.4600	2.500	0	U.5050	V.COV	V.ICSt	U.U6)	
	200	1.9900	0.4950	1.4800	3.4600	7.9500	0.5025	0.2500	0.243	0.0618	
	400	1.9950	0.4775	1.4400	3.4700	7.4200	0.5012	0.2500	0.1245	0.0621	
	∞	2.0000	0.5000	1.5000	3,5000	7.000	0,500	22500	0.125	0.0625	

Table 1
Solutions for a number of linear subsystems

n	λ_{n}	$x_{1}^{(n)}$	$x_{2}^{(n)}$	$x_{3}^{(n)}$	$x_{4}^{(n)}$	$x_{5}^{(n)}$
1	1.0000	0.0000				
2	1.2500	0.1250	0.0000			
3	1.4166	0.2083	0.3333	0.0000		
4	1.5312	0.2656	0.5625	0.6875	0.0000	
5	1.6125	0.3062	0.7250	1.1750	1.3000	0.0000
6	1.6718	0.3359	0.8437	1.5312	2.2500	2.3750
7	1.7165	0.3582	0.9330	1.7991	2.9642	4.1607
8	1.7509	0.3754	1.0019	2.0058	3.5156	5.5930
9	1.7782	0.3891	1.0563	2.1692	3.9130	6.6284
10	1.8001	0.4000	1.1003	2.3011	4.3031	7.5078
20	1.9000	0.4500	1.3000	2.9000	5.9000	11.5000
30	1.9333	0.4666	1.3666	3.1000	6.4333	12.8333
40	1.9500	0.4750	1.4000	3.2000	6.7000	13.5000
50	1.9600	0.4800	1.4200	3.2600	6.8600	13.9000
100	1.9800	0.4900	1.4600	3.3800	7.1800	14.7000
200	1.9900	0.4950	1.4800	3.4400	7.3400	15.1000
400	1.9950	0.4975	1.4900	3.4700	7.4200	15.3000
	\checkmark					

Table 1
Solutions for a number of linear subsystems

n	λ_{n}	$x_{1}^{(n)}$	$x_{2}^{(n)}$	$x_{3}{ }^{(n)}$	$x_{4}^{(n)}$	$x_{5}^{(n)}$
1	1.0000	0.0000				
2	1.2500	0.1250	0.0000			
3	1.4166	0.2083	0.3333	0.0000		
4	1.5312	0.2656	0.5625	0.6875	0.0000	
5	1.6125	0.3062	0.7250	1.1750	1.3000	0.0000
6	1.6718	0.3359	0.8437	1.5312	2.2500	2.3750
7	1.7165	0.3582	0.9330	1.7991	2.9642	4.1607
8	1.7509	0.3754	1.0019	2.0058	3.5156	5.5930
9	1.7782	0.3891	1.0563	2.1692	3.9130	6.6284
10	1.8001	0.4000	1.1003	2.3011	4.3031	7.5078
20	1.9000	0.4500	1.3000	2.9000	5.9000	11.5000
30	1.9333	0.4666	1.3666	3.1000	6.4333	12.8333
40	1.9500	0.4750	1.4000	3.2000	6.7000	13.5000
50	1.9600	0.4800	1.4200	3.2600	6.8600	13.9000
100	1.9800	0.4900	1.4600	3.3800	7.1800	14.7000
200	1.9900	0.4950	1.4800	3.4400	7.3400	15.1000
400	1.9950	0.4975	1.4900	3.4700	7.4200	15.3000
	\checkmark					

	10	1.8001	0.4000	1.1003	23001	4.3031	0.5500	0.2500	0,1125 Q,0500	
n	$\lambda_{n}{ }^{\sim}$	10.^-	$\hat{y_{1}^{(n)}}$	$100 \text {-a }$	$\underset{y_{2}^{(n)}}{\substack{(n)}}$	ctan	$\underset{y_{3}^{(n)}}{\text { n (}}$	$n \mathrm{~cm}$	A1107 narrs $y_{4}^{(n)}$	$y_{5}^{(n)}$
1	1.0000									
2	1.2500		0.7500		0.2500					
3	1.4166		0.6666		0.2500		0.0833			
4	1.5312		0.0625		0.2500		0.0937		0.0312	
5	1.6125		0.6000		0.2500		0.1000		0.0375	0.0125
6	1.6718		0.5833		0.2500		0.1041		0.0416	0.0156
7	1.7165		0.5714		0.2500		0.1071		0.0446	0.0178
8	1.7509		0.5625		0.2500		0.1093		0.0468	0.0195
9	1.7782		0.5555		0.2500		0.1111		0.0486	0.0208
10	1.8001		0.5500		0.2500		0.1125		0.0500	0.0218
20	1.9000		0.5250		0.2500		0.1187		0.0562	0.0265
30	1.9333		0.5166		0.2500		0.1208		0.0583	0.0281
40	1.9500		0.5125		0.2500		0.1218		0.0593	0.0289
50	1.9600		0.5100		0.2500		0.1225		0.0600	0.0293
100	1.9800		0.5050		0.2500		0.1237		0.0612	0.0303
200	1.9900		0.5025		0.2500		0.1243		0.0618	0.0307
400	1.9950		0.5012		0.2500		0.1245		0.0621	0.0310

Technische
Universität
Braunschweig

Verifying the Solution

$$
\text { Choose: } \quad \begin{aligned}
x_{i} & =\left(2^{i}-\frac{1}{2}\right) d \\
c_{j} & =\frac{1}{2^{j}}
\end{aligned}
$$

Check primal solution, i.e. search strategy:

Verifying the Solution

Choose:

$$
\begin{aligned}
& x_{i}=\left(2^{i}-\frac{1}{2}\right) d \\
& c_{j}=\frac{1}{2^{j}}
\end{aligned}
$$

Check primal solution, ie. search strategy:
Inequality n yields

$$
\begin{aligned}
\sum_{i=1}^{n+1} 2\left(x_{i}\right)-8 x_{n}+(n+1) d & \leq \lambda d \\
\text { or } \quad \sum_{i=1}^{n+1} 2\left(2^{i}-\frac{n}{k}\right) d-8\left(2^{n-1}-\frac{1}{2}\right) d+(n+1) d & \leq \lambda d \\
\text { or } \quad 2^{n+2}-2-2^{n+2}+4 & \leq \lambda \\
\text { or } & 2
\end{aligned}
$$

So we have a feasible solution with $\lambda=2$.

Verifying the Dual

Verifying the Dual

$$
\begin{aligned}
& \min \lambda \\
& 2 x \\
& 2 x_{1}+2 x_{2} \\
& +d \leq \lambda d \\
& +20 \leq 8 x_{1}+\lambda d \\
& 2 x_{1}+2 x_{2}+2 x_{3} \\
& +3 d \leq 8 x_{2}+2 d \\
& 2 x_{1}+2 x_{2}+2 x_{3} \quad+2 x_{2+1} \quad+(x+1) d \leq 8 x_{n}+2 d \\
& \begin{array}{c}
x_{i} \geqslant 0 \\
\text { Consider infinite linear combination of }
\end{array} \\
& \text { with the dual multipliers: } \\
& \text { The resulting coefficient of } x_{n} \text { is } \\
& \sum_{i=n}^{\infty} \frac{2}{2^{i}}-\frac{8}{2^{n+1}}=0 \\
& \text { The resulting coefficient of } \lambda d \text { is } \\
& \sum_{i=1}^{\infty} \frac{1}{2^{i}} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& \min \lambda \\
& 2 x_{1} \\
& 2 x_{1}+2 x_{2} \\
& 2 x_{1}+2 x_{2}+2 x_{3} \\
& 2 x_{1}+2 x_{2}+2 x_{3}+2 x_{n+1} \quad+(n+1) d \leq 8 x_{n}+\lambda d \\
& x_{i} \geqslant 0
\end{aligned}
$$

Consider infinite linear combination of with the dual multipliers:

The resulting coefficient of x_{n} is

$$
\sum_{i=n}^{\infty} \frac{2}{2^{i}}-\frac{8}{2^{n+1}}=0
$$

The resulting coefficient of λd is

$$
\sum_{i=1}^{\infty} \frac{1}{2^{i}} \quad=1
$$

This leaves the inequality

$$
\sum_{i=1}^{\infty} i\left(\frac{1}{2}\right)^{i} d \leq \lambda d
$$

Using $\sum_{i=1}^{\infty} i x^{i}=\frac{x}{(1-x)^{2}}$, this implies

$$
2 \leq \lambda
$$

so we have an explicit lower bound.

Cow-Path Problem vita Turn Cost

SCENARIO: m rays from the origin.
Turn cost on a ray: d_{1}
Turn cost at the origin: d_{2}
Total turn cost for changing
from one ray to another : $d=d_{1}+d_{2}$
KNown : Asymptotic competitive ratio for $d=0$ is

$$
1+\frac{2 m^{m}}{(m-1)^{n-1}}=: 1+M
$$

Constraints

Rewrite Constraints:

$$
2 \sum_{i=1}^{n+m-1} x_{i}+(n+m-1) d \leq M x_{n}+\lambda d
$$

AGAIN: - Infinite LP for determining λ

- Rum experiments for fixed m

Solving the Problem

$$
\begin{aligned}
& \text { SOLUTION OF THE PRORLEM } \\
& \text { Here described : } m=3 \\
& \lambda_{1000}=3.743996 \\
& x_{1}^{(1000)}=0.2492495 \\
& x_{2}^{(1000)}=0.6227485 \\
& x_{3}^{(100)}=1.182434 \\
& x_{4}^{(1000)}=2.021118 \\
& x_{5}^{(000)}=3.277878
\end{aligned}
$$

Solving the Problem

$$
\begin{aligned}
& \text { Solution of the Proem } \\
& \text { Here described: } m=3 \\
& \lambda_{\text {1000 }}=3.743996 \\
& x_{1}^{(100)}=0.2492495 \\
& x_{2}^{(100)}=0.6227485 \\
& x_{3}^{(\text {max })}=1.182434 \\
& x_{4}^{(100)}=2.021118 \\
& x_{s}^{(m 0)}=3.277878
\end{aligned}
$$

After adjusting for logarithmic convergence:

$$
\left.\begin{array}{l}
\lambda=3.75=\frac{15}{4} \\
x_{1}=0.25=\frac{1}{4} \\
x_{2}=0.625=\frac{5}{8}
\end{array}\right\} \text { educated guesses }
$$

Assuming all constraints are tight, we get a recursion
for x_{n}, yielding:
$x_{3}=\frac{19}{16}=1.1875$
$x_{4}=\frac{65}{32}=2.03125$
$x_{5}=\frac{211}{64}=3.296875$

Solution for $m=3$ (cont.)
Using the structure of the recursion, we conclude

$$
x_{n}=\frac{d}{2}\left(\left(\frac{3}{2}\right)^{n}-1\right)
$$

Not hard to check:
Together with $\lambda=\frac{15}{4}$, this satisfies all constraints with equality.

Using (*) , we get the recursive condition

$$
\begin{aligned}
& C_{2}^{(1000)}=0.445339 \\
& C_{3}^{(1000)}=0.1481481 \\
& C_{4}^{(1000)}=0.1481481 \\
& C_{5}^{(1000)}=0.08217275 \\
& C_{6}^{(1000)}=0.06022488 \\
& C_{7}^{(1000)}=0.038277 \\
& C_{8}^{(1000)}=0.02610326
\end{aligned}
$$

$$
\begin{aligned}
& c_{n}=\frac{27}{4}\left(c_{n+2}-c_{n+3}\right) \\
& c_{n+3}=\frac{27}{4} c_{n+2}-c_{n}
\end{aligned}
$$

or

Some values:

$$
\begin{aligned}
& C_{5}=\frac{60}{3^{6}}=0.0823045 \\
& C_{6}=\frac{132}{3^{7}}=0.0603566 \\
& C_{7}=\frac{252}{3^{8}}=0.0384087 \\
& C_{8}=\frac{516}{3^{9}}
\end{aligned}=0.0262155
$$

Dual Routing

Explicit formula after solving recursion:

Dual Routing

Verifying the Dual
Consider the infinite linear combination of all constraints, using the compted c_{j}.

- By ascmation, we have

$$
\sum_{i=2}^{\infty} c_{i}=1
$$

so the coefficient of $\mathrm{\lambda d}$ is 1 .

- By recursion, all coefficients of x_{n} cancel.
- This leaves

$$
\sum_{i=2}^{\infty} i c_{i} \leq 2
$$

Using the explicit values of c_{j} and $\sum_{i=1}^{\infty} i x^{i}=\frac{x}{(1-x)^{2}}$,
we get

$$
\begin{aligned}
\lambda>\sum_{i=2}^{\infty} i c_{i} & =\frac{2}{3} \sum_{i=1}^{\infty} i\left(\frac{2}{3}\right)^{i}+\frac{4}{3} \sum_{i=1}^{\infty} i\left(-\frac{1}{3}\right)^{i} \\
& =\frac{2}{3} \frac{\frac{2}{3}}{\left(1 \cdot \frac{k}{3}\right)^{2}}+\frac{4}{3} \frac{-\frac{1}{3}}{\left(1+\frac{1}{3}\right)^{2}} \\
& =4-\frac{1}{4}=\frac{15}{4}=3.75
\end{aligned}
$$

Dual Routing

$$
\begin{aligned}
\sum_{j=m-1}^{\infty} j y_{j}= & \sum_{j=m-1}^{2 m-2} j y_{j}+\sum_{j=2 m-1}^{\infty} j y_{j} \\
= & \sum_{j=m-1}^{2 m-2} j y_{j}+\sum_{j=m-1}^{\infty}(j+m) y_{j+m} \\
= & \sum_{j=m-1}^{2 m-2} j y_{j}+\sum_{j=m-1}^{\infty}(j+m)\left(y_{j+m-1}-\frac{1}{M} y_{j}\right) \\
= & (2 m-2) y_{2 m-2}+\sum_{j=m-1}^{2 m-3} j y_{j}+\sum_{j=m-1}^{\infty}(j+m-1) y_{j+m-1}^{\infty} \sum_{j=m-1}^{\infty} y_{j+m-1}-\sum_{j=m-1}^{\infty} \frac{1}{M} y_{j} y_{j} \sum_{j=m-1}^{\infty} \frac{m}{M} y_{j} \\
= & \frac{2 m-2}{M}+\sum_{j=m-1}^{\infty} j y_{j}+\left(1-\sum_{j=m-1}^{2 m-3} y_{j}\right)-\sum_{j=m-1}^{\infty} \frac{1}{M} j y_{j}-\frac{m}{M}
\end{aligned}
$$

hence

$$
\sum_{j=m-1}^{\infty} j y_{j}=2 m-2+(M-m-(m-2))-m=M-m,
$$

as claimed.

Part 2: Several Robots

Asymptotics

Asymptotics

$\mathrm{d}=40$

Asymptotics

d=40
c=2.0016

Asymptotics

Asymptotics

Asymptotics

d=40
c=2.0016

Asymptotics

$\mathrm{d}=40$

Asymptotics

d=40
c=2.0015

Asymptotics

Asymptotics

Asymptotics

Asymptotics

Asymptotics

Asymptotics

Collective Tree Exploration

Tree Exploration

Tree Exploration

Given:

Unknown tree T, root r

Tree Exploration

Given:

Unknown tree T, root r k robots, initially located at r

Tree Exploration

Given:

Unknown tree T, root r k robots, initially located at r

Tree Exploration

Given:
Unknown tree T, root r
k robots, initially located at r
Task:

Tree Exploration

Given:
Unknown tree T, root r
k robots, initially located at r
Task:
Explore T and return to origin

Tree Exploration

Given:
Unknown tree T, root r
k robots, initially located at r
Task:
Explore T and return to origin

Tree Exploration

Given:
Unknown tree T, root r
k robots, initially located at r
Task:
Explore T and return to origin

Tree Exploration

Given:
Unknown tree T, root r
k robots, initially located at r
Task:
Explore T and return to origin

Objective:

Tree Exploration

Given:
Unknown tree T, root r
k robots, initially located at r
Task:
Explore T and return to origin

Objective:

Minimize maximum workload

Previous Work

Previous Work

Dynia et al. (2006):
- Lower bound of $3 / 2$ on

Previous Work

Dynia et al. (2006):

- Lower bound of $3 / 2$ on competitive factor
- An appropriate greedy algorithm achieves competitive factor of 8

Previous Work

Dynia et al. (2006):

- Lower bound of $3 / 2$ on competitive factor
- An appropriate greedy algorithm achieves competitive factor of 8

Previous Work

$\frac{A L G}{O P T}=\frac{6}{4}=\frac{3}{2}$

Dynia et al. (2006):

- Lower bound of $3 / 2$ on competitive factor
- An appropriate greedy algorithm achieves competitive factor of 8

A New Strategy for General Trees

A New Strategy for General Trees

A New Strategy for General Trees

A New Strategy for General Trees

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.
- Observations:

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.
- Observations:
- Duplicated distance DUP is bounded by MAX.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.
- Observations:
- Duplicated distance DUP is bounded by MAX.
- In worst case, MAX=AVG=DUP.

A New Strategy for General Trees

- Lower bounds on actual OPT:

- Known MAX distance
- AVG of known total distance
- Strategy MAX+AVG:
- Choose some c.
- Robots take turns, one at a time.
- Keep track of MAX and AVG.
- Travel c times lower bound.
- Factor c is achievable, if we can keep going - so if we can travel arbitrarily far.
- Observations:
- Duplicated distance DUP is bounded by MAX.
- In worst case, MAX=AVG=DUP.
- This yields a recursion for distances traveled.

A New Strategy for General Trees

A New Strategy for General Trees

Online Balanced Tree Exploration

Pravesh Agrawal \square
Department of CSE, IIT Bombay, Mumbai, India
Sándor P. Fekete \square (D)
Department of Computer Science, TU Braunschweig, Braunschweig, Germany

- Abstract

We study Online Balanced Tree Exploration, a class of online optimization problems that can be seen as natural generalizations of both online exploration and machine scheduling: Given an unknown weighted tree $T=(V, E)$ with a distinguished root node r, and a set of $k \geq 2$ identical robots at r, the task is to have all vertices of the tree be visited by some robot and have all robots return to r, such that the largest distance traveled by any robot is minimized. Online Balanced Tree Exploration has been considered before; the best previously known competitive method uses a doubling strategy and yields a factor of 8 .

We develop c-GAME, a strategy that proceeds greedily while keeping track of tree depth and average load, and show that it yields a c-competitive strategy for any k and any $c \geq \gamma=$ $3.146193220582 \ldots$, which is tight. Here $\gamma=-W_{-1}\left(-\frac{1}{e^{2}}\right)$, where W_{-1} is the lower branch of Lambert's W-function, which is also known as the product logarithm. We also provide a tight characterization of the critical competitive factors γ_{k} for any specific $k \geq 3$; in particular, we establish $\gamma_{3}=2.27883 \ldots, \gamma_{4}=2.49221 \ldots, \gamma_{18}=2.99961 \ldots$, implying that 3-GAME is 3-competitive for all $k \leq 18$.

2012 ACM Subject Classification Theory of computation \rightarrow Online algorithms; Computing method-
ologies \rightarrow Planning and scheduling
Keywords and phrases Online search, group exploration, balanced allocation, competitive analysis
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.118

A Useful Lemma

A Useful Lemma

- Lemma 3. For analyzing the worst case for strategy $c-G A M E$ with $k>c>2$, it suffices to consider

A Useful Lemma

- Lemma 3. For analyzing the worst case for strategy $c-G A M E$ with $k>c>2$, it suffices to consider

1. $\delta_{i}^{(j)}=M A X_{i-1}^{(j)}-\varepsilon_{i}^{(j)}$ with $\varepsilon_{i}^{(j)}>0$ arbitrarily small for all i, j after $i=1, j=1$.
2. $M A X_{i}^{(j)}=A V G_{i}^{(j)}$ for all i and all $j \geq 2$.

A Useful Lemma

- Lemma 3. For analyzing the worst case for strategy c-GAME with $k>c>2$, it suffices to consider

1. $\delta_{i}^{(j)}=M A X_{i-1}^{(j)}-\varepsilon_{i}^{(j)}$ with $\varepsilon_{i}^{(j)}>0$ arbitrarily small for all i, j after $i=1, j=1$.
2. $M A X_{i}^{(j)}=A V G_{i}^{(j)}$ for all i and all $j \geq 2$.

Recursion

Recursion

D_{i} : total distance traveled by a robot after iteration i

Recursion

D_{i} : total distance traveled by a robot after iteration i
d_{i} : new distance traveled by a robot in iteration i

Recursion

D_{i} : total distance traveled by a robot after iteration i
d_{i} : new distance traveled by a robot in iteration i

New

Recursion

D_{i} : total distance traveled by a robot after iteration i

$d_{i}:$ new distance traveled by a robot in iteration i

New

$$
d_{i}+D_{i-k}+\frac{D_{i-1}}{c}=c\left(\frac{D_{i-1}}{c}+\frac{d_{i}}{k}\right)
$$

Recursion

D_{i} : total distance traveled by a robot after iteration i

$d_{i}:$ new distance traveled by a robot in iteration i

New

$$
d_{i}+\underbrace{D_{i-k}}_{\text {old total }}+\frac{D_{i-1}}{c}=c\left(\frac{D_{i-1}}{c}+\frac{d_{i}}{k}\right)
$$

Recursion

D_{i} : total distance traveled by a robot after iteration i

$d_{i}:$ new distance traveled by a robot in iteration i

New

$$
d_{i}+\underbrace{D_{i-k}}_{\text {old total }}+\underbrace{\frac{D_{i-1}}{c}}_{\text {duplicated }}=c\left(\frac{D_{i-1}}{c}+\frac{d_{i}}{k}\right)
$$

Recursion

D_{i} : total distance traveled by a robot after iteration i

$d_{i}:$ new distance traveled by a robot in iteration i

New

Recursion

D_{i} : total distance traveled by a robot after iteration i

$d_{i}:$ new distance traveled by a robot in iteration i

New

Recursion

D_{i} : total distance traveled by a robot after iteration i

$d_{i}:$ new distance traveled by a robot in iteration i

New

Recursion

D_{i} : total distance traveled by a robot after iteration i
$d_{i}:$ new distance traveled by a robot in iteration i

New

$$
\underbrace{d_{i}}_{\text {new }}+\underbrace{D_{i-k}}_{\text {old total }}+\underbrace{\frac{D_{i-1}}{c}}_{\text {duplicated }}=c(\underbrace{\frac{D_{i-1}}{c}}_{\text {old average }}+\underbrace{\frac{d_{i}}{k}}_{\text {added to average }})
$$

Rearrange

Recursion

D_{i} : total distance traveled by a robot after iteration i
$d_{i}:$ new distance traveled by a robot in iteration i

New

Rearrange

$$
D_{i}=\left(\frac{k-1}{k-c}\right) D_{i-1}-\left(\frac{c}{k-c}\right) D_{i-k}
$$

Analysis

$$
\begin{aligned}
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}} & =0 \\
x_{k}^{k-1} & \geq \frac{c_{k}}{c_{k}-1} \\
x_{k} & >1
\end{aligned}
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
\begin{aligned}
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}} & =0 \\
x_{k}^{k-1} & \geq \frac{c_{k}}{c_{k}-1} \\
x_{k} & >1
\end{aligned}
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
\begin{aligned}
& x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}}=0 \\
& x_{k}^{k-1}=\frac{c_{k}}{c_{k}-1} \\
& x_{k}>1
\end{aligned}
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
\begin{aligned}
& x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}}=0 \\
& x_{k}^{k-1}=\frac{c_{k}}{c_{k}-1} \\
& x_{k}>1
\end{aligned}\left(1+\frac{1}{c_{k}-1}\right)^{\frac{1}{k-1}}=1 .
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
\begin{aligned}
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}} & =0 \\
x_{k}^{k-1} & \geq \frac{c_{k}}{c_{k}-1} \\
x_{k} & >1
\end{aligned}
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}}=0
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
\begin{array}{r}
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}}=0 \\
\left(k-c_{k}\right) x_{k}^{k}-(k-1) x_{k}^{k-1}+c_{k}=0
\end{array}
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
\begin{gathered}
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}}=0 \\
\left(k-c_{k}\right) x_{k}^{k}-(k-1) x_{k}^{k-1}+c_{k}=0 \\
c_{k}=\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}
\end{gathered}
$$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
\begin{gathered}
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}}=0 \\
\left(k-c_{k}\right) x_{k}^{k}-(k-1) x_{k}^{k-1}+c_{k}=0 \\
c_{k}=\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}
\end{gathered}
$$

Derivative

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

$$
x_{k}^{k}-\frac{k-1}{\left(k-c_{k}\right)} x_{k}^{k-1}+\frac{c_{k}}{k-c_{k}}=0
$$

$$
\left(k-c_{k}\right) x_{k}^{k}-(k-1) x_{k}^{k-1}+c_{k}=0
$$

$$
c_{k}=\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}
$$

Derivative

$$
\frac{x_{k}^{k-2}\left((k-1) x_{k}^{k}-k^{2} x_{k}+k^{2}-2 k+1\right)}{\left(x_{k}^{k}-1\right)^{2}}
$$

Analysis

- Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	
3	
4	
5	
6	
7	
8	
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	
4	
5	
6	
7	
8	
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	
5	
6	
7	
8	
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	
6	
7	
8	
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	
7	
8	
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	
8	
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	$3.11977 \ldots$
1,000	
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	$3.11977 \ldots$
1,000	3.14
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	$3.11977 \ldots$
1,000	$3.14355 \ldots$
10,000	
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $\left.c_{k}=\right\}$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	$3.11977 \ldots$
1,000	$3.14355 \ldots$
10,000	$3.14592 \ldots$
100,000	
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	$3.11977 \ldots$
1,000	$3.14355 \ldots$
10,000	$3.14592 \ldots$
100,000	$3.14612 \ldots$
$1,000,000$	

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $\left.c_{k}=\right\}$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	$3.11977 \ldots$
1,000	$3.14355 \ldots$
10,000	$3.14592 \ldots$
100,000	$3.14612 \ldots$
$1,000,000$	$3.14619 \ldots$

Analysis

Lemma 1. For any fixed k, Strategy $M A X+A V G$ is c_{k}-competitive, where c_{k} satisfies $c_{k}=\{$ $\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}$, with $x_{k}>1$ being a zero of the function $f(x)=(k-1) x^{k}-k^{2} x+k^{2}-2 k+1$.

k	c_{k}
2	$1.86603 \ldots$
3	$2.27883 \ldots$
4	$2.49221 \ldots$
5	$2.62163 \ldots$
6	$2.70837 \ldots$
7	$2.77053 \ldots$
8	$2.81724 \ldots$
9	$2.85363 \ldots$
10	$2.88277 \ldots$
20	$3.01425 \ldots$
40	$3.08016 \ldots$
100	$3.11977 \ldots$
1,000	$3.14355 \ldots$
10,000	$3.14592 \ldots$
100,000	$3.14612 \ldots$
$1,000,000$	$3.14619 \ldots$

Theorem 2. Strategy $M A X+A V G$ is c_{k}-competitive, for the values shown in Table 1. Moreover, these values are tight.

Analysis

Analysis

$$
c_{k}=\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1}
$$

Analysis

Analysis

Analysis

Analysis

$$
\begin{aligned}
& c_{k}=\frac{k x_{k}^{k}-(k-1) x_{k}^{k-1}}{x_{k}^{k}-1} \\
& c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{\frac{1}{k}}{\left(1+\frac{k_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{z_{1}}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
\end{aligned}
$$

Analysis

$$
c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{\frac{1}{k}}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{z^{\prime}}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
$$

Analysis

$$
c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
$$

$$
\lim _{k \rightarrow \inf } \frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z}{1-e^{-z}}
$$

Analysis

$$
c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
$$

$$
\lim _{k \rightarrow \inf } \frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z}{1-e^{-z}}
$$

Derivative

Analysis

$$
c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
$$

$$
\lim _{k \rightarrow \inf } \frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z}{1-e^{-z}}
$$

Derivative

$$
\frac{e^{z}\left(-z+e^{z}-2\right)}{\left(e^{z}-1\right)^{2}}
$$

Analysis

$$
c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
$$

$$
\lim _{k \rightarrow \inf } \frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z}{1-e^{-z}}
$$

Derivative

$$
\frac{e^{z}\left(-z+e^{z}-2\right)}{\left(e^{z}-1\right)^{2}}
$$

Zero of

Analysis

$$
c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
$$

$$
\lim _{k \rightarrow \inf } \frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z}{1-e^{-z}}
$$

$$
\begin{aligned}
& \frac{e^{z}\left(-z+e^{z}-2\right)}{\left(e^{z}-1\right)^{2}} \\
& e^{z}=z+2
\end{aligned}
$$

Analysis

$$
c_{k}=\frac{k\left(1+\frac{z_{k}}{k}\right)-(k-1)}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}
$$

$$
\lim _{k \rightarrow \inf } \frac{1+z_{k}}{\left(1+\frac{z_{k}}{k}\right)-\frac{1}{\left(1+\frac{z_{k}}{k}\right)^{k-1}}}=\frac{1+z}{1-e^{-z}}
$$

$$
\begin{array}{l|l}
\text { Derivative } & \frac{e^{z}\left(-z+e^{z}-2\right)}{\left(e^{z}-1\right)^{2}} \\
\text { Zero of } & e^{z}=z+2 \\
c=W_{-1}\left(-\frac{1}{e^{2}}\right)=3.146193220582 \ldots
\end{array}
$$

Analysis

$$
\begin{gathered}
\frac{e^{z}\left(-z+e^{z}-2\right)}{\left(e^{z}-1\right)^{2}} \\
e^{z}=z+2 \\
c=W_{-1}\left(-\frac{1}{e^{2}}\right)=3.146193220582 \ldots
\end{gathered}
$$

Analysis

\rightarrow Theorem 3. Algorithm $M A X+A V G$ is c-competitive for all k, where c is the solution of the equation $e^{c}=c+2$. This is the value $W_{-1}\left(-\frac{1}{e^{2}}\right)=3.146193220582 \ldots$, where W_{-1} is the lower branch of Lambert's W-function. Moreover, this is tight: For any $c^{\prime}<c, M A X+A V G$ is not c^{\prime}-competitive for large enough k.

$$
\begin{gathered}
\frac{e^{z}\left(-z+e^{z}-2\right)}{\left(e^{z}-1\right)^{2}} \\
e^{z}=z+2 \\
c=W_{-1}\left(-\frac{1}{e^{2}}\right)=3.146193220582 \ldots
\end{gathered}
$$

Part 3: Robot Swarms

Part 3.1:
 Online Triangulation

Video!

Triangulating Unknown Environments using Robot Swarms

Aaron Becker
James McLurkin
SeoungKyou Lee

Sándor P. Fekete Alexander Kröller
Christiane Schmidt

Video!

Triangulating Unknown Environments using Robot_Swarms

|conference
S.P. Fekete, A. Kröller, L.S. Kyou, J. McLurkin, C. Schmidt:

Triangulating Unknown Environments Using Robot Swarms,
Video and abstract. In: Proceedings of the 29th Annual ACM Symposium on Computational Geometry (SoCG 2013), 345-346.

James McLurkin
 SeoungKyou Lee

Alexander Kröller
 Christiane Schmidt

Part 3.2: Local Routing

Dual Routing

Dual Routing

Dual Routing

Note: The dual graph is stored implicitly in primal vertices!

Dual Routing

Dual Routing

Theorem 3.3: Consider a (ρ, α)-fat triangulation \mathcal{T} of a planar region \mathcal{R}, with vertex set V, maximum and minimum edge length $r_{\max }$ and $r_{\min }$, respectively. Let s, g be points in \mathcal{R} that are separated by at least one triangle, i.e., the triangles Δ_{s}, Δ_{g} in \mathcal{T} that contain s and g do not share a vertex. Let $p(s, g)$ be a shortest polygonal path in \mathcal{R} that connects s with g, and let $d_{p}(s, g)$ be its length. Let $p_{\mathcal{T}}(s, g)$ be a \mathcal{T}-greedy path between s and g, of length $d_{p_{\mathcal{T}}}(s, g)$. Then $d_{p_{\mathcal{T}}}(s, g) \leq c \cdot d_{p}(s, g)+2$, for $c=\left\lfloor\frac{2 \pi}{\alpha}\right\rfloor \frac{\rho}{\sin (\alpha / 2)}$, and $d_{p_{\mathcal{T}}}(s, g) \leq c^{\prime} \cdot d_{p}(s, g)$, for $c^{\prime}=\left\lfloor\frac{6 \pi}{\alpha}\right\rfloor \frac{\rho}{\sin (\alpha / 2)}$.

Dual Routing


```
conference
S. K. Lee, A. Becker, S.P. Fekete, A. Kröller, J. McLurkin:
Exploration via Structured Triangulation by a Multi-Robot System with Bearing-Only Low-Resolution Sensors,
NEW To appear in: 2014 IEEE International Conference on Robotics and Automation (ICRA 2014)
```

```
in \mathcal{R}}\mathrm{ that are separated by at least one triangle, i.e., the
triangles }\mp@subsup{\Delta}{s}{},\mp@subsup{\Delta}{g}{}\mathrm{ in }\mathcal{T}\mathrm{ that contain }s\mathrm{ and }g\mathrm{ do not share
a vertex. Let p(s,g) be a shortest polygonal path in \mathcal{R}}\mathrm{ that
connects s with g, and let d}\mp@subsup{d}{p}{}(s,g)\mathrm{ be its length. Let p
be a }\mathcal{T}\mathrm{ -greedy path between }s\mathrm{ and }g\mathrm{ , of length }\mp@subsup{d}{\mp@subsup{p}{\mathcal{T}}{}}{}(s,g)\mathrm{ .
Then }\mp@subsup{d}{\mp@subsup{p}{\mathcal{T}}{}}{}(s,g)\leqc\cdot\mp@subsup{d}{p}{}(s,g)+2\mathrm{ , for }c=\lfloor\frac{2\pi}{\alpha}\rfloor\frac{\rho}{\operatorname{sin}(\alpha/2)}\mathrm{ , and
d}\mp@subsup{d}{\mathcal{T}}{}(s,g)\leq\mp@subsup{c}{}{\prime}\cdot\mp@subsup{d}{p}{}(s,g),\mathrm{ for }\mp@subsup{c}{}{\prime}=\lfloor\frac{6\pi}{\alpha}\rfloor\frac{\rho}{\operatorname{sin}(\alpha/2)
```


Part 3.3: Local Patrolling Policies

Time Stamps in the Dual Graph

Time Stamps in the Dual Graph

Time Stamps in the Dual Graph

Numbers: Time of last visit

Least Recently Visited

Least Recently Visited

Least Recently Visited (LRV):
Move to vertex with oldest time stamp

Least Recently Visited

Least Recently Visited (LRV):
Move to vertex with oldest time stamp

Least Recently Visited

Least Recently Visited (LRV):
Move to vertex with oldest time stamp

Good news: LRV achieves full coverage.

Least Recently Visited

Least Recently Visited (LRV):
Move to vertex with oldest time stamp

Good news: LRV achieves full coverage.
Bad news: The coverage time of LRV can be exponentially large.

LRV: Experimental Results

LRV: Experimental Results

LRV: Experimental Results

LRV: Experimental Results

Part 4:
 Controlling Massive Particle Swarms

Moving Small Objects

Moving Small Objects

Moving Small Objects

Tetrahymena pyriformis

Moving Small Objects

Tetrahymena pyriformis

Moving Small Objects

Tetrahymena pyriformis

This Part

This Part

- Massive particle swarms
 - Global control, not individual motion

This Part

- Massive particle swarms
- Global control, not individual motion
- We show hardness for given, external obstacles

This Part

- Massive particle swarms
- Global control, not individual motion
- We show hardness for given, external obstacles
- We establish positive results for designed, additional obstacles

This Part

- Massive particle swarms
- Global control, not individual motion
- We show hardness for given, external obstacles
- We establish positive results for designed, additional obstacles
- Work in progress, combining theory and practice

This Part

- Massive particle swarms
- Global control, not individual motion
- We show hardness for given, external obstacles
- We establish positive results for designed, additional obstacles
- Work in progress, combining theory and practice

This Part

- Massive particle swarms

conference
A. Becker, E.D. Demaine, S.P. Fekete, G. Habibi, J. McLurkin:

Reconfiguring Massive Particle Swarms with Limited, Global Control, NEW In: ALGOSENSORS 2013, pp. 51-66, Springer LNCS 8343, 2014.

- We establish positive results for designed, additional obstacles - Work in progress, combining theory and practice

This Part

Massive particle swarms

conference
A. Becker, E.D. Demaine, S.P. Fekete, G. Habibi, J. McLurkin:

Reconfiguring Massive Particle Swarms with Limited, Global Control, NEW In: ALGOSENSORS 2013, pp. 51-66, Springer LNCS 8343, 2014.
conterence
A. Becker, E.D. Demaine, S.P. Fekete, J. McLurkin:

Particle Computation: Controlling Robot Swarms with only Global Signals, NEW To appear in: 2014 IEEE International Conference on Robotics and Automation (ICRA 2014)
combining theory and practice

Part 4.1: Why Obstacles Are a Nuisance

Obstacles as Opponents

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Obstacles as Opponents

- Targets may not be easy to reach.
- Motion planning gets quite tricky in parallel.

Cottonwood leaf vascular network

Complexity: Binary Variables

Complexity: Binary Variables

Complexity: Binary Variables

Complexity: Binary Variables

Choice: left or right? Independent choices?!

Complexity: Binary Variables

Choice: left or right? Independent choices?!

Complexity: Binary Variables

Choice: left or right? Independent choices?!

Complexity: Binary Variables

Choice: left or right?
Independent choices?!

Complexity: Binary Variables

Choice: left or right?
Independent choices?!

x_{2}
x_{3}
x_{4}

Complexity: Binary Variables

Choice: left or right?
Independent choices?!

x_{2}
x_{3}
x_{4}
Choice only matters when it is a variable's "turn"!

Complexity: Binary Variables

Complexity: Binary Variables

Minor detail: Avoid reversible choices!

Complexity: Clauses

Complexity: Clauses

Complexity: Truth Checking

Complexity: Truth Checking

Complexity: Overall Construction

$$
\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

Complexity: Overall Construction

$$
\begin{aligned}
& \left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \\
& \quad x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=1
\end{aligned}
$$

Complexity: Overall Construction

$$
\begin{aligned}
& \left(\neg x_{1} \vee \neg x_{3} \vee x_{4} \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) x_{3}\right) \\
& x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=1
\end{aligned}
$$

Complexity: Overall Construction

Complexity: Overall Construction

Complexity: Overall Construction

6

Complexity: Overall Construction

6 Technische
Universitat Technische
Universitit
Braunschweig

Complexity: Summary

Complexity: Summary

Theorem 1. GlobalControl-ManyParticles is NP-hard: given an initial configuration of movable particles and fixed obstacles, it is NP-hard to decide whether any particle can be moved to a specified location.

Part 4.2: Why Obstacles Are a Blessing

Life without Obstacles

Life without Obstacles

Life without Obstacles

Lack of obstacles can be harmful!

Life without Obstacles

Lack of obstacles can be harmful!

Life without Obstacles

Lack of obstacles can be harmful!

Life without Obstacles

Lack of obstacles can be harmful!

Life without Obstacles

Lack of obstacles can be harmful!

Life without Obstacles

Lack of obstacles can be harmful!

Life without Obstacles

Lack of obstacles can be harmful!

How Obstacles Can Be Helpful

How Obstacles Can Be Helpful

How Obstacles Can Be Helpful

How Obstacles Can Be Helpful

How Obstacles Can Be Helpful

How Obstacles Can Be Helpful

How Obstacles Can Be Helpful

More Obstacle Action!

More Obstacle Action!

More Obstacle Action!

More Obstacle Action!

More Obstacle Action!

More Obstacle Action!

Multiple Permutations

Multiple Permutations

Multiple Permutations

Multiple Permutations

Technische
Universität
Braunschweig

Multiple Permutations

Multiple Permutations

Theorem 3. For any set of k fixed, but arbitrary, permutations of $n \times n$ pixels, we can construct a set of $O(k N)$ obstacles, such that we can switch from a start arrangement into any of the k permutations using at most $O(\log k)$ force-field moves.

Technische
Universität
Braunschweig

[^0]
Designing Obstacles

Designing Obstacles

Designing Obstacles

Designing Obstacles

Designing Obstacles

CW: (12)

Designing Obstacles

CCW: (123456789)

Designing Obstacles

CCW: (123456789)

Designing Obstacles

Lemma 5. Any permutation of N objects can be generated by the two base permutations $p=(12)$ and $q=(12 \cdots N)$. Moreover, any permutation can be generated by a sequence of length at most N^{2} that consists of p and q.

CCW: (123456789)

Designing Obstacles

Lemma 5. Any permutation of N objects can be generated by the two base permutations $p=(12)$ and $q=(12 \cdots N)$. Moreover, any permutation can be generated by a sequence of length at most N^{2} that consists of p and q.

Theorem 6. We can construct a set of $O(N)$ obstacles such that any $n \times n$ arrangement of N pixels can be rearranged into any other $n \times n$ arrangement π of the same pixels, using at most $O\left(N^{2}\right)$ force-field moves.

CW: (12)

CCW: (123456789)

Designing Obstacles

Designing Obstacles

Lemma 7. Any permutation of N objects can be generated by the N base permutations $p_{1}=(12), p_{2}=$ (13), $\ldots, p_{N-1}=(1(N-1))$ and $q=(12 \cdots N)$. Moreover, any permutation can be generated by a sequence of length at most N that consists of the p_{i} and q.

Designing Obstacles

Lemma 7. Any permutation of N objects can be generated by the N base permutations $p_{1}=(12), p_{2}=$ (13), $\ldots, p_{N-1}=(1(N-1))$ and $q=(12 \cdots N)$. Moreover, any permutation can be generated by a sequence of length at most N that consists of the p_{i} and q.

Theorem 8. We can construct a set of $O\left(N^{2}\right)$ obstacles such that any $n \times n$ arrangement of N pixels can, be rearranged into any other $n \times n$ arrangement π of the same pixels, using at most $O(N \log N)$ force-field moves.

Designing Obstacles

Lemma 7. Any permutation of N objects can be generated by the N base permutations $p_{1}=(12), p_{2}=$ (13), $\ldots, p_{N-1}=(1(N-1))$ and $q=(12 \cdots N)$. Moreover, any permutation can be generated by a sequence of length at most N that consists of the p_{i} and q.

Theorem 8. We can construct a set of $O\left(N^{2}\right)$ obstacles such that any $n \times n$ arrangement of N pixels can be rearranged into any other $n \times n$ arrangement π of the same pixels, using at most $O(N \log N)$ force-field moves.

Theorem 9. Suppose we have a set of obstacles such that any permutation of an $n \times n$ arrangement of pixels can be achieved by at most M force-field moves. Then M is at least $\Omega(N \log N)$.

Proof. Each permutation must be achieved by a sequence of force-field moves. Because each decision for a force-field move $\{u, d, l, r\}$ partitions the remaining set of possible permutations into at most four different subsets, we need at least $\Omega(\log (N!))=\Omega(N \log N)$ such moves.

Breaking News: Moseali-ceapralexjity!

THE COMPLEXITY OF FINDING MINIMUM-LENGTH GENERATOR SEQUENCES

Mark R. JERRUM
Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)
Communicated by M.S. Paterson
Received July 1983
Revised May 1984

Abstract

The computational complexity of the following problem is investigated: Given a permutation group specified as a set of generators, and a single target permutation which is a member of the group, what is the shortest expression for the target permutation in terms of the generators? The general problem is demonstrated to be PSPACE-complete and, indeed, is shown to remain so even when the generator set is restricted to contain only two permutations. The restriction on generator set cardinality is the best possible, as the problem becomes soluble in polynomial time if the generator set contains only one permutation. An interesting feature of this problem is that it does not fall under the headings of 'two person games' or 'formal languages' which cover the great majority of known PSPACE-complete problems. Some restricted vercin-" of the oroblem.

THE COMPLEXITY OF FINDING MINIMUM-LENGTH GENERATOR SEQUENCES

Mark R. JERRUM
Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)

Communicated by M.S. Paterson
Received July 1983
Revised May 1984

Abstract. The computational complexity of the following problem is investigated: Given a permutation group specified as a set of generators, and a single target permutation which is a member of the group, what is the shortest expression for the target permutation in terms of the generators? The general problem is demonstrated to be PSPACE-complete and, indeed, is shown to remain so even when the generator set is restricted to contain only two permutations. The restriction on gencrater set cardinality is the best possible, as the problem becomes soluble in polventral time if the generator set contatur ondynanenarmutation Anintanetino fature of this problem is that it does not fall under the headings of 'two person games' or 'formal languages' which cover the great majority of known PSPACE-complete problems. Some restricted vercine of the oroblem.

THE COMPLEXITY OF FINDING MINIMUM-LENGTH GENERATOR SEQUENCES

Mark R. JERRUM
Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)

Communicated by M.S. Paterson
Received July 1983
Revised May 1984

Abstract. The computational complexity of the following problem is investigated: Given a permutation group specified as a set of generators, and a single target permutation which is a member of the group, what is the shortest expression for the target permutation in terms of the generators? The general problem is demonstrated to be PSPACE-complete and, indeed, is shown to remain so even when the generator set is restricted to contain only two permutations. The restriction on gencrater set cardinality is the best possible, as the problem becomes soluble in polventral time
 it does not fall under the headings of 'two person games' or 'formal languages' which cover the great majority of known PSPACE-complete problems. Some restricted vercine of the oroblem.

Part 4.3: A Real-World Demo!

Demo with Real Objects

Demo with Real Obiects

Demo with Real Obiects

Demo with Real Objects

Demo with Real Objects

Demo II

Demo II

Conclusions

Conclusions

- More work in theory and practice!

Thank you!

[^0]: Sándor P. Fekete | Online Robot Navigation | Online Algorithms 2022

