U.S. DEPMRTMERT OF COMMERCE Mational Technical Infumatiea Service

AD-A025 602

WORST-CASE ANALYSIS OF A NEW HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM

Carnegie-Mellon University

PREPARED FOR
Office of Naval Research

February 1976

Carnegie-Mellon University

PTITSMRGH, Pambrivana 13213

GRADUATE SCHOOL OF RNDUSTRLAL ADMNISTRATION
WHLIAM LARIMER MELION, FOUNTOER

MATIONAL TECHNICAL INFORMATION SERVICE
U. S. OEPARTMENT OF COMMERCE SPRINGFIELO, VA. 22161

Management Sciences Research Report Mo. 388

WORST-CASE AKALYSIS OF A YEN HEURISTIC
FOR TEE TRAVELIING SAIRSMAN PROBLEM
by

Nicos Christofides*

February 1976

Thi. research was prepared as part of the activities of the Management Sciences Research Group, Carnegie-Mellon University. Reproduction in whole or in part is permitted for any purpose of the U.S. Governmant.

Management Science Research Group
Carnegie-Mellon lisiversity
Plttsburgh, Pennsyivania 15213

ninont nocumentation Page	
6. TITLE (ONA Banter) Woret-Case Anlyais of a Neve Heuriatic For the Travelling Salesmen Problem	```3. TyPE Of meport & PEMOD CONTME, Technical Raport February }197```
	3. Performinc ond ricpont mumera
7. Authontas Nicos Christofides	
9. Wentonmino otionaization mame ano adomers Graduate School of Industrial Administration Carnegis-Mellon University Pitthhurgh. Pennsylyanis 15213	Anga anomemt nutrict
i. Contmalima officen name and adopess Personnel and Training Reaenrch Programs Office of Rnvel Ressarch (Code 434) Arlington, Virginia 22217	
	Unclassifiled

Approved for public release, distribution unilmited

15. SUPPLEMENTANY NOTES

Travelling salesman problem, computational complexity, bounds

An $O\left(n^{3}\right)$ heuristic algorithm is described for solving n-city traveling
ealesman problems (TSP) whose cost matrix satisfies the triangularity
condition. The algoritha involves as substeps the computation of a shortest
spanning tree of the graph G defining the TSP, and the finding of a minum
cost perfect matching of a certain induced subgraph of G. A worst-case
analysis of this heuristic shows that the ratio of the snswer obtaine to
the optimum TSP solution is strictly less than $3 / 2$. This represents a 50%
(oveiri)
reduction ower the vilue 2 which wes the reviously bett troom auch retio for the performace of other polynomal-gxinth sigorthem the the rix;

ABSTRACT

An $O\left(n^{3}\right)$ heuristic algorithm is described for solving p-city traveling salesman problems (TSP) whose cos matrix astiafics the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP, and the finding of minimum cost perfect matching of a certain induced subgizph of G. A worst-case analysis of this heuristic shows that the ratio of the answer obtained to the optimum TSP solution is strictly less than $3 / 2$. This represents a 50% reduction over the value 2 which was the previously beat in now such ratio for the performance of other polynomal-growth algorithms for the TSP.

1. InTRODUCTION

Heuristic algorithms with polynomial rater of growth in the number of variables can be used to provide approximate solutions to combinatorial problems. The question then arises as to what is the zorst possible ratio of the value of the answer obtained by che heuristic to the value of the optimum solution. We will denote this worst-case ratio by \mathbb{R}_{w}.

Values of R_{w} for the graph-coloring problem have beer investigated by Gary \& Johnson [4] who showed that finding a polynomial-growth graphcoloring algorithm with $\mathrm{R}_{\mathrm{w}}<2$ is just as hard as finding a polynomial algorithm for optimal coloring. For the loading (packing) problem $\{3,5]$ Johnson et al. described an algorithm with $R_{w} \leq 11 / 9$. Rosenkrantz, Stearins and Lev's investigate a variety of heuristics for the travelling salesmen problem. For the best of the algorithms investigated in [7], $R_{w} \rightarrow 2$ as n, the number of cities in the traveling salesman problem (TSP) - tends to 0 . In this paper we describe a heuristic algorithm with $O\left(n^{3}\right)$ growth rate and for which $R_{w}<3 / 2$ for all n . This represents an improvement of 50% over the previously best known value of R_{w} for the TSF.

2. THE MAIN RESULT

Consider the a-cicy TS? defined on the complete graph $G=(X, A)$ where X is the set of vertices and A is the set of links. Let the link cost matrix be $\left[c_{i j}\right]$ which satisfies the triangle inequality.

Let $T^{*}=\left(X, A_{* *}\right)$ be t.. shortest spanning tree (SST) of the graph G, and let $C\left(T^{*}\right)$ be the cost of T^{*}. Let:

$$
X^{0}\left(T^{*}\right)=\left\{x_{1} \mid d_{i}\left(r^{*}\right) \text { odd }\right\},
$$

enere $d_{1}\left(T^{*}\right)$ is the degree of vertex $x_{1} \in X$ with reapect to the tree T^{*}. The cardinality $\left|X^{0}\left(T^{*}\right)\right|$ of the set $X^{\circ}\left(T^{*}\right)$ is alway even [1].

Consider now the aubpraph $\left\langle\mathrm{X}^{0}\left(\mathrm{~T}^{*}\right)>\right.$ induced by the set X^{0} (T*) of vertices. Since $\left|X^{0}\left(T^{*}\right)\right|$ is quen, a perfect matcing in $<X^{0}\left(T^{*}\right)>$ alumy exista. A matching $£=$ celled "perfect" [1] if it contains exectly $1 / 2\left|X^{0}\left(T^{*}\right)\right|$ links. Let $M_{0}^{k}=\left(X^{0}\left(T^{*}\right), A_{N_{0}^{*}}\right)$ be the minjminn-cost perfect matching of $<X^{0}\left(T^{\star}\right)>$ and $C\left(7_{0}^{*}\right)$ be its cost.

We can now state the foliowing theorem:

Theorem 1.

A hamiltonian circuit ${ }_{H}$ of G can be found with cost $C\left(\Phi_{H}\right) \leq C\left(T^{*}\right)+C\left(M_{0}^{*}\right)<\frac{3}{2} C\left(\Phi^{*}\right)$ where $C\left(\Phi^{\star}\right)$ is the optimal value of the TSP tour ${ }^{2} \pm$.

In the proof of Theoreri 1 ve will make use of the following

Lemmas.

Letma 1.

For an n-city TSP with n even, we have $C\left(M^{*}\right) \leq \frac{1}{2} C\left(\Phi^{*} \pi\right)$, where w^{*} is the minimu-cost perfect matching of the graph G defining tine TSP and ${ }^{\text {an* }} 1$ 1s the optimal TSP tour.

Proof. Consider $i *=\left(x_{1_{1}}, x_{1_{2}}, \ldots, x_{1_{n}}\right)$. Starting from vertex $x_{1_{1}}$ and trevelling round the ciscuit $\Phi *$, allocate the linke traversed In an alternating manner to two sets M_{1} and M_{2}. Starting with M_{1}, for example:

$$
\begin{aligned}
& M_{1}=\left\{\left(x_{1_{1}}, x_{1_{2}}\right),\left(x_{1_{3}}, x_{1_{4}}\right), \ldots,\left(x_{1_{n-1}}, x_{1_{n}}\right)\right\} \\
& M_{2}=\left\{\left(x_{1_{2}}, x_{1_{3}}\right),\left(x_{1_{4}}, x_{1_{5}}\right), \ldots,\left(x_{1_{n}}, x_{1_{1}}\right)\right\}
\end{aligned}
$$

M_{1} and M_{2} are matchings of G and:

$$
C\left(M_{1}\right)+C\left(M_{2}\right)=C(*)
$$

Since ${ }_{H_{1}}$ and M_{2} are defined arbitrarily we can assume
$C\left(M_{1}\right) \leq C\left(M_{2}\right)$ whous loss of generality, and so we have:

$$
C\left(M^{*}\right) \leq C\left(M_{1}\right) \leq \frac{1}{2} C\left(\frac{1}{2} \star\right)
$$

Hence the Leame.

Froof. of Theorem 1

It is well known [2] that for a graph G

$$
\begin{equation*}
\mathrm{C}\left(\mathrm{~T}^{*}\right) \leq \mathrm{C}\left(\frac{\xi}{\mathrm{p}}\right)<\mathrm{C}(\Phi \star) \tag{1}
\end{equation*}
$$

where $\underset{p}{i s}$ is the sinortest hamiltonian path of G. (The last inequality becoming \leq if zero-cost links are allowed.)

The graph $G^{e}=\left(X, A_{T^{*}} \cup A_{M_{0}^{*}}\right)$ - which is E partial graph of $G-i s$ Eulerian, i.e., has all vertices of even degree, since Mom matching of ail odd degree vertices of $T *$. Hence G^{e} eontains an Eulerian circuit ${ }^{e}=\left(x_{i}, x_{f_{2}}, \ldots, x_{i_{k}}\right)$. Since \oint^{e} traverses all the linke of G^{e} it slso visits all the vertices $x_{1} \in X$ at least once. Let $\mathcal{C}\left(\Phi^{\text {e }}\right)$ be the cost of ${ }^{\text {e }}$, i.e.,

$$
\begin{equation*}
C\left(\Phi^{e}\right)=C\left(T^{*}\right)+C\left(\mu_{0}^{*}\right) \tag{2}
\end{equation*}
$$

If ${ }_{0}^{\alpha}$ is the TSP solution to the problem defined by the induced subgraph
 We Iomediateiy obtain

$$
\begin{equation*}
C\left(M_{0}^{*}\right) \leq \frac{1}{2} C(F *) \tag{3}
\end{equation*}
$$

Prom expresioxe (1), (2) asd (3) it followe that:

$$
\begin{equation*}
C\left(i^{c}\right)<\frac{3}{2} c(t *) \tag{4}
\end{equation*}
$$

Consider the travernal of f^{e} atarting from x_{1} up to the point when a vertex $X_{i_{r}}$ is reached which has been Finited previously - i.e., $x_{1}\left\{x_{1_{1}}, \ldots, x_{i_{r-1}}\right]$. Let $r_{i_{1}}$ be the firat vertex foilowing x_{i} is the sequence of ${ }^{e}$ wich has not beea previcualy fiaited and coasider the circuit ${ }_{1}=\left(x_{1_{1}}, \ldots, x_{1_{k-1}}, x_{1_{n}}, \ldots, x_{1_{k}}\right)$ derived frow by replacing the path $P_{r s}=\left(x_{1_{r-1}}, x_{1_{r}} \ldots, x_{i_{s-1}}, x_{1_{1}}\right)$ with the aingla link $\left(x_{i_{r-1}}, x_{1_{1}}\right)$. Becasse of the triaggularity condition we have:

$$
c_{r-1} i_{z} \leq \sum_{\left(x_{i}, x_{j}\right) \in P_{r z}} c_{i j}
$$

where $P_{r a}$ is also uscy as an unordered set of the links on the path $P_{r a}$. Hence we have $\mathrm{C}\left(\bar{S}^{\mathrm{e}}\right) \geq \mathrm{C}\left({ }_{1}\right)$.

In the same way, btarting with a traversal of ${ }_{1}$ a circuit ${ }_{2}$ can be produced with a path of ${ }_{1}$ replaced by a direct link and $c\left({ }_{1}\right) \geq c\left(1_{2}\right)$. Eventuelly a hamiloalan circuit ${ }^{\prime} \mathrm{G}$ of G will result with:

$$
C\left(\Phi_{H}\right) \leq \cdots \leq C\left(\Phi_{1}\right) \leq C\left(5^{e}\right)<\frac{3}{2} c\left(\delta^{*}\right)
$$

Heace the Theorem.
The algorithm implied by Theoren 1 conalsta of two perts: the calculation of an SST and finding is minimm-cost perfect matching. Sevarel $\operatorname{good} O\left(n^{2}\right)$ algorithas exiet for finding the SST of a graph [1]. The bert known algorithm for calculating ainimen methings is one developed by Lavler [6] and han growth race $O\left(n^{3}\right)$. The overall growth rate of the proposed algorithm 1 - tharefore $-0\left(n^{3}\right)$. (Note that the late atep of convertigg ${ }^{e}$ to hamiltonian circuit ${ }^{\text {in }}$, can be done in linear cerses.)
 Frese, Loadon, 1975.
[2] Carisioincs, h., "The shortast bondicoalan ebain of a grcph," gTM J. on Sppl. Math., 19, 1970, p. 689.
[3] stlom, S. and CEnisturides, M., "The loedime problsa," Man. Sci., 17, i971, p. 259.
[4] GADEY, M. R. and Jominson, D.S., "Tha compleadty of nat-optimi greph coloring," J. ACM, 1976, p.
 "Worst-case performace bounds for akeple 1-direnaionel pecking aiforition," SYMM J. on Coesp. , 3, 1974, p. 299.
[6] LAMISR, E., Combimatorial Optiaizatisa, (to be published).
 alearithme for the zravelling aleman problem," Proc. 15th Lisis 3ymorium or witching and automata theory, 1974, p. 33.

