

Netzwerkalgorithmen

Übung 5: Stabile Matchings und 3-dimensionale Matchings
Christian Rieck, 15. Juli 2021

WORST-CASE AKALYSIS OF A NEA HEORISTIC

 FOR TER TRAVELLIMG SAIESKAN PROBLEMby
Nicos Chiristofides*

ABSTRACT

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE

D. GALE* and L. S. SHAPLEY, Brown University and the RAND Corporation

1. Introduction. The problem with which we shall be concerned relates to the following typical situation: A college is considering a set of n applicants of which it can admit a quota of only q. Having evaluated their qualifications, the admissions office must decide which ones to admit. The procedure of offering admission only to the q best-qualified applicants will not generally be satisfactory, for it cannot be assumed that all who are offered admission will accept. Accordingly, in order for a college to receive q acceptances, it will generally have to offer to admit more than q applicants. The problem of determining how many and which ones to admit requires some rather involved guesswork. It may not be known (a) whether a given applicant has also applied elsewhere; if this is known it may not be known (b) how he ranks the colleges to which he has applied; even if this is known it will not be known (c) which of the other colleges will offer to admit him. A result of all this uncertainty is that colleges can expect only that the entering class will come reasonably close in numbers to the desired quota, and be reasonably close to the attainable optimum in quality.

An $O\left(n^{3}\right)$ heuristic algorithm is described for solving p-city travelling salesman problems (TSP) whose cosc matrix satisfics the triangularity condition. The algorithm invo? ves as substeps the computation of a shortest spanning tree of the graph G defining the TSP, and the finding of a minimum cost perfect matching of a certain induced subgisph of G. A worst-case analysis of this heuristic shows that the ratio of the answer obtained to the optimum TSP solution is strictly less than $3 / 2$. This represents a 50% reduction over the value 2 which was the previously best known such ratio for the performance of other polynomial-growth algorithms for the TSP.

Nobelpreis

Nobelpreis

Fields-Medaille

Nobelpreis
Physik,
Chemie,
Medizin,
Literatur,
Frieden.

Fields-Medaille

Nobelpreis
Physik,
Chemie,
Medizin,
Literatur,
Frieden.

Fields-Medaille
Mathematik!

Nobelpreis
Physik,
Chemie,
Medizin,
Literatur,
Frieden.
(+ Wirtschaft)

Fields-Medaille
Mathematik!

Nobelpreis

Wirtschaft

Nobelpreis
Wirtschaft

Nobelpreis

Wirtschaft

Nobelpreis

Wirtschaft

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 was awarded jointly to Alvin E. Roth and Lloyd S. Shapley „for the theory of stable allocations and the practice of market design."

Nobelpreis

Alvin E. Roth

Wirtschaft

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 was awarded jointly to Alvin E. Roth and Lloyd S. Shapley „for the theory of stable allocations and the practice of market design."
https://www.nobelprize.org/prizes/economic-sciences/2012/summary/

Sally
Peppermint
Lucy
Marcie

Charlie

3/2-Approximation für das metrische TSP?

3/2-Approximation für das metrische TSP?

3/2-Approximation für das metrische TSP?

(...there is not even a wikipedia article on Nicos Christofides...)

A (Slightly) Improved Approximation Algorithm for Metric TSP

Anna R. Karlin, Nathan Klein, \dagger and Shayan Oveis Gharan ${ }^{\ddagger}$
University of Washington

September 1, 2020

Abstract

For some $\epsilon>10^{-36}$ we give a $3 / 2-\epsilon$ approximation algorithm for metric TSP.

https://arxiv.org/pdf/2007.01409.pdf

