Summer 2021

Algorithms Department Department of Computer Science - IBR TU Braunschweig

Prof. Dr. Sándor P. Fekete Dr. Phillip Keldenich Dominik Krupke

Approximation Algorithms Exercise 5 June 16, 2021

Please hand in your solutions until June 30, 11:30 am by e-mail to keldenich@ibr.cs.tu-bs.de.

Exercise 1 (TSP on Graphs):

In the lecture, we generally considered the TSP on complete graphs. In other words, in the context of the lecture, it was always possible to directly move from any city u to any other city v without visiting any other city in between. Thus, it was always clear that a tour exists.

In this exercise, we consider the Traveling Salesman Problem on weighted graphs (Graph TSP), where tours do not necessarily exist. We are given an n-vertex graph G = (V, E) with non-negative edge costs $c(e) : E \to \mathbb{R}_{\geq 0}$ and have to compute a tour, i.e., a sequence $v_1v_2 \ldots v_nv_{n+1}$ of vertices that contains all n vertices, such that $v_{n+1} = v_1$ and $v_iv_{i+1} \in E$ for all i and the sum of all edge weights $c(v_iv_{i+1})$ is minimized.

Reduce Graph TSP to the TSP on complete graphs shown in the lecture, i.e., efficiently transform an instance I of Graph TSP to an instance J of the TSP such that you can transform the optimal solution of J to an optimal solution of I or decide that no such solution exists in polynomial time. (5 P.)

Exercise 2 (TSP: Hardness and Inapproximability):

In the previous exercise, we have seen that the TSP is still hard even if the existence of a tour is guaranteed and finding a valid tour is trivial. Graph TSP is also still hard if all edge weights are set to c(e) = 1; the problem is then also known as Hamiltonian Cycle.

In this exercise, we consider the other assumption that we made in the lecture: we assumed that the edge weights satisfy the triangle inequality, i.e., that for any three vertices u, v, w, we have $c(uv) + c(vw) \ge c(uw)$. TSP on complete graphs with this additional restriction is also called METRIC TSP.

- (a) Show that the edge weights of any complete graph that only uses edge weights 1 and 2 satisfy the triangle inequality.
- (b) By a reduction from Hamiltonian Cycle, show that the TSP is still NP-hard on complete graphs with edge weights that satisfy the triangle inequality.

(c) Let $f(n): \mathbb{N} \to \mathbb{Q}$ be any polynomial-time computable function (this also implies that the output of f(n) can be encoded in poly(n) bits). Assuming $P \neq NP$, show that there is no polynomial-time f(n)-approximation algorithm for the TSP on complete graphs that do not have to satisfy the triangle inequality.

(3+4+8 P.)

Exercise 3 (TSP: Christofides' Algorithm):

In the lecture, we sketched a $\frac{3}{2}$ -approximation algorithm for METRIC TSP due to Christofides. The algorithm computes an MST on V and a minimum-cost perfect matching M on the (even number of) vertices with odd degree in that MST. It then adds the matching edges to the MST, resulting in a Eulerian graph U, computes a Eulerian walk on U and constructs a tour by skipping repeated vertices in that walk using the triangle inequality. We claimed that the total edge weight of U was at most $\frac{3}{2}$ OPT, where OPT denotes the weight of an optimal tour. In particular, we claimed that the weight of M is at most $\frac{1}{2}$ OPT.

- (a) Let G = (V, E) be a graph with non-negative edge weights satisfying the triangle inequality. Prove or disprove: For any $V' \subseteq V$ with evenly many vertices, the cost of a minimum-cost perfect matching on V' is upper-bounded by the cost of a minimum-cost perfect matching on V.
- (b) Prove: For any $V' \subseteq V$ with evenly many vertices, the cost of a minimum-cost perfect matching on V' is at most half the cost of an optimal tour on V.

(3+7 P.)