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Exercise 1 (TSP on Graphs):
In the lecture, we generally considered the TSP on complete graphs. In other words, in
the context of the lecture, it was always possible to directly move from any city u to any
other city v without visiting any other city in between. Thus, it was always clear that a
tour exists.
In this exercise, we consider the Traveling Salesman Problem on weighted graphs (Graph
TSP), where tours do not necessarily exist. We are given an n-vertex graph G = (V,E)
with non-negative edge costs c(e) : E → R≥0 and have to compute a tour, i.e., a sequence
v1v2 . . . vnvn+1 of vertices that contains all n vertices, such that vn+1 = v1 and vivi+1 ∈ E
for all i and the sum of all edge weights c(vivi+1) is minimized.
Reduce Graph TSP to the TSP on complete graphs shown in the lecture, i.e., efficiently
transform an instance I of Graph TSP to an instance J of the TSP such that you can
transform the optimal solution of J to an optimal solution of I or decide that no such
solution exists in polynomial time. (5 P.)

Exercise 2 (TSP: Hardness and Inapproximability):
In the previous exercise, we have seen that the TSP is still hard even if the existence of
a tour is guaranteed and finding a valid tour is trivial. Graph TSP is also still hard if
all edge weights are set to c(e) = 1; the problem is then also known as Hamiltonian
Cycle.
In this exercise, we consider the other assumption that we made in the lecture: we assumed
that the edge weights satisfy the triangle inequality, i.e., that for any three vertices u, v, w,
we have c(uv) + c(vw) ≥ c(uw). TSP on complete graphs with this additional restriction
is also called Metric TSP.

(a) Show that the edge weights of any complete graph that only uses edge weights 1
and 2 satisfy the triangle inequality.

(b) By a reduction from Hamiltonian Cycle, show that the TSP is still NP-hard on
complete graphs with edge weights that satisfy the triangle inequality.



(c) Let f(n) : N → Q be any polynomial-time computable function (this also implies
that the output of f(n) can be encoded in poly(n) bits). Assuming P 6= NP, show
that there is no polynomial-time f(n)-approximation algorithm for the TSP on
complete graphs that do not have to satisfy the triangle inequality.

(3+4+8 P.)

Exercise 3 (TSP: Christofides’ Algorithm):
In the lecture, we sketched a 3

2
-approximation algorithm for Metric TSP due to Chri-

stofides. The algorithm computes an MST on V and a minimum-cost perfect matching M
on the (even number of) vertices with odd degree in that MST. It then adds the matching
edges to the MST, resulting in a Eulerian graph U , computes a Eulerian walk on U and
constructs a tour by skipping repeated vertices in that walk using the triangle inequality.
We claimed that the total edge weight of U was at most 3

2
OPT, where OPT denotes

the weight of an optimal tour. In particular, we claimed that the weight of M is at most
1
2

OPT.

(a) Let G = (V,E) be a graph with non-negative edge weights satisfying the triangle
inequality. Prove or disprove: For any V ′ ⊆ V with evenly many vertices, the
cost of a minimum-cost perfect matching on V ′ is upper-bounded by the cost of a
minimum-cost perfect matching on V .

(b) Prove: For any V ′ ⊆ V with evenly many vertices, the cost of a minimum-cost
perfect matching on V ′ is at most half the cost of an optimal tour on V .

(3+7 P.)
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