Algorithms Department Department of Computer Science - IBR TU Braunschweig

Prof. Dr. Sándor P. Fekete Dr. Phillip Keldenich Dominik Krupke

Approximation Algorithms Exercise 4 June 2, 2021

Please hand in your solutions until June 16, 11:30 am by e-mail to keldenich@ibr.cs.tu-bs.de.

Exercise 1 (Covering PTAS):

In the lecture you have seen a PTAS for packing 2×2 squares into a polyomino. Provide a PTAS for covering a polyomino by 2×2 squares and prove its correctness. You can simply adapt the packing PTAS. (20 P.)

Exercise 2 (Greedy Packing of Squares into a Polyomino):

Consider an algorithm that packs $k \times k$ -squares into a polyomino in a greedy fashion by simply packing a square as high and as far to the left as possible, until no further square can be packed. Show that this algorithm is a $\frac{1}{4}$ -approximation algorithm for packing the maximum number of $k \times k$ -squares into a polyomino. (10 P.)