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Some NP-Hard Optimization Problems 
in Geometry

• TSP. vehicle routing  variants
• Watchman routes
• Min-Weight Convex Partition
• MACS: Maximum Area Connected Subset
• MIS: Maximum Independent Set 
• …

Goal: Exploit geometric structure to get efficient, provable 
approximation algorithms



Introduction

• Sampling of optimization problems:
• Optimal routes/networks to visit regions

• Optimization of routes for vision/coverage

• Aspects of current interest:
• Uncertainty, robustness of solutions

• Handling time constraints

• Motivating applications:
• Robotics

• Sensor networks

• Vehicle routing, logistics



Cooperative Heterogeneous Vehicle Mission Planning

• Vehicles:  various classes (ground, air, sea), speeds, 
capacities, capabilities

• Targets: points, regions; mission task times; 
precedence constraints

• Constraints: domains of operation; tethers 
(distance); rendezvous requirements, formations

• Tactical vs strategic; online vs offline

Motivating applications: search and rescue; casualty/disaster response; surveillance; mosaic 
battlefield 



• Drone (UAV) picks up a payload from a truck, which continues on its route, and 
after a successful delivery, the drone returns to the truck to pick up the next 
payload

• Truck is an “aircraft carrier”; does not stop at targets

• Computing the most efficient routes is challenging because we have to coordinate 
both vehicles simultaneously

• For a fixed target sequence, the problem is a Second Order Cone Program (SOCP)

• For a fixed truck route, the problem is a challenging geometric scheduling problem

• We studied also generalizations to mutli-trucks, multi-drones

“Horsefly”: Drone-Assisted Mission Planning (DAMP)





Missions for Agents, UAVs
Types of mission tasks: 
• Visit target site (point) p
• Visit (any point) of target region R

• Possible constraint: Mission time (minimum) 
within R

• View a target (point/region) T: visit any 
point that is visible to T       “watchman 
route problem”

• Sweep a target region (recon, search), W

W

T

R

p

[Jia, Mitchell, 2019:  TSPN with time lower bounds.    
PTAS, dual approximation algorithms]



Approximation Algorithms

For a minimization problem, seek an upper bound on the 
ratio

α=(worst-case bound given by ALG)/ OPT

α-approximation

Possibly, α=α(n) depends on n, the size of the input

PTAS: For any fixed eps>0, there is a polytime algorithm 
achieving (1+eps)-approximation

(EPTAS, FPTAS,QPTAS)



Approximation Techniques

• Solve an easier problem, and use it to solve the 
hard problem, approximately

• Linear Programming relaxation of an Integer 
Program; Semi-Definite Programming

• Grid shifting, quadtrees; m-guillotine method

• Approximating subsets; “core sets”

• Local search



Geometric Covering Tours, TSP



Covering Tours

• Cover a point set S

Just geometric TSP



Covering Tours
• Cover a set of disks

TSP with (circular) neighborhoods

•Gather data from sensors
•Cover imprecise points
•School bus route



Lawnmower/Milling Problem

Best method of 
mowing the lawn?

TSPN: Visit the disk 
centered at each blade 
of grass

[AFM]



Pocket Machining
[Martin Held]



Covering Tours
• Cover a set of visibility polygons

Watchman Route Problem

Search for location of an 
uncertain target: Want 
shortest such route



WRP Approximation

 Simple polygons:
• Sqrt(2)-approx, O(n), for anchored [Tan, DAM 2004]

• 14(p+4)=99.98-approx, O(n log n), for floating [Carlsson, 
Jonsson, Nilsson, TR 1997]

• 2-approx, O(n), for floating [Tan, TCS 2007]

• 4-approx, O(n2), for min-link [Alsuwaiyel, Lee, IPL 1995]

 Polygons with holes?
• O(log n)-approx, rectilinear, rectangle-visibility

 WRP in 3D: No constant-factor, unless P=NP
[Safra, Schwartz 2003]

SODA’13: O(log2 n), (log n)

(log n), even for terrains



Variants

• k Agents/Tours
– Possibly tethered, or otherwise constrained

• Depot(s) 
• Offline vs online
• Time windows/constraints
• Sites in motion (kinetic variant)
• Uncertain sites: Stochastic models
• Precedence constraints
• Priorities, “prizes” at sites
• Various objectives, multicriteria optimization

“tethered TSP”

e.g., must see each point for time at 
least T; min makespan



Objective Functions

• Min-length of tour  (time to complete search)
– Euclidean, Lp, weighted lengths

• Optimize edge lengths: min-max (bottleneck), 
max-min (max-scatter)

• Min turning: # turns, total turn, bounded 
curvature

• k Tours: min-max, min-sum; min-k for tours of 
bounded length

• Min-latency
• Stochastic metrics: e.g., max P(tour length < L), or 

min E(time until a goal is achieved)
• Combined metrics, multicriteria



Application: Mobile Agents to Gather 
Data from Static Sensors

• What does it mean to “gather”?

– Arrive at a sensor (point)

TSP



Mobile Agents to Gather Data from 
Static Sensors

• What does it mean to “gather”?

– Arrive at a sensor (point)

– Arrive close to a sensor

TSP with neighborhoods



Mobile Agents to Gather Data from 
Static Sensors

• What does it mean to “gather”?

– Arrive at a sensor (point)

– Arrive close to a sensor

– See a sensor

• Unlimited sight distance

Watchman route



Mobile Agents to Gather Data from 
Static Sensors

• What does it mean to “gather”?

– Arrive at a sensor (point)

– Arrive close to a sensor

– See a sensor

• Unlimited sight distance

• Limited sight distance



Data Gathering Problem

Each sensor, at position pi, has a capacity, ci

Data arrives at rate ri

If capacity is reached, additional data is lost

[Citovsky,Gao,M,Zeng, ALGOSENSORS 2015]



Given 𝑘 mules travelling at a constant speed 𝑠 and 
𝑛 sensors at points {𝑝1, 𝑝2, … , 𝑝𝑛} in a metric 
space with capacities {𝑐1, 𝑐2, … , 𝑐𝑛} and 
continuous data accumulation rates {𝑟1, 𝑟2, … , 𝑟𝑛}.

Goal: Find a schedule/tours to maximize the data 
collection rate of all of the mules.

Data Gathering Problem

Each sensor, at position pi, has a capacity, ci

Data arrives at rate ri

If capacity is reached, additional data is lost



Given 𝑛 sensors at points {𝑝1, 𝑝2, … , 𝑝𝑛} in a 
metric space with capacities {𝑐1, 𝑐2, … , 𝑐𝑛} and 
data accumulation rates {𝑟1, 𝑟2, … , 𝑟𝑛}.

Goal: Find the min # mules and their schedules 
such that no data is lost.

No Data Loss Problem: Min # of Mules



Our Results

With Sensors Single Mule K-mule No Data Loss

on a Line exact 1
3

exact

on a Tree
exact pseudo-

polynomial 1

3
1 − Τ1 𝑒

1
2+ε

12
General Metric

Space

1
6− ε

Euclidean Space 1
3
− ε 1

3
1 − Τ1 𝑒1−ε

Different 

Capacities
𝑂( 1𝑚) 𝑂(𝑚)

𝑚 = log(𝑐𝑚𝑎𝑥
𝑐𝑚𝑖𝑛

), 𝑐𝑚𝑎𝑥 = largest capacity, 𝑐𝑚𝑖𝑛 = smallest capacity

(OPT is periodic if we assume integral capacities, rates, distances)



Orienteering Problem:  Tour length quota, L

Prize-Collecting TSP:  Prize quota (possible costs for 
skipping sites)

Profitable Tour Problem:  max (Prize - Tour length)

TSP with Time Windows

Related: Variations of TSP



Orienteering

Given n sites S={p1, p2,…,pn}; length bound L.

Goal: Find a path/tour of length ≤L to Max # of 
sites visited

Data gathering: maximize the collected data rate

Length L O(1)-approx [AMN, SoCG’98]

PTAS, for rooted case, based 
on improved analysis of m-
guillotine method for k-TSP     
[CH, SoCG’06]

Q: O(n log n)?

Improved PTAS [GKR 2020]: 



TSP/Orienteering with Time Windows
Given n sites S={p1, p2,…,pn}, each with a time 
window, (ri,di); length bound L.

Goal: Find a path/tour to Max # of sites visited 
during their respective time windows

ri=release time at pi 

di=deadline at pi

Laxity = mini (di-ri)
Possible service time, ti, at pi; 
assume ti=0.



Time-Window TSP

• Time Window Prize Collecting (TWPC): 

Unit speed robot;  must visit each site i during given 
time window, (ri , di). 

Goal: max # sites visited (or total “prize”)

• Time Window Travelling Salesman (TWTSP):

Robot with speed s; must visit each site i during given 
time window, (ri , di). 

Goal: min distance robot travels to visit all sites (in TW)

(may not be feasible for small s)

(often called “TWTSP”)

[WAFR 2016, Jie Gao, Su Jia, M]



Time-Window TSP

Various results, including:

Dual-approximation algorithms for 2D and metric spaces, 
yielding approx opt solution, using relaxed speed 
constraint

[WAFR 2016, Jie Gao, Su Jia, M]





m-Guillotine Method Revisited



Traveling Salesperson Problem: TSP
• In Euclidean plane: Find a cycle (polygonal) to visit n 

points, S, that has the shortest Euclidean length

• Necessarily: it will be a simple polygon with vertex 
set S  (Why? Triangle inequality!)



TSP

• Extremely well studied combinatorial 
optimization problem

• Many methods to solve to optimality (in 
worst-case exponential time) or near 
optimality

• NP-hard, even in Euclidean 2D

49 cities, 1954



Approximating TSP



Recent News: 
Breaking Below 1.5

https://arxiv.org/pdf/2007.01409.pdf

1.499999999999999999999999999999999999-approximation!

https://arxiv.org/pdf/2007.01409.pdf


Can Geometry Help?



PTAS for Geometric TSP

 PTAS in 2D, any fixed dim

 O(n log n): spanners/banyons

 NP-hard to get (1+e)-approx in RO(log n) , 
for some e>0

[Ar’96,M’96,Ar’97,M’97]

[Rao-Smith’98]

[Tr’97]



Recipe for PTAS

OPT Network with special
recursive structure

increasing length by 
 (1+e) factor

Use dynamic programming to compute shortest network with the required 
structure (connectivity, Eulerian subgraph, etc)

Optimal network with 
special structure

Structure Theorem

What should the special recursive structure be?

Solution to original
problem (tour, tree, etc)



Recipe for PTAS

OPT Spanner with special
recursive structure

increasing length by 
 (1+e) factor

Use dynamic programming to compute shortest subgraph of special spanner 
with the required structure (connectivity, Eulerian subgraph, etc)

Optimal subgraph with 
special structure

Structure Theorem

What should the special recursive structure be?

Solution to original
problem (tour, tree, etc)

Spanner

The Role of Spanners: [Rao-Smith]



m-Guillotine Structure

Network edge set E is m-guillotine if it can be recursively partitioned by 
horiz/vertical cuts, each having small (O(m)) complexity wrt E

Example:  3-guillotine
Each cut intersects E in at most 3 connected components

One Possibility:



Why m-Guillotine?
Desired Recursive Structure

Constant 
(O(m))

information 
flow across 
boundary

Rectangular subproblem in dynamic program (recursion)

It is “just” what is needed for dynamic programming to work!

















m-Guillotine Structure Theorem
Any set E of edges of length L can be made to be  
m-guillotine by adding length  O(L/m) to E, for any 
positive integer m.

Proof: Based on a charging scheme.

While this “scribble” may not 

be m-guillotine, it is “close”

in that it can be made m-guillotine

by adding only (1/m)th of its length 



Possible Vertical Cuts

f(x)

x
f(x) = length of m-bridge   (m=3)

= cost of construction



Paying for the Bridge Construction: 
The Chargeable Length

h(x) = chargeable length
x

Blue portion: “m-dark”

NOTE: After cut, charged lengths never charged again

h(x)/2 charged to 
the right (left 
sides of m levels)

h(x)/2 charged to 
the left (right 
sides of m levels)

Level 1
Level 2
Level m=3



Key Lemma

 There exists a cut whose chargeable 
length is ≥ its cost (length of m-span)

There exists a “favorable cut”



WLOG:   RED area  ≥   BLUE area

Thus, there exists a y* such that 
m-dark portion of cut y=y* ≥   g(y) = cost of cut = m-span

y*

Chargeable Length Cost of Cut≥

Key Lemma: A cut exists with chargeable 
length ≥ cost (length of m-span)



A Simple O(n log n) PTAS
 Build (1+e)-spanner, G, of n points O(n log n)

 Compute m-guillotine version, Gm O(n log n)

• Associated (balanced) tree, T(Gm)

1

1

2 3

2

3
4 5

4

5

6

6

7

8

9

7 8

9

(1+e)-spanner, G, of weight O(|MST|)

Points  S Tree  T(Gm)

[Rao-Smith]



A Simple O(n log n) PTAS
 Build (1+e)-spanner, G, of n points O(n log n)

 Compute m-guillotine version, Gm O(n log n)
• Associated (balanced) tree, T(Gm)

 DP: Min-weight spanning subgraph of Gm
• O(n) Subproblems: nodes of T(Gm), plus O(1) info

1
2

21

1

Specify which subset of the O(m) 
boundary segs of Gm OPT should use 
and how many times (1 or 2) it uses it

OPT can be moved onto spanner G (factor (1+e)), 
which is subgraph of Gm

– |OPTG| ≤ (1+e)|OPT|

Sum of bridge lengths added: 

|bridges| = O(e |G|)=O(e |MST|)=O(e |OPT|)

Algorithm computes OPTG m

|OPTG m
| ≤  |OPTG| + |bridges|

≤ (1+e)|OPT| + O(e |OPT|)

(2O(m))



Higher Dimensions

 m-guillotine applies:



View of a Slice

Cross section orthogonal to  xi

Graph Gi(xi) = green   magenta edges



View of a Slice

Cross section orthogonal to  xi

Graph Gi(xi) = green   magenta edges
= union of disjoint green/magenta paths



View of a Slice

Cross section orthogonal to  xi

m-deep green edges



View of a Slice

Cross section orthogonal to  xi

m-deep (m=3) green edges

Similarly define m-deep 
magenta edges. 

Gi
(m) (xi) = all m-deep edges

Claim: The m-deep graph, 
Gi

(m)(xi), has O(md-1) 
connected components



m-Guillotine in Rd

 “Cost” of cut orthogonal at xi = length of 
the m-deep edge set = fi(xi)=|Gi

(m)(xi)|
• Integrate wrt xi = Areai (of 2-manifold Mi)

 “Chargeable” length of cut =  σ𝑗≠𝑖 ℎ𝑗 𝑥𝑖 , 
where ℎ𝑗 𝑥𝑖 = length of the xi–cross-
section of Mj

 Lemma: If Areai = minj(Areaj), then there 

exists 𝑥𝑖
∗

with fi (xi
*) ≤ 1/(d-1) σ𝑗≠𝑖 ℎ𝑗(xi

*) 

i.e., there exists a favorable cut



m-Guillotine in Rd

 Each unit of edge length parallel to xj gets 
charged at most (d-1) times, each time 
with 1/m(d-1) of its length (and will not be 
charged again after the cut)



Other Metrics
 General metric TSP: APX-hard

 Bounded intrinsic (doubling) dimension:

• Talwar’04: QPTAS

• Bartal-Gottlieb-Krauthgamer’12: PTAS

Doubling dimension k=ddim(S) of finite metric space S: Every ball of radius 
r can be covered by 2k balls of radius r/2



Many Applications

 Optimal paths, tours, trees

 Min weight networks

 Optimal partitioning

 Packing problems, MIS

 Covering problems (disk cover, guarding, 
jamming)

 Facility location, relay placement

 Optimal separation

 Robot localization



Protective Jamming
“Guards” provide jamming: protect from 
eavesdroppers

[Sankararaman,Abu-Affash,Efrat,Eriksson-
Bique,Polishchuk,Ramasubramanian,Segal MobiHoc 2012]



Protective Jamming

[S. Sankararaman, E. Arkin, Y. Cassuto, A. Efrat, J. Mitchell, M. Segal, 2014]



[Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and Nabil Mustafa, APPROX 2019]

MACS: Maximum Area Connected Subset



[Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and Nabil 
Mustafa, APPROX 2019]



[Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and Nabil 
Mustafa, APPROX 2019]











Application: Min-Weight Convex 
Subdivision
• Given a set 𝑆 of 𝑛 points in 2D

• Goal: An embedded planar graph 𝐺 = (𝑉, 𝐸) with 
straight edges (𝐸), convex faces, and 𝑆 ⊆ 𝑉, having 
minimum total Euclidean length of edge set 𝐸.

Input Output



PTAS

• Structure Thm implies OPT can be transformed to 
be m-guillotine, increasing length by factor 1 + 𝜖 , 
adding Steiner points.

• Algorithm: DP, searching for min-weight m-
guillotine convex subdivision

Subproblem:



Maximum Independent Set (MIS)

Best known polytime approx factor:  O(n/log2 n)  [Boppana-Halldórsson]

No polytime algorithm with approx n1- for >0, unless P=NP
PTAS in planar graphs

[Zuckerman]



Geometric Instances of MIS

• Graph G given by intersection graph of objects
• Disks, squares, fat regions

• Pseudodisks

• Rectangles (MISR)

• Polygons

• General connected sets, with various assumptions

• Outerstring graphs

• etc



A Basic Geometry Problem

Maximum Independent Set (MIS):

Given a set S of bodies in the plane.

Find a max-cardinality subset, S*, that is 
pairwise-disjoint.



MIS=Most Efficient Social Distancing



MIS=Most Efficient Social Distancing





Special Case: S = { unit squares }

|S| = 13

PTASs known:  [Chan’03, EJS’05]



Special Case: S = { unit squares }

|S*| = 7

PTASs known:  [Chan’03, EJS’05]



Maximum Independent Set: Unit Disks

• Consider an OPT set of (disjoint) unit disks

• The boundaries of these disks give a network (1-net)

• m-guillotine structure Thm: can make network m-
guillotine, adding (red) length O(1/m)*|OPT|

Give up the disks 
stabbed by the red 
m-spans: At most 
O(1/m) of disks 
are given up.



Subproblem
Only O(m) disks specified crossing boundary of 
rectangle R.
Optimize over cuts, choices of O(m) disks crossing cut

Time nO(m)







Key Idea
• Rectangles that are cut should be “paid for”

• But, we cannot assume there is a newly 
exposed rectangle/vertex when we cross a 
rectangle:



Approximations
• Disks, fat regions: PTAS

• Rectangles: MISR
– QPTAS

• npoly((log n )/ε) [Adamaszek, Har-Peled, and Wiese]

• nO( ((loglog n)/ε)  ) [Chuzhoy and Ene]

– PTAS for “long” rectangles [Adamaszek, Har-Peled, and Wiese]

– Polytime: O(loglog n)-approx [Chalermsook, Chuzhoy]

– Parameterized Approximation Scheme: 

For any k, ε, in time f(k, ε)ng(ε) either gives indep subset of 
≥k/(1+ ε), or declares OPT<k 

– Here: O(1)-Approx in polytime

4

(1-ε)-approx, for any ε>0, in polytime

[Grandoni,Kratsch,Wiese,2019]

(1- ε)-approx in 𝑛𝑂(1/𝜀
𝑑−1) [Chan]

Also: PTAS for pseudodisks [Chan, Har-Peled]

Rectangles are neither fat nor pseudodisks!



MISR: One Approach
• Show that any set of disjoint rectangles (e.g., 

the rectangles of OPT) has a constant fraction 
subset that has a perfect BSP

[Pach-Tardos Conjecture]



Main Ideas
• Use more general cuts to get O(1) complexity 

pieces – “CCRs”

• Use K-ary cutting instead of just binary

• Charging scheme to prove a structural 
theorem: Can afford to discard a constant 
fraction of input rectangles, to enable a 
“nearly perfect CCR-partition”

• DP to optimize 

K≤5



Corner Clipped Rectangles

CCR



Maximal Rectangles

• Transform any set I of k disjoint rectangles 
into a set I’ of maximal disjoint rectangles

Will show that I’ 
has a constant-
fraction subset for 
which there is a 
“nearly perfect 
CCR-partition” wrt
the subset



Rectangle Maximal Expansions



Rectangle Maximal Expansions



Rectangle Maximal Expansions



Rectangle Maximal Expansions



Rectangle Maximal Expansions



Rectangle Maximal Expansions



Nesting Among Maximal Rectangles

Def: A rectangle R is nesting
to its left/right/top/bottom 
if its corresponding side is 
contained in the interior of 
an abutting rectangle’s side 
(or the side of the BB, B)

R1

R2

R3

Example:
R1 is horiz nested (red)
R2 is vert nested (blue)
R3 is not nested in any direction

R



Why Maximality Is Useful

Note that the claim is not true 
without maximality:



Why Nesting Concept Is Useful

If R is not nested on at least one side, there is 
hope to be able to “charge” R to a corner, c, 
when a cut segment crosses R

R
c

cut



CCR-Partitions

• Recursive partitioning of the BB, B, of input

• Each face Q is a CCR  

• A cut, consisting of O(1) hor/vert segments 
partitions Q into at most 5 subfaces (CCRs)

• A CCR-partition is perfect wrt input rectangles 
if no rectangle is penetrated by a cut segment, 
each leaf face has exactly 1 input rectangle

• Nearly perfect CCR-partition: each cut segment 
penetrates at most 2 input rectangles, each 
leaf face has ≤1 input rectangle



K-ary Cuts



CCR Partition



Nearly Perfect CCR Partition



The Structure Theorem

More carefully: at least k/3



The Algorithm: DP Subproblem

Subproblem S=(Q,IS), 
where IS is a set of 
“special” (specified) 
rectangles, at most 2 
per vertical side of the 
CCR face Q. 

Q



Dynamic Program

• Optimize over K-ary cuts (K≤5) for a CCR 
subproblem, S, to compute f(S), the max 
cardinality of an indep subset of input rectangles 
for which there is a nearly perfect CCR-partition

Here, 𝐼𝜒 is the set of rectangles (at most 2 per vertical segment of χ) that are penetrated by 

vertical cut segments and become special rectangles specified for the new subproblems, and 
𝛾 𝒮 is the set of all eligible K-ary CCR-cuts

Crudely counted: time is O(n34)



Proof of the Structure Theorem

• Let I = {R1, R2, …, Rk} be an OPT set 

• Let I’ = maximal expansions of I

• I’ = Ih  Iv  I0 (partition)

– Ih = red (nested horiz)

– Iv = blue (nested vert)

– I0 = gray (not nested)

• WLOG: |Ih| ≤ k/2

• # Non-red rectangles ≥ k/2



Proof of the Structure Theorem

• Goal: Keep a subset of Ω(k) rectangles of I’, for 
which there is a nearly perfect CCR-partition

• Process of selecting a subset of I’ (k rectangles):

– Initially, all rectangles of I’ are active

– During process, some rectangles are discarded

– Charging scheme argument: ≤ (9/10)k discarded
Removed from active status

More carefully: At most (2/3)k discarded



Process of Cutting; CCR-Partition

• Starting with BB(R), we recursively partition 
faces of a CCR-partitioning during the process

• Face Q:  If Q has >1 rectangle within it, we 
partition it with a cut χ into at most 5 subfaces



Properties of a Cut

• cut χ : consists of horizontal/vertical portions

– Horizontal does not penetrate any rectangle

– Vertical portion :
penetrated

crossed

crossed



p

p

c

c

cc

(will always be subsets of “fences”)



Notion of Being “Exposed”

R

Top of R is 
exposed to the 
right, bottom 
of R is exposed 
to the left

“Exposed”:  horizontal ray does not penetrate 
any rectangle within Q (other than R)



A Cut Exposes Some Rectangles

R1R2

R3



When we cut along 
and remove the crossed 
rectangles, the 
rectangles R1, R2, and R3

become exposed 



A Cut Exposes Some Rectangles

R1R2

R3



When we cut along 
and remove the crossed 
rectangles, the 
rectangles R1, R2, and R3

become exposed 

Establish fences, horiz
segments, anchored 
on a left/right side of 
Q, which then will 
serve as an “obstacle” 
to future cuts



Example: Cut  Exposes Tops/Bottoms; Fences



Fence Invariant

We establish fence (obstacle) segments to 
maintain the following invariant:

Fence Invariant
For any face Q and rectangle R 
within Q, if R is exposed to 
left/right (on its top or bottom), 
there is a fence (horizontal 
segment obstacle) established 
that anchors R to the left/right



Initial Fences

R

R

R

R

R

Anchored 
rectangles R



Key Technical Lemma

For any set of horiz segments (fences) anchored on the left/right of a 
CCR face Q, there exists a cut, with O(1) horiz/vert segments 
partitioning Q into at most 5 CCR subfaces, with horiz cut segments 
contained within the fences (and thus not penetrating any rectangle), 
and at most 2 vertical cut segments, not crossing any fences.



Care Is Needed

Not enough just to use straight, “L”, and “Z” 
cuts, since we must create CCR faces with the 
cuts



Proof: Case Analysis

(1) ഥ𝛽 ∈ 𝑟

(2) ഥ𝛽 ∈ 𝑟+ (symmetric: ഥ𝛽 ∈ 𝑟−)

(3) Mid (gray) has no vertical

Separation between left/right fences

ഥ𝛽 ∈ 𝑟

ഥ𝛽 = right anchored fence with
leftmost left endpoint 𝑟+

𝑟

𝑟−



Technical Lemma
Case (1)    ഥ𝛽 ∈ 𝑟



Technical Lemma
Case (2)    ഥ𝛽 ∈ 𝑟+



Technical Lemma
Case (3) Mid (gray) region has no vertical cut 
separating left/right fences

Result in K=5 pieces



Example



Fences, Anchored Rectangles
Are Not Cut

• As a result of the Technical Lemma and the 
Fence Invariant, no anchored rectangle R is 
ever crossed by a (vertical) cut segment

R



(it may be penetrated)

penetrated

crossed

crossed

crossed

fence



Vertical Cut Segments

• Since at most 2 vertical cut segments in any 
cut provided by the Technical Lemma case 
analysis, for any vertical cut segment , to ≥1 
of its sides (left or right) there is no other 
vertical cut segment of the cut

• Goal: Charge off non-red rectangles that are 
crossed by vertical cut segment 

WLOG: No vert cut segment to the right of 



Charging Off a Non-Red Crossed Rectangle, R

Note: Rr is not nested on its left

WLOG: No vert cut segment to the right of 



Charging Properties

• No corner is ever charged more than once

• If we charge a corner, c, of Rr , then Rr has not 
previously been crossed (and discarded)

• If we charge a corner, c, of Rr , then Rr will not 
subsequently be crossed (since a fence is established)

• At most 2 corners of a red rectangle R are 
charged (left ones or right ones) R

In cases (1),(3),(5),(6), the charged 
rectangle Rr is not nested on its left

R would have become exposed; fence 



Accounting for Rectangles that are Cut/Crossed

• Red rectangles:  h0 uncut; hχ are cut (discarded)

• Non-red rect: m0 uncut; mχ are cut (discarded)

• Goal: Show that h0+m0 ≥ k/10

• Charge of “1” for each cut non-red rectangle

• Total charge = mχ ≤   2h0  +  4m0
Only uncut rectangles are 
assigned charge

≤2 corners of red 
rectangle charged

≤4 corners of non-red 
rectangle charged



Accounting for Rectangles that are Cut/Crossed

• Total charge = mχ ≤   2h0  +  4m0

Thus, Recall: m0 + mχ ≥ k/2  (WLOG)

Thus,  h0+m0 ≥ k/10                  QED



Conclusion

• Improve the approx factor and/or running time

• PTAS?

• Weights

– O(log n/loglog n)-approx [Chan, Har-Peled]

– O(loglog n)-approx [Chalermsook, Walczak, SODA21]

• Higher dimensions?

• Pach-Tardos conjecture about perfect BSP’s

Generalized CCR

Better than factor 3?  2?



Problem Discussed

• Added 3 slides about the problem mentioned: Find 
a shortest path/cycle in outer space in order to do a 
visibility coverage of planet earth



External Watchman Path for a Sphere

• Short Path

[SoCG’03 video]

Two segments and a spiral:
Fatten spiral 
near middle

By computer search

Length 11.08



External Watchman Path for a Sphere

“                 ”

 Short Path
Length 10.726



External Watchman Cycle for a Sphere

Shortest Cycle ?

“baseball stitch curve”

108 double stitches

[discussions: Jin-ichi Itoh, Joe 
O’Rourke, Anton Petrunin, Y. Tanoue, 
Costin Vilcu]

“Shortest Inspection 
Curves for the Sphere”
V. A. Zalgaller


