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Some NRHard Optimization Problems
In Geometry

ATSP. vehicle routing variants
AWatchmanroutes

AMin-Weight Convex Partition

AMACS: Maximum Area Connectsdbset

AMIS: Maximum Independent Set
AX

Goal: Exploit geometric structure to get efficient, provable
approximation algorithms



Introduction

ASampling of optimization problems:
A Optimal routes/networks to visit regions
A Optimization of routes for vision/coverage

AAspects of current interest;
AUncertainty, robustness of solutions
AHandling time constraints

AMotivating applications:
ARobotics
A Sensor networks
AVehicle routing, logistics




Cooperative Heterogeneous Vehicle Mission Plani

Motivating applications: search and rescue; casualty/disaster response; surveillance; mosaic
battlefield

AVehicles: various classes (ground, air, sea), speeds
capacities, capabilities

ATargets: points, regions; mission task times:
precedence constraints

AConstraints: domains of operation; tethers
(distance); rendezvous requirements, formations

ATactical vs strategic; online vs offline

b
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A Drone (UAV) picks up a payload from a truck, which continues on its route, ant
aftelr aguccessful delivery, the drone returns to the truck to pick up the next
payloa
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A Computing the most efficierbutesis challenging because we have to coordinat
both vehicles simultaneously

A For a fixed target sequence, the problem Second Order Cone Program (SOCF
A For a fixed truck route, the problem ichallenging geometrischedulingoroblem
A We studied also generalizationsiautli-trucks, multidrones
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Total distance: 2.055km.
Travel Time: 4 minutes 27 seconds. (10 current teaftic)
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Flgure 1: Example of a Horsefly Tour on 30 points.
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.» Paul St - E Warrington Ave

Head toward Boggs Ave on Faul St. Go for 88

Turn left onto Boggs Ave, Go for 959 m,

Turn left onto W Warrington Ave, Go for 1.0

Amive at E Warrington Ave. Your destination is

E Warrington Ave - Industry St

Head toward Pt Busway S on E Warrington



Missions for Agents, UAVS

Types of mission tasks:
A Visit target site (point) p

. . _ P
A Visit (any point) of target region R
A Possible constraint: Mission time (minimum)
within R [Jia Mitchell, 2019: TSPN with time lower bounds. @
PTAS, dual approximation algorithms]

A View a target (point/region) T: visit an
LJ2 A yug SpKl- % A)é DA Sac. T,z
NRPdzuS LINPOf SYc¢

A Sweep a target region (recon, search), W




Approximation Algorithms

For a minimization problem, seek an upper bound on the
ratio

h=(worstcase bound given by ALG)/ OPT

h -approximation
Possiblyh =" (n) depends on n, the size of the input

PTAS: For any fixed eps>0, there mlgtime algorithm
achieving (1+epsgpproximation

(EPTAS, FPTAS,QPTAS)




Approximation Technigues

ASolve an easier problem, and use it to solve the

A

nard problem, approximately
_Inear Programming relaxation of an Integer

Program; Serdbefinite Programming

AGrid shifting guadtrees m-guillotine method
Al LILINPEAYFGAY3I &dzoasSidarT
ALocal search



Geometric Covering Tours, TSP



Covering Tours

ACover a point set S

Just geometric TSP



Covering Tours

ACover a set of disks

AGather data from sensors
ACover imprecise points
ASchool bus route

TSP with (circular) neighborhoods



Lawnmower/Milling: Problem

[AFM]

Best method of
mowing the lawn?

TSPN: Visit the disk
centered at each blade
of grass
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Covering Tours

ACover a set 0f visibility polygons

Search for location of an
uncertain target: Want
shortest such route

Watchman Route Problem



WRP Approximation

A Simple polygons:
A Sqart (2)-approx, O(n), for anchored [Tan, DAM 2004]

A 14(p+4)=99.98-approx, O(n log n), for floating [ Carlsson,
Jonsson, Nilsson, TR 1997]

A 2-approx, O(n), for floating [Tan, TCS 2007]
A 4-approx, O(n?2), for min -link [ Alsuwaiyel, Lee, IPL 1995]

A Polygons with holes? sobAs 13 :2n)oNisga)g
A O(log n)-approx, rectilinear , rectangle -visibility
A WRP In 3D: No constant -factor, unless P=NP

[Safra , Schwartz 2003]

W(og n), even for terrains



Variants

A k Agents/Tours
I Possibly tethered, or otherwise constraing 4 ¢ s i k § NE

A Depot(s)

A Offlinevsonline -

A Time windows/constraints o T mmetospn e
A Sites in motion (kinetic variant)

A Uncertain sites: Stochastic models

A Precedence constraints

At NA2NAOASAT AGLINRIT Saé¢ |
A Various objectivesnulticriteria optimization



Objective Functions

A Min-length of tour (time to complete search)
I Euclideanl,,, weighted lengths

A Optimize edge lengths: mimax (bottleneck),
maxcmin (maxscatter)

A Min turning: # turns, total turn, bounded
curvature

A k Tours: mirmax, minsum: mink for tours of
bounded length

A Min-latency

A Stochastic metrics: e.g., max P(tour length < L), ¢
min E(time until a goal is achieved)

A Combined metricanulticriteria



Application: Mobile Agents to Gather
Data from Static Sensors

A2 K0 R2Sa A0 YSLy
I Arrive at a sensor (point)

O 2

TSP



Mobile Agents to Gather Data from
Static Sensors

A2 KIF0 R2Sa A0 YSIy /(2

I Arrive at a sensor (point) y

I Arrive close to a sensor

TSP with neighborhoods



Mobile Agents to Gather Data from
Static Sensors /-

A2 KI''G R2Sa Al
I Arrive at a sensor (point)
I Arrive close to a sensor

I See a sensor
AUnlimited sight distance

Watchman route



Mobile Agents to Gather Data from
Static Sensors

A2 KI''G R2Sa Al
I Arrive at a sensor (point)
I Arrive close to a sensor

I See a sensor
AUnlimited sight distance
ALimited sight distance




Data Gathering Problem

[Citovsky,Gao,M,ZendLGOSENSORS 2(

o ol

o 1
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Each sensor, at position, fnas a capacity; c
Data arrives at rate
If capacity is reached, additional data is lost



Data Gathering Problem

Given"'ﬂnulestravelling ata constamspeedi and

€ Sensors at pointsr m B m IN a metric

space with capacitiesoho B ho  and
continuous data accumulation rates i H8 h

Goal: Find a schedule/tours to maximize the dat
collection rate of all of the mules.

Each sensor, at position, fnas a capacity; c
Data arrives at rate
If capacity is reached, additional data is lost



No Data Loss Problem: Min # of Mule

M ina
ho8 hw and

Giveng sensors at pointsr) F[]
N
data accumulation rates h B h

metric Space with Capacm

v

Goal Findthe min # mules and their schedules
such that no data iIs lost.



Our Results

With Sensors Single Mule K-mule No Data Loss
on aline exact - exact
exact pseudo-
on a Tree :
polynomial E( i )
General Metric - R o) PP 12
Space
Euclidean Space - R P -
— Q
~(p piQ )
Different 0 — 0 &
Capacities
4 1 16— ,® =largestcapacitgp = smallest capacity

(OPT is periodic if we assume integral capacities, rates, distances)



Related: Variations of TSP

Orienteering Problem: Tour length quota, L

PrizeCollecting TSPPrize quota (possible costs for
skipping sites)

Profitable Tour Problem: mgkRrize- Tour length)

TSP with Time Windows



Orienteering

Given n sites S={pp,Z2 X% length bound L.

Goal: Find a path/tou2 ¥ f Sy Blaxi of X[
sitesvisited

Data gathering: maximize treollected data rate

Length L O(lyapproxm! abs {2/ DQdy 6
PTASfor rooted case, based
on improved analysis of m

° guillotine method for KTSP
® /13X {2/ DQncs

Improved PTAS [GKR 20:n0(1/9) (log n)(d/a)o(d)




TSP/Orienteering with Time Windows

Given n sites S={pp,> X}, each with a time
window, (;,d); length bound L.  rrreleasetimeatp

di=deadline at p

Possible service timd;, at p; Laxity = min(d.r)
I

assumet;=0.

Goal: Find a path/tour to Max # of sites visited
during their respective time windows



TimeWindow TSP

[WAFR 2016JieGag Sulia M]

A TimeWindow Prize Collecting(TWPC):

Unit speedrobot; must visit each siteduring given
time window, (r; , d). 62F0Sy OFftSR ac¢:?

D2FfY YIFIE | aArAdGdSa @Arani
A Time Window TravellingalesmanTWTSP):

Robot withspeeds, must visit each siteduring given
time WindOW, (i : C*) (may not be feasible for smajl

Goal: mindistancerobot travels to visit all sites (in TW



TimeWindow TSP

[WAFR 2016JieGaq Sulia M]
Various results, including:

Theorem 2. Given an instance for 1D TWPC problem with bounded velocity s,
let Lopae be the mazimum length of the input segments, and assume the shortest

log Limmawx

time window has length > 1. Then for any € > 0, in O((nLmaz) (ogtito) j) time
we can find a path P, such that

1. the number of seqyments that P wisits is at least OPT',

2. each segment o; is visited in [r; — L, d; + cL;|, where L; = d; — r;.

Stmilar result holds for 1D TWTSP with finite speed.

Dualapproximation algorithms for 2D and metric spaces,

yieldingapproxopt solution, using relaxed speed
constraint
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Abstract The goal of a melon harvesting robot is to maximize the number of melons
it harvests given a progressive speed. Selecting the sequence of melons that yields this
maximum is an example of the orienteering problem with time windows. We present
a dynamic programming-based algorithm that yields a strictly optimal solution to this
problem. In contrast to similar methods, this algorithm utilizes the unique properties
of the robotic harvesting task, such as uniform gain per vertex and time windows, to
expand domination criteria and quicken the optimal path selection process. We prove
that the complexity of this algorithm is linearithmic in the number of melons and can
be implemented online if there is a bound on the density. The results of this algorithm
are demonstrated to be significantly better than the standard heuristic solution for a
wide range of harvesting robot scenarios.

Keywords Harvesting robot - Orienteering - Time windows - Dynamic program-
ming - Combinatorial optimization



m- Guillotine Method Revisited



Traveling Salesperson Problem: TS

A In Euclidean plane: Find a cycle (polygonal) to visit n
points, S, that has the shortest Euclidean length

A Necessarily: it will be a simple polygon with vertex
set S (Why? Triangle inequality!)



TSP

A Extremely well studied combinatorial
optimization problem

49 cities, 1954

A Many methods to solve to optimality (in
worst-case exponential time) or near
optimality

A NPhard, even in Euclidean 2D



Approximating:- TSP

e Simple 2-approx: double the MST and shortcut (holds in metric spaces)

TSP Tour m— ST

— Doubled MST

e Christofides: 1.5-approx

(use MST U min-weight matching on odd-degree nodes of M ST:]



Recent News:
Breaking Below 1.5

A (Slightly) Improved Approximation Algorithm
for Metric TSP

Anna R. Karlin} Nathan Klein] and Shayan Oveis Gharan*

University of Washington

July 6, 2020

1.499999999999999999999999999999999999 -approximation!

Abstract

For some € > 1073¢ we give a 3/2 — € approximation algorithm for metric TSP,

https://arxiv.org/pdf/2007.01409.pdf



https://arxiv.org/pdf/2007.01409.pdf

Can Geometry Help?




PTAS for Geometric TSP

A PTAS In 2D, any fixeddim  [Ar696, M696, A
A O(n log n): spanners/ banyons [RacSmi t ho98

A NP-hard to get (1+ €)-approx in RC{egn)
for some e>0 [ Tro97]

Main Idea of PTAS’s:

Transtorm OPT into a near-opt network of special recursive structure that
allows efficent optimization by dynamic programming




Recipe for PTAS

Structure Theorem

Network with special increasing length by
E—
[ I } recursive structure ¢ (1+e) factor

Use dynamic programming to compute shortest network with the required
structure (connectivity, Eulerian subgraph, etc)

Optimal network with Lp Solution to original }
special structure roblem (tour, tree, etc)

What should the special recursive structure be?



Recipe for PTAS

The Role of Spanners: [ Rao-Smith]

~

[ Spanner

)

p
[ OPT }f X Spanner with special increasing length by

recursive structure ¢ (1+e) factor
g

Use dynamic programming to compute shortest subgraph of special spanner
with the required structure (connectivity, Eulerian subgraph, etc)

Optimal subgraph with : Lp Solution to original }
special structure roblem (tour, tree, etc)

What should the special recursive structure be?



One Possibllity:
m- Gulllotine Structure

Network edge set E is m-guillotine if it can be recursively partitioned by
horiz/vertical cuts, each having small (O( m)) complexity wrt E

Example: 3-guillotine : :
Each cut intersects E in at most 3 connected components




Desired Recursive-Structure

Whny m-Guillotine?

Constant
(O(m))

information
flow across
boundary

t

Il S Ojusto what i s needed f
Rectangular subproblem in dynamic program (recursion)

or

dyn
























m- Guillotine Structure -Theorem

Any set E of edges of length L can be made to be

m-guillotine by adding length O(L/m) to E, for any
positive integer m.

Proof. Based on a charging scheme.

Whil e this fAscr

bem-gui |l | oti ne,
in that it can be made m-guillotine
by adding only (1/m)th of its length
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Paying for.the-Bridge Construction:
The Chargeable Length

Level 1
Level 2
Level m=3

Bl ue pordamho o0 iy h(x) = chargeable length

NOTE: After cut, charged lengths never charged again




Key Lemma

A There exists a cut whose chargeable
l“engt h 1s -O 1t s-spanp S t

There exi sts a ofavor



Key Lemma A cut exists, with chargeable
I“eeng t-h (O:c oistspag)l er

Region of 2-dark points wrt horizontal cuts { RED)

Region of 2-dark points wrt vertical cuts ( BLUE)

WL OG: RED ar ea O BLUE ar ea

Thus, there existsay * such that
m-dark portion of cuty=y * O g(y) = espaat of <cu

Chargeable Length O Cost of Cut



A Simple O(nlog n) PTAS

A Build (1+e)-spanner, G, of n points: o logn)
A Compute m-guillotine-version, G . o(nlog n)

A Associated (balanced) tree, T(G - )
Points S Tree T(Gm)

(1+e)-spanner, G, of weight O(|MST])



A Simple O(nlog n) PTAS

A Build (1+e)-spanner, G, of n points: O(n log n)
A Compute m-guillotine-version, G' . O(n log n)
A Associated (balanced) tree, T(G - .,
A DP: Min-weight spanning subgraph of G,
A O(n) Subproblems: nodes of T(G ), plus O(1) info (20(m)

OPT can be moved onto spanner G (factor (1+e€)),
which is subgraph of G,

i |OPTg| Oe)|OPTH
Sum of bridge lengths added:

|bridges| = O(e |G|)=0O(e [IMST|)=0(e |OPT])
Algorithm computes OPTg -

OPTs | O ol I lorRiges|

O (1+e)|OPT| + O(e |OPT))



Higher Dimensions

A m-guillotine-applies:

/ T




\ﬁ\g ofia’Slice



View of a Slice

Graph G(x;) = green C magenta edges
= union of disjoint green/magenta paths

Cross section orthogonal to x



\/iew of a Slice-

m-deep green edges

Cross section orthogonal to x



View of a Slice

Similarly define m -deep
magenta edges.

G(™ (x,) = all m-deep edges
Claim: The m-deep graph,

G(™(x,), has O(md-1)
connected components

m-deep (M=3) green edges

Cross section orthogonal to x



m- Guillotine in R-©

A0 Cost o -of  .cut .3lengthofg c
the m -deep edge set = f (X:)=| GM™(x )]
Alntegrate - wrt x; = Area; (of 2 -manifold M)

AoChargeabl edo | BnOh C
where "Q(w) = length of the x ;ocross-
section of  M;

A Lemma: It Area; = min,(Area;), then there
exists @ withf . (x) O -1)B ( "®(x,)
l.e., there exists a favorable cut



m- Guillotine in R-©

A Each unit of edge-length paraliel to - X; gets
charged at most (d--1) times, each time
with 1/m(d- -1) of its length (and will not be
charged again after the cut)



Other Metrics

A General metric-TSP: APX -hard
A Bounded intrinsic(doubling) dimension:

Doubling dimension kadim(S) of finite metric space:%very ball of radius

r can be covered by<dalls of radius r/2

ATaI War 6 04 : 1Iﬂ|:11m| ) /e-log n)C (ddim(S
ABartaI-GottIieb-Krauthgamer612- PT,

Theorem 1.3. A (1+¢)-approzimation to the optimal tour of a n:rh ic THP instance S onn = |S|
Oriddir fyde (& yO(ddim(S5)) -
- - S 1O T

points can be computed by a randomized algorithm wn time n2



Many Applications

A Optimal paths, tours, trees
A Min weight networks

A Optimal partitioning

¢ Packing problems, MIS

A Covering problems (disk cover, guarding,
jJamming)

A Facllity location, relay placement

A Optimal separation

A Robot localization



