Approximation Algorithms for Some Geometric
Packing/Covering/Routing Problems

Joe Mitchell

qm Stony Brook University

Support from NSF, DARPA, Sandia National Labs, US-Israel Binational Science Foundation



Some NP-Hard Optimization Problems
In Geometry

* TSP. vehicle routing variants

* Watchman routes

* Min-Weight Convex Partition

* MACS: Maximum Area Connected Subset
* MIS: Maximum Independent Set

Goal: Exploit geometric structure to get efficient, provable
approximation algorithms



Introduction

e Sampling of optimization problems:
* Optimal routes/networks to visit regions
» Optimization of routes for vision/coverage

* Aspects of current interest:

* Uncertainty, robustness of solutions
* Handling time constraints

* Motivating applications:
* Robotics
* Sensor networks
* Vehicle routing, logistics




Cooperative Heterogeneous Vehicle Mission Planning

Motivating applications: search and rescue; casualty/disaster response; surveillance; mosaic
battlefield

 \Vehicles: various classes (ground, air, sea), speeds,
capacities, capabilities

* Targets: points, regions; mission task times;
precedence constraints

* Constraints: domains of operation; tethers
(distance); rendezvous requirements, formations

 Tactical vs strategic; online vs offline
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“Horsefly”: Drone-Assisted Mission Planning (DAMP)
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* Drone (UAV) picks up a payload from a truck, which continues on its route, and
aftelr ac.;;uccessful delivery, the drone returns to the truck to pick up the next
payloa

* Truck is an “aircraft carrier”; does not stop at targets

* Computing the most efficient routes is challenging because we have to coordinate
both vehicles simultaneously

* For afixed target sequence, the problem is a Second Order Cone Program (SOCP)
* For a fixed truck route, the problem is a challenging geometric scheduling problem
* We studied also generalizations to mutli-trucks, multi-drones
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Total distance: 2.055km.
Travel Time: 4 minutes 27 seconds. (10 current teaftic)
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Flgure 1: Example of a Horsefly Tour on 30 points.
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.» Paul St - E Warrington Ave

Head toward Boggs Ave on Faul St. Go for 88

Turn left onto Boggs Ave, Go for 959 m,

Turn left onto W Warrington Ave, Go for 1.0

Amive at E Warrington Ave. Your destination is

E Warrington Ave - Industry St

Head toward Pt Busway S on E Warrington



Missions for Agents, UAVs

Types of mission tasks:
* Visit target site (point) p

P
O
e Visit (any point) of target region R
* Possible constraint: Mission time (minimum)
within R [Jia, Mitchell, 2019: TSPN with time lower bounds. -
PTAS, dual approximation algorithms]
* View a target (point/region) T: visit any o
point thatis visibleto T  “watchman T

route problem”
Sweep a target region (recon, search), W




Approximation Algorithms

For a minimization problem, seek an upper bound on the
ratio

a=(worst-case bound given by ALG)/ OPT

o-approximation
Possibly, a=a(n) depends on n, the size of the input

PTAS: For any fixed eps>0, there is a polytime algorithm
achieving (1+eps)-approximation

(EPTAS, FPTAS,QPTAS)



Approximation Techniques

* Solve an easier problem, and use it to solve the
hard problem, approximately

* Linear Programming relaxation of an Integer
Program; Semi-Definite Programming

 Grid shifting, quadtrees; m-guillotine method
e Approximating subsets; “core sets”
* Local search



Geometric Covering Tours, TSP



Covering Tours

* Cover a point set S

Just geometric TSP



Covering Tours

e Cover a set of disks

*Gather data from sensors
*Cover imprecise points
*School bus route

TSP with (circular) neighborhoods



Lawnmower/Milling Problem

[AFM]

Best method of
mowing the lawn?

TSPN: Visit the disk
centered at each blade
of grass




Lecture Notes in
Computer Science 500

..-
0D
o
-

WY R s wis :
(y.;., ::\m,_n.u ational

Gex

!,\‘,)w\ A
1-:]
A.

AN
wratet b ey ol win s —

Pocket Machining

[Martin Held]




Covering Tours

* Cover a set of visibility polygons

Search for location of an
uncertain target: Want
shortest such route

Watchman Route Problem



WRP Approximation

- Slmple polygons:
- Sqgri1(2)-approx, O(n), for anchored [Tan, DAM 2004 ]

» 14(7+4)=99.98-approx, O(n log n), for floating [Carlsson,
Jonsson, Nilsson, TR 1997]

» 2-approx, O(n), for floating [Tan, TCS 2007]
> 4-approx, O(n?), for min-link [Alsuwaiyel, Lee, IPL 1995]

s Polygons with holes? sopa13: odlog? n), (log n)
* O(log n)-approx, rectilinear, rectangle-visibility
s WRP in 3D: No constant-factor, unless P=NP

[Safra, Schwartz 2003]

Q(log n), even for terrains



Variants

k Agents/Tours
— Possibly tethered, or otherwise constrained  «athered TSP”

Depot(s)

Offline vs online | |
Time Windows/CoNStraints v rmm w0
Sites in motion (kinetic variant)

Uncertain sites: Stochastic models

Precedence constraints

Priorities, “prizes” at sites

Various objectives, multicriteria optimization



Objective Functions

Min-length of tour (time to complete search)
— Euclidean, L, weighted lengths

Optimize edge lengths: min-max (bottleneck),
max-min (max-scatter)

Min turning: # turns, total turn, bounded
curvature

k Tours: min-max, min-sum; min-k for tours of
bounded length

Min-latency

Stochastic metrics: e.g., max P(tour length < L), or
min E(time until a goal is achieved)

Combined metrics, multicriteria



Application: Mobile Agents to Gather
Data from Static Sensors

* What does it mean to “gather”?

— Arrive at a sensor (point)

TSP



Mobile Agents to Gather Data from
Static Sensors

* What does it mean to “gather”?

— Arrive at a sensor (point)
— Arrive close to a sensor

TSP with neighborhoods



Mobile Agents to Gather Data from
Static Sensors

* What does it mean to “gather”?
— Arrive at a sensor (point)
— Arrive close to a sensor

— See a sensor
* Unlimited sight distance

Watchman route



Mobile Agents to Gather Data from
Static Sensors

* What does it mean to “gather”?
— Arrive at a sensor (point)
— Arrive close to a sensor

— See a sensor
* Unlimited sight distance

* Limited sight distance



Data Gathering Problem

[Citovsky,Gao,M,Zeng, ALGOSENSORS 2015]
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Each sensor, at position p,, has a capacity, c,
Data arrives at rater,
If capacity is reached, additional data is lost



Data Gathering Problem

Given k mules travelling at a constant speed s and
n sensors at points {p41, D>, ..., P, } in @ metric
space with capacities {c4, ¢5, ..., ¢, } and
continuous data accumulation rates {ry, 1, ..., 13, }.

Goal: Find a schedule/tours to maximize the data
collection rate of all of the mules.

Each sensor, at position p,, has a capacity, c,
Data arrives at rater,
If capacity is reached, additional data is lost



No Data Loss Problem: Min # of Mules

Given n sensors at points {p¢, p,, ..., P} in a
metric space with capacities {c{, ¢,, ..., ¢, } and
data accumulation rates {ry, 1, ..., 13, }.

Goal: Find the min # mules and their schedules
such that no data is lost.



Our Results

With Sensors Single Mule K-mule No Data Loss
on aLine exact 3 exact
exact pseudo-
on a Tree :
polynomial 1(1 B 1/eﬁ)
General Metric z—¢ 3 17
Space
i 1
Euclidean Space 3—€ 1(1 —1/e17%)
3
Different 0(:) 0(m)
Capacities

m = log(%), Cmax = largest capacity, c¢,,;,, = smallest capacity

(OPT is periodic if we assume integral capacities, rates, distances)



Related: Variations of TSP

Orienteering Problem: Tour length quota, L

Prize-Collecting TSP: Prize quota (possible costs for
skipping sites)

Profitable Tour Problem: max (Prize - Tour length)

TSP with Time Windows



Orienteering

Given n sites S={p,, p,,---,P,}; length bound L.

Goal: Find a path/tour of length <L to Max # of
sites visited

Data gathering: maximize the collected data rate

Length L O(1)-approx [AMN, SoCG’98]
PTAS, for rooted case, based
on improved analysis of m-
° guillotine method for k-TSP
® [CH, SoCG’06]

O(d)
Improved PTAS [GKR 2020]: n?/%) (log n) /%)




TSP/Orienteering with Time Windows

Given n sites S={p,, p,,---,P,}, €ach with a time

WindOW, (r,d), Iength bound L. ri=release time at p
il d.=deadline at p,

Possible service time, t, at p;;
assume t=0.

Goal: Find a path/tour to Max # of sites visited
during their respective time windows

Laxity = min, (d.-r;)



Time-Window TSP

[WAFR 2016, Jie Gao, Su Jia, M]

* Time Window Prize Collecting (TWPC):

Unit speed robot; must visit each site 1 during given
time window, (r;, d). (often called “TWTSP”)

Ill

Goal: max # sites visited (or total “prize”)

 Time Window Travelling Salesman (TWTSP):

Robot with speed S; must visit each site I during given
time WindOW, (ri : dl) (may not be feasible for small s)

Goal: min distance robot travels to visit all sites (in TW)



Time-Window TSP

[WAFR 2016, Jie Gao, Su Jia, M]
Various results, including:

Theorem 2. Given an instance for 1D TWPC problem with bounded velocity s,
let Lopae be the mazimum length of the input segments, and assume the shortest

log Limmawx

. : _ . ) ! 9, : :
time window has length > 1. Then for any € > 0, in O((nLmaxzx) (Tog(ite) j) time
we can find a path P, such that

1. the number of seqyments that P wisits is at least OPT',
2. each segment o; is visited in [r; — L, d; + cL;|, where L; = d; — r;.

Stmilar result holds for 1D TWTSP with finite speed.

Dual-approximation algorithms for 2D and metric spaces,

vielding approx opt solution, using relaxed speed
constraint
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Abstract The goal of a melon harvesting robot is to maximize the number of melons
it harvests given a progressive speed. Selecting the sequence of melons that yields this
maximum is an example of the orienteering problem with time windows. We present
a dynamic programming-based algorithm that yields a strictly optimal solution to this
problem. In contrast to similar methods, this algorithm utilizes the unique properties
of the robotic harvesting task, such as uniform gain per vertex and time windows, to
expand domination criteria and quicken the optimal path selection process. We prove
that the complexity of this algorithm is linearithmic in the number of melons and can
be implemented online if there is a bound on the density. The results of this algorithm
are demonstrated to be significantly better than the standard heuristic solution for a
wide range of harvesting robot scenarios.
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m-Guillotine Method Revisited



Traveling Salesperson Problem: TSP

* In Euclidean plane: Find a cycle (polygonal) to visit n
points, S, that has the shortest Euclidean length

* Necessarily: it will be a simple polygon with vertex
set S (Why? Triangle inequality!)



TSP

* Extremely well studied combinatorial
optimization problem

49 cities, 1954

 Many methods to solve to optimality (in
worst-case exponential time) or near

optimality
* NP-hard, even in Euclidean 2D



Approximating TSP

e Simple 2-approx: double the MST and shortcut (holds in metric spaces)

TSP Tour m— ST

— Doubled MST

e Christofides: 1.5-approx

(use MST U min-weight matching on odd-degree nodes of M ST:]



Recent News:
Breaking Below 1.5

A (Slightly) Improved Approximation Algorithm
for Metric TSP

Anna R. Karlin} Nathan Klein] and Shayan Oveis Gharan*

University of Washington

July 6, 2020

1.499999999999999999999999999999999999-approximation!

Abstract

For some € > 1073¢ we give a 3/2 — € approximation algorithm for metric TSP,

https://arxiv.orqg/pdf/2007.01409 pdf



https://arxiv.org/pdf/2007.01409.pdf

Can Geometry Help?




PTAS for Geometric TSP

x» PTAS in 2D, any fixed dim  tar9em96,ar97,m971
s O(h log n): spanners/banyons  (reo-smithos]

= NP-hard to get (1+&)-approx in ROUegn)
for some &>0 Ll

Main Idea of PTAS’s:

Transtorm OPT into a near-opt network of special recursive structure that

allows efficent optimization by dynamic programming




Recipe for PTAS

Structure Theorem

—— | Network with special increasing length by
[ OFT } recursive structure < (1+¢) factor

Use dynamic programming to compute shortest network with the required
structure (connectivity, Eulerian subgraph, etc)

Optimal network with Lp Solution to original 1
special structure roblem (tour, tree, etc)

What should the special recursive structure be?



Recipe for PTAS

The Role of Spanners: [Rao-Smith]

[ Spanner

)

>

OPT f X Spanner with special increasing length by
recursive structure < (1+¢) factor

N

Use dynamic programming to compute shortest subgraph of special spanner
with the required structure (connectivity, Eulerian subgraph, etc)

Optimal subgraph with : Lp Solution to original }
special structure roblem (tour, tree, etc)

What should the special recursive structure be?



One Possibility:
m-Guillotine Structure

Network edge set E is m-guillotine if it can be recursively partitioned by
horiz/vertical cuts, each having small (O(m)) complexity wrt E

Example: 3-guillotine
L - Each cut intersects E in at most 3 connected components




Why m-Guillotine?
Desired Recursive Structure

It is "just” what is needed for dynamic programming to work!
Rectangular subproblem in dynamic program (recursion)

Constant

(O(m))

information
flow across
boundary

























m-Guillotine Structure Theorem

Any set E of edges of length L can be made to be
m-quillotine by adding length O(L/m) to E, for any
positive integer m.

Proof: Based on a charging scheme.

While this “scribble” may not
be m-guillotine, it is “close”
in that it can be made m-guillotine
by adding only (1/m)th of its length




Possible Vertical Cuts

f(x)

f(x) = length of m-bridge (m=3)
= cost of construction



Paying for the Bridge Construction:
The Chargeable Length

Level 1
Level 2
Level m=3

Blue portion: "m-dark” « h(x) = chargeable length

NOTE: After cut, charged lengths never charged again




Key Lemma

s There exists a cut whose chargeable
length is > its cost (length of m-span)

There exists a "favorable cut”



Key Lemma: A cut exists with chargeable
length > cost (length of m-span)

WLOG: RED area > BLUE area

Thus, there exists ay™ such that
m-dark portion of cut y=y~ > g(y) = cost of cut = m-span

Chargeable Length 2 Cost of Cut



A Simple O(n log n) PTAS

s Build (1+¢)-spanner, G, of n points o logn)

= Compute m-qguillotine version, G,, o logn)

- Associated (balanced) tree, T(G,,)
Points S Tree T(G,,)

(1+g)-spanner, G, of weight O(|MST])



A Simple O(n log n) PTAS

s Build (1+¢)-spanner, G, of n points O(n log n)

s Compute m-guillotine version, 6,, O(n log n)
- Associated (balanced) tree, T(G,,)

= DP Min-weight spanning subgraph of G,
* O(n) Subproblems: nodes of T(G,,), plus O(1) mfo (20(m)

OPT can be moved onto spanner G (factor (1+¢)),
which is subgraph of G,

— |OPTg| = (1+€)|OPT]
Sum of bridge lengths added:

|bridges| = O(e |G])=0(e |[MST|)=0(c |OPT])
Algorithm computes OPTg -

|OPTg m| < |OPTg| + |bridges|

< (1+€)|OPT]| + O(e |OPT])



Higher Dimensions

s m-guillotine applies:

/ T




\ﬁg of a Slice
‘\



View of a Slice

Graph G;(x;) = green U magenta edges
= union of disjoint green/magenta paths

Cross section orthogonal to x;



m-deep green edges

Cross section orthogonal to x;



View of a Slice

Similarly define m-deep
magenta edges.

G(™ (x;) = all m-deep edges
Claim: The m-deep graph,

6{M(x;), has O(md-1)
connected components

m-deep (m=3) green edges

Cross section orthogonal to x;



m-Guillotine in R

s "Cost” of cut orthogonal at x. = length of
the m-deep edge set = f.(x.)=|G™(x)|
* Integrate wrt x; = Area; (of 2-manifold M;)
= "Chargeable” length of cut = Y. h;(x;),
where h;(x;) = length of the x-cross-
section of M;

= Lemma: If Areaq; = min;(Areq;), then there
exists x;  with f; (x;") < 1/(d-1) ¥ ;.; hj(x;)
i.e., there exists a favorable cut



m-Guillotine in R¢

= Each unit of edge length parallel to x; gets
charged at most (d-1) times, each ’r|me
with 1/m(d-1) of its length (and will not be
charged again after the cut)



Other Metrics

s General metric TSP: APX-hard
s Bounded intrinsic (doubling) dimension:

Doubling dimension k=ddim(S) of finite metric space S: Every ball of radius
r can be covered by 2k balls of radius r/2

Talwar'04: QPTAS 9(ddim(S)/e-logn )0 (ddim(S))
Bartal-Gottlieb-Krauthgameri12: PTAS

Theorem 1.3. A (1+¢)-approrimation to the optimal tour of a f?frf”f TL’P imstance S on n = |S|
i ddin syddimf v (ddim(5)) I
) \ FOE T

points can be computed by a randomized algorithm wn time n?



Many Applications

s Optimal paths, Tours, trees

s Min weight networks

s Optimal partitioning

s Packing problems, MIS

s Covering problems (disk cover, guarding,
jamming)

s Facility location, relay placement

s Optimal separation

s Robot localization



Protective Jamming

"Guards” provide jamming: protect from
eavesdroppers

[Sankararaman,Abu-Affash,Efrat,Eriksson-
Bique,Polishchuk,Ramasubramanian,Segal MobiHoc 2012]



Protective Jamming

THEOREM 4. Given storage region(s) S, fence &, thresh-
olds s, de and jammer power P, under the NJ interference
model, we can compute a set of locations J C F \ 8 in time
O((T /e0MHed/ %) ) where T = min{L%, L3, n*O PTE}
such that |J| < (1 + )OPT and if jammers of power P are
placed at .J,

(i) For any point p. € < (1 4+ £)0e.

(it) For any point ps €

[S. Sankararaman, E. Arkin, Y. Cassuto, A. Efrat, J. Mitchell, M. Segal, 2014]



MACS: Maximum Area Connected Subset

Definition: Connected Unit-disk k-coverage

In: A (connected) set of unit-area-disks in the
Euclidean plane and an integer k

Out: A connected subset S of size k

Goal: Maximize the area covered by

[Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and Nabil Mustafa, APPROX 2019]



Definition: Connected Unit-disk k-coverage

In: A (connected) set of unit-area-disks in the
Euclidean plane and an integer k

Out: A connected subset S of size k

Goal: Maximize the area covered by

[Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and Nabil
Mustafa, APPROX 2019]



Definition: Connected Unit-disk k-coverage

In: A (connected) set of unit-area-disks in the
Euclidean plane and an integer k

Out: A connected subset S of size k

Goal: Maximize the area covered by

[Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and Nabil
Mustafa, APPROX 2019]



Theorem 1 (Hardness). MACS is NP-hard.

Theorem 2 (Approximation). MACS has a (1/2)-approzimation that can be computed in polynomial
time (Algorithm 1).

With resource augmentation, we obtain a (1 — £)-approximation.

Theorem 3 (Resource augmentation). Let ¢ > 0 be fized. Given a set X C R? of points and a
positive integer k, there is a deterministic algorithm that computes, in time nO(E_l), a subset S C X
of size at most k and a set Syqq € R? of at most ek points, such that UDG(S U Sqqq) is connected,
and the area covered by the unit disks centered at S is at least (1 — )OPT(X, k).

________________________
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Application: Min-Weight Convex
Subdivision

* Given a set S of n pointsin 2D

* Goal: An embedded planar graph ¢ = (V, E') with
straight edges (E), convex faces, and S € V, having
minimum total Euclidean length of edge set E.

Input Output



PTAS

 Structure Thm implies OPT can be transformed to
be m-guillotine, increasing length by factor (1 + €),
adding Steiner points.

* Algorithm: DP, searching for min-weight m-
guillotine convex subdivision

I

Subproblem:




Maximum Independent Set (MIS)

Best known polytime approx factor: O(n/log? n) [Boppana-Halldérsson]
No polytime algorithm with approx n1° for >0, unless P=NP [Zuckerman]
PTAS in planar graphs



Geometric Instances of MIS

* Graph G given by intersection graph of objects
 Disks, squares, fat regions
* Pseudodisks
e Rectangles (MISR)
* Polygons
* General connected sets, with various assumptions
Outerstring graphs
etc



A Basic Geometry Problem

Maximum Independent Set (MIS):
Given a set S of bodies in the plane.

Find a max-cardinality subset, S7, that is
pairwise-disjoint.

é
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MIS=Most Efficient Social Distancing

Figure 5 — Lecture Hall Social Distancing Mock-Up
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Special Case: S ={ unit squares }

|S| =13

PTASs known: [Chan’03, EJS’05]



Special Case: S = { unit squares }

..

PTASs known: [Chan’03, EJS’05]



Maximum Independent Set: Unit Disks

* Consider an OPT set of (disjoint) unit disks
* The boundaries of these disks give a network (1-net)

* m-guillotine structure Thm: can make network m-
guillotine, adding (red) length O(1/m)* | OPT|

Give up the disks
stabbed by the red
m-spans: At most
O(1/m) of disks
are given up.




Only O(m) disks specified crossing boundary of
rectangle R.

S u b p ro b | e m Optimize over cuts, choices of O(m) disks crossing cut

Time nO(m)










Key ldea

* Rectangles that are cut should be “paid for”

e But, we cannot assume there is a newly
exposed rectangle/vertex when we cross a
rectangle:




Approximations

o DiSkS, fat regiOnS: PTAS (1-g)-approx, for any €>0, in polytime
d—
(1- £)-approx in n°/€™) [chan
Also: PTAS for pseudodisks [Chan, Har-Peled]

® ReCta ngleS: |V| |SR Rectangles are neither fat nor pseudodisks!
— QPTAS

e nroly((logn)/e) [Adamaszek, Har-Peled, and Wiese]
e Ol ((loglog n)/e)*) [Chuzhoy and Ene]
— PTAS for “long” rectangles [Adamaszek, Har-Peled, and Wiese]
— Polytime: O(loglog n)-approx [Chalermsook, Chuzhoy]
— Parameterized Approximation Scheme: [Grandoni,Kratsch,Wiese,2019]

For any k, g, in time f(k, €)n8(€ either gives indep subset of
>k/(1+ €), or declares OPT<k

— Here: O(1)-Approx in polytime



MISR: One Approach

* Show that any set of disjoint rectangles (e.g.,
the rectangles of OPT) has a constant fraction
subset that has a perfect BSP

[Pach-Tardos Conjecture]

Conjecture 1. For any set of n interior-disjoint axis-aligned rectangles in the plane, there exists a subset
of size 2(n) that has a perfect orthogonal BSP.



Main Ideas

Use more general cuts to get O(1) complexity

pieces—“CCRs” [ 1 _
—

I S

Use K-ary cutting instead of just binary
K<5 —

*‘
Charging scheme to prove a structural
theorem: Can afford to discard a constant
fraction of input rectangles, to enable a

“nearly perfect CCR-partition”

DP to optimize



Corner Clipped Rectangles
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Maximal Rectangles

* Transform any set | of k disjoint rectangles
into a set I’ of maximal disjoint rectangles

Will show that I’
has a constant-
fraction subset for
which there is a
“nearly perfect
CCR-partition” wrt
the subset




Rectangle Maximal Expansions




Rectangle Maximal Expansions
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Rectangle Maximal Expansions




Rectangle Maximal Expansions




Nesting Among Maximal Rectangles

Def: A rectangle R is nesting

to its left/right/top/bottom
if its corresponding side is

contained in the interior of

an abutting rectangle’s side R,
(or the side of the BB, B)

R

Example:
R, is horiz nested (red) R,
R, is vert nested (blue)

R; is not nested in any direction




Why Maximality Is Useful

Observation 1. For a set I' of independent rectangles that are maximal within BB(R), a rectangle R, € I'
cannot be nested both vertically and horizontally.

Note that the claim is not true
without maximality:




Why Nesting Concept Is Useful

If R is not nested on at least one side, there is
hope to be able to “charge” R to a corner, c,
when a cut segment crosses R

cut



CCR-Partitions

Recursive partitioning of the BB, B, of input
Each face Q is a CCR

A cut, consisting of O(1) hor/vert segments
partitions Q into at most 5 subfaces (CCRs)

A CCR-partition is perfect wrt input rectangles
if no rectangle is penetrated by a cut segment,
each leaf face has exactly 1 input rectangle

Nearly perfect CCR-partition: each cut segment
penetrates at most 2 input rectangles, each
leaf face has <1 input rectangle



K-ary Cuts

K=2




CCR Partition




Nearly Perfect CCR Partition




The Structure Theorem

Theorem 3.1. For any set [ = {Ry,..., Ry} of k interior disjoint (axis-aligned) rectangles in the plane
within a bounding box B, there exists a K-ary CCR-partition of the bounding box B, with K < 5, recursively
cutting B into corner-clipped rectangles (CCRs), such that the CCR-partition is nearly perfect with respect
to a subset of I of size Q(k) (at least k/10). More carefully: at least k/3




The Algorithm: DP Subproblem

Subproblem S=(Q, ),
where | is a set of
“special” (specified)
rectangles, at most 2
per vertical side of the
CCR face Q.

E—F

b+




Dynamic Program

e Optimize over K-ary cuts (K<5) for a CCR
subproblem, S, to compute f(S), the max
cardinality of an indep subset of input rectangles
for which there is a nearly perfect CCR-partition

(S) = 0 if R(S) =0,
B MaXy ey (S),I, (f(S1)+-+ f(Sk) +|Iy|) otherwise,

Here, I, is the set of rectangles (at most 2 per vertical segment of x) that are penetrated by
vertical cut segments and become special rectangles specified for the new subproblems, and
y(8) is the set of all eligible K-ary CCR-cuts

Theorem 4.1. There is a polynomial-time (1/10)-approzimation algorithm for mazximum independent set
for a set of axis-aligned rectangles in the plane.

Crudely counted: time is O(n34)




Proof of the Structure Theorem

Let | ={R,, R,, ..., R, } be an OPT set

Let I’ = maximal expansions of |

=1, Ul,Ul, (partition)

— |, = red (nested horiz)

— |, = blue (nested vert) L

— |, = gray (not nested)

WLOG: |1, | < k/2

# Non-red rectangles > k/2



Proof of the Structure Theorem

* Goal: Keep a subset of Q(k) rectangles of I, for
which there is a nearly perfect CCR-partition

Claim 5.1. If a CCR-partition is nearly perfect with respect to a set A" C I' of maximal rectangles, then it
s nearly perfect with respect to the corresponding set A C I of input rectangles.

* Process of selecting a subset of I’ (k rectangles):

— Initially, all rectangles of I’ are active
— During process, some rectangles are discarded

Removed from active status

— Charging scheme argument: < (9/10)k discarded

More carefully: At most (2/3)k discarded




Process of Cutting; CCR-Partition

e Starting with BB(R), we recursively partition
faces of a CCR-partitioning during the process

 Face Q: If Q has >1 rectangle within it, we
partition it with a cut x into at most 5 subfaces




Properties of a Cut

* cut ¥ : consists of horizontal/vertical portions

— Horizontal does not penetrate any rectangle

(will always be subsets of “fences”)

— Vertical portion o:

P penetrated

C C crossed

C | crossed




Notion of Being “Exposed”

Top of Ris
exposed to the
right, bottom
of R is exposed
to the left

“Exposed”: horizontal ray does not penetrate
any rectangle within Q (other than R)



A Cut Exposes Some Rectangles

—
R, Ry
T >
When we cut along &
and remove the crossed
rectangles, the R
rectangles R;, R,, and R,

become exposed



A Cut Exposes Some Rectangles

________ Establish fences, horiz
segments, anchored

——————— on a left/right side of
—————— Q, which then will
________ serve as an “obstacle”
to future cuts

When we cut along & -
and remove the crossed
rectangles, the
rectangles R;, R,, and R,
become exposed



Example: Cut o Exposes Tops/Bottoms; Fences




Fence Invariant

We establish fence (obstacle) segments to
maintain the following invariant:

Fence Invariant

For any face Q and rectangle R
within Q, if R is exposed to

left/right (on its top or bottom),
there is a fence (horizontal
segment obstacle) established
that anchors R to the left/right




Anchored

Initial Fences rectangles R

_+




Key Technical Lemma

Lemma 5.2. Let I' be a set of maximal rectangles associated with an independent set I of rectangles. Let
Q be a CCR whose edges lie on the grid lines of G, defined by the coordinates of the rectangles I' (and thus
of I). Let{an,...,ax, } be a set of “red” horizontal anchored (grid) segments within @Q, that are anchored
with left endpoints on the left sides (¢, (T, or £~ ) of Q, and let {31,..., Bk, } be a set of “blue” horizontal
anchored (grid) segments within Q, that are anchored with right endpoints on the right sides (v, r™, or r~)
of Q. Then, assuming that QQ contains at least two grid cells (faces of G), there exists a CCR-cut x with the
following properties:

(i) x partitions Q into O(1) (at most 5) CCR faces;

(ii) x is comprised of O(1) horizontal/vertical segments on the grid G, with endpoints on the grid:
(iii) horizontal cut segments of x are a subset of the given red/blue anchored segments;
(iv) wertical cut segments of x do not cross any of the given red/blue anchored segments;

(v) there are at most 2 vertical cut segments of x.

For any set of horiz segments (fences) anchored on the left/right of a
CCR face Q, there exists a cut, with O(1) horiz/vert segments
partitioning Q into at most 5 CCR subfaces, with horiz cut segments
contained within the fences (and thus not penetrating any rectangle),
and at most 2 vertical cut segments, not crossing any fences.




Care Is Needed

Not enough just to use straight, “L”, and “Z”
cuts, since we must create CCR faces with the

cuts




Proof: Case Analysis

[ =right anchored fence with

(1) :B_ er leftmost left endpoint
(2) B € r* (symmetric: B € 77)
(3) Mid (gray) has no vertical

Separation between left/right fences



— |

(D)) (AL (1) (b)) (AT (1)) (A)L) (1)) () (A) AL (1)(b) () (A)(ID) - (1)(b) (i) (A)(IL) (1)(b)(iii) (A)(ILL)

B

Technical Lemma

Case(l) p €r



(2)(d) (D) (2)(d)(ii)
2)(d)(iv) (2)(d)(iv)(B 2)(d)(iv)

[a7 SR _B_ o — B8

o

| —
o f——— B! o’ B’
—— 5’ f

2)(d)(iv)(C)(I)  2)()Ev)D)(ID)  2)(d)(iv)(D){T) (2)(d)(iv)(D)(IL)

Technical Lemma
Case(2) B €rt




Result in K=5 pieces

Technical Lemma
Case (3) Mid (gray) region has no vertical cut
separating left/right fences



EHE




Fences, Anchored Rectangles
Are Not Cut

* As a result of the Technical Lemma and the
Fence Invariant, no anchored rectangle R is

ever crossed by a (vertical) cut segment
(it may be penetrated)

fence

R penetrated

| crossed

crossed

crossed




Vertical Cut Segments

* Since at most 2 vertical cut segments in any
cut provided by the Technical Lemma case
analysis, for any vertical cut segment , to 21
of its sides (left or right) there is no other
vertical cut segment of the cut

WLOG: No vert cut segment to the right of ¢

* Goal: Charge off non-red rectangles that are
crossed by vertical cut segment o



Charging Off a Non-Red Crossed Rectangle, R

WLOG: No vert cut segment to the right of o

Note: R, is not nested on its left



Charging Properties

No corner is ever charged more than once

If we charge a corner, ¢, of R., then R, has not
previously been crossed (and discarded)

R would have become exposed; fence

If we charge a corner, ¢, of R, then R, will not
subsequently be crossed (since a fence is established)

At most 2 corners of a red rectangle R are

charged (left ones or right ones) R
In cases (1),(3),(5),(6), the charged

rectangle R, is not nested on its left



Accounting for Rectangles that are Cut/Crossed

* Red rectangles: h, uncut; h, are cut (discarded)
* Non-red rect: m, uncut; m, are cut (discarded)
* Goal: Show that hy+m, > k/10

* Charge of “1” for each cut non-red rectangle

Only uncut rectangles are

* Total charge =m, < 2hg + 4my  _(tcd charge

<2 corners of red

rectangle charged
<4 corners of non-red
rectangle charged



Accounting for Rectangles that are Cut/Crossed

* Total charge=m, < 2h, + 4m,
ThUS, Recall: my + m, > k/2 (WLOG)

!

4(h0 +m0) > my —|—2h0 = (mo —I—mx) —|—2h0 — Mo > (k/Z) —|—2h0 — My

2h0—|—5m0 > k’/2,
5(h0 -+ mo) — 3hg > ]{3/2

5(h() —+ m()) 2 ]f/2,

Thus, hg+m, 2 k/10 QED



Conclusion

* Improve the approx factor and/or running time

. PTAS? Better than factor 3? 27?
] Generalized CCR
* Weights

— O(log n/loglog n)-approx [Chan, Har-Peled]

— O(loglog n)-approx [Chalermsook, Walczak, SODA21]
* Higher dimensions?
* Pach-Tardos conjecture about perfect BSP’s

Conjecture 1. For any set of n interior-disjoint axis-aligned rectangles in the plane, there exists a subset
of size Q2(n) that has a perfect orthogonal BSP.



Problem Discussed

* Added 3 slides about the problem mentioned: Find
a shortest path/cycle in outer space in order to do a
visibility coverage of planet earth



External Watchman Path for a Sphere

e Short Path
Length 11.08

Two segments and a spiral: (
2\ 1 a2\ - 11 Fatten spiral
{((1 —at”)sin(brt), (1 — at”) cos(brt), ct) | —1 <t < 1} near middle
o = 04, b= 118, c=1.12, 20 = —0.37, 4o = —0.199, 2 = 1.24

By computer search
The Asteroid Surveying Problem and Other Puzzles

[SoCG'03 video]
Timothy M. Chan Alexander Golynski Alejandro Lopez-Ortiz Claude-Guy Quimper



External Watchman Path for a Sphere

= Short Path
Length 10.726

a rather short ‘inspection curve that lies at the constant altitude of /2 — 1

L =mn(2+2) ~10.726

SHORTEST INSPECTION CURVES FOR THE SPHERE

V. A. Zalgaller* Journal of Mathematical Sciences, Vol. 131, No. 1, 2005



External Watchman Cycle for a Sphere

Shortest Cycle ?

"Shortest Inspection
Curves for the Sphere”
V. A. Zalgaller

“"baseball stitch curve"

[discussions: Jin-ichi Itoh, Joe
O'Rourke, Anton Petrunin, Y. Tanoue,
Costin Vilcu] 108 double stitches




