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Some NP-Hard Optimization Problems 
in Geometry
ÅTSP. vehicle routing  variants
ÅWatchman routes
ÅMin-Weight Convex Partition
ÅMACS: Maximum Area Connected Subset
ÅMIS: Maximum Independent Set 
ÅΧ

Goal: Exploit geometric structure to get efficient, provable 
approximation algorithms



Introduction

ÅSampling of optimization problems:
ÅOptimal routes/networks to visit regions

ÅOptimization of routes for vision/coverage

ÅAspects of current interest:
ÅUncertainty, robustness of solutions

ÅHandling time constraints

ÅMotivating applications:
ÅRobotics

ÅSensor networks

ÅVehicle routing, logistics



Cooperative Heterogeneous Vehicle Mission Planning

ÅVehicles:  various classes (ground, air, sea), speeds, 
capacities, capabilities

ÅTargets: points, regions; mission task times; 
precedence constraints

ÅConstraints: domains of operation; tethers 
(distance); rendezvous requirements, formations

ÅTactical vs strategic; online vs offline

Motivating applications: search and rescue; casualty/disaster response; surveillance; mosaic 
battlefield 



ÅDrone (UAV) picks up a payload from a truck, which continues on its route, and 
after a successful delivery, the drone returns to the truck to pick up the next 
payload

Å¢ǊǳŎƪ ƛǎ ŀƴ άŀƛǊŎǊŀŦǘ ŎŀǊǊƛŜǊέΤ ŘƻŜǎ ƴƻǘ ǎǘƻǇ ŀǘ ǘŀǊƎŜǘǎ

ÅComputing the most efficient routes is challenging because we have to coordinate 
both vehicles simultaneously

ÅFor a fixed target sequence, the problem is a Second Order Cone Program (SOCP)

ÅFor a fixed truck route, the problem is a challenging geometric scheduling problem

ÅWe studied also generalizations to mutli-trucks, multi-drones

άIƻǊǎŜŦƭȅέΥ 5ǊƻƴŜ-Assisted Mission Planning (DAMP)





Missions for Agents, UAVs
Types of mission tasks: 
Å Visit target site (point) p
Å Visit (any point) of target region R
Å Possible constraint: Mission time (minimum) 

within R

Å View a target (point/region) T: visit any 
Ǉƻƛƴǘ ǘƘŀǘ ƛǎ ǾƛǎƛōƭŜ ǘƻ ¢       άǿŀǘŎƘƳŀƴ 
ǊƻǳǘŜ ǇǊƻōƭŜƳέ

Å Sweep a target region (recon, search), W

W

T

R

p

[Jia, Mitchell, 2019:  TSPN with time lower bounds.    
PTAS, dual approximation algorithms]



Approximation Algorithms

For a minimization problem, seek an upper bound on the 
ratio

=h(worst-case bound given by ALG)/ OPT

-happroximation

Possibly, h= (hn) depends on n, the size of the input

PTAS: For any fixed eps>0, there is a polytimealgorithm 
achieving (1+eps)-approximation

(EPTAS, FPTAS,QPTAS)



Approximation Techniques

ÅSolve an easier problem, and use it to solve the 
hard problem, approximately

ÅLinear Programming relaxation of an Integer 
Program; Semi-Definite Programming

ÅGrid shifting, quadtrees; m-guillotine method

Å!ǇǇǊƻȄƛƳŀǘƛƴƎ ǎǳōǎŜǘǎΤ άŎƻǊŜ ǎŜǘǎέ

ÅLocal search



Geometric Covering Tours, TSP



Covering Tours

ÅCover a point set S

Just geometric TSP



Covering Tours
ÅCover a set of disks

TSP with (circular) neighborhoods

ÅGather data from sensors
ÅCover imprecise points
ÅSchool bus route



Lawnmower/Milling Problem

Best method of 
mowing the lawn?

TSPN: Visit the disk 
centered at each blade 
of grass

[AFM]



Pocket Machining
[Martin Held]



Covering Tours
ÅCover a set of visibility polygons

Watchman Route Problem

Search for location of an 
uncertain target: Want 
shortest such route



WRP Approximation

Â Simple polygons:
ÅSqrt (2) -approx, O(n), for anchored [Tan, DAM 2004]

Å14(p+4)=99.98-approx, O(n log n), for floating [ Carlsson, 
Jonsson, Nilsson, TR 1997]

Å2-approx, O(n), for floating [Tan, TCS 2007]

Å4-approx, O(n 2), for min -link [ Alsuwaiyel , Lee, IPL 1995]

Â Polygons with holes?
ÅO(log n)-approx , rectilinear , rectangle -visibility

Â WRP in 3D: No constant -factor, unless P=NP
[Safra , Schwartz 2003]

SODAõ13: O(log2 n), W(log n)

W(log n), even for terrains



Variants

Åk Agents/Tours
ïPossibly tethered, or otherwise constrained

ÅDepot(s) 
ÅOffline vsonline
ÅTime windows/constraints
ÅSites in motion (kinetic variant)
ÅUncertain sites: Stochastic models
ÅPrecedence constraints
ÅtǊƛƻǊƛǘƛŜǎΣ άǇǊƛȊŜǎέ ŀǘ ǎƛǘŜǎ
ÅVarious objectives, multicriteriaoptimization

άǘŜǘƘŜǊŜŘ ¢{tέ

e.g., must see each point for time at 
least T; min makespan



Objective Functions

ÅMin-length of tour  (time to complete search)
ïEuclidean, Lp, weighted lengths

ÅOptimize edge lengths: min-max (bottleneck), 
max-min (max-scatter)
ÅMin turning: # turns, total turn, bounded 

curvature
Åk Tours: min-max, min-sum; min-k for tours of 

bounded length
ÅMin-latency
ÅStochastic metrics: e.g., max P(tour length < L), or 

min E(time until a goal is achieved)
ÅCombined metrics, multicriteria



Application: Mobile Agents to Gather 
Data from Static Sensors

Å²Ƙŀǘ ŘƻŜǎ ƛǘ ƳŜŀƴ ǘƻ άƎŀǘƘŜǊέΚ

ïArrive at a sensor (point)

TSP



Mobile Agents to Gather Data from 
Static Sensors

Å²Ƙŀǘ ŘƻŜǎ ƛǘ ƳŜŀƴ ǘƻ άƎŀǘƘŜǊέΚ

ïArrive at a sensor (point)

ïArrive close to a sensor

TSP with neighborhoods



Mobile Agents to Gather Data from 
Static Sensors

Å²Ƙŀǘ ŘƻŜǎ ƛǘ ƳŜŀƴ ǘƻ άƎŀǘƘŜǊέΚ

ïArrive at a sensor (point)

ïArrive close to a sensor

ïSee a sensor

ÅUnlimited sight distance

Watchman route



Mobile Agents to Gather Data from 
Static Sensors

Å²Ƙŀǘ ŘƻŜǎ ƛǘ ƳŜŀƴ ǘƻ άƎŀǘƘŜǊέΚ

ïArrive at a sensor (point)

ïArrive close to a sensor

ïSee a sensor

ÅUnlimited sight distance

ÅLimited sight distance



Data Gathering Problem

Each sensor, at position pi, has a capacity, ci

Data arrives at rate ri

If capacity is reached, additional data is lost

[Citovsky,Gao,M,Zeng, ALGOSENSORS 2015]



Given Ὧmules travelling at a constant speed ίand 
ὲsensors at points ὴȟὴȟȣȟὴ in a metric 
space with capacities ὧȟὧȟȣȟὧ and 
continuous data accumulation rates ὶȟὶȟȣȟὶ .

Goal: Find a schedule/tours to maximize the data 
collection rate of all of the mules.

Data Gathering Problem

Each sensor, at position pi, has a capacity, ci

Data arrives at rate ri

If capacity is reached, additional data is lost



Given ὲsensors at points ὴȟὴȟȣȟὴ in a 
metric space with capacities ὧȟὧȟȣȟὧ and 
data accumulation rates ὶȟὶȟȣȟὶ .

Goal: Find the min # mules and their schedules 
such that no data is lost.

No Data Loss Problem: Min # of Mules



Our Results

With Sensors Single Mule K-mule No Data Loss

on a Line exact exact

on a Tree
exact pseudo-

polynomial ρ

σ
ρ ϳρὩ

12
General Metric

Space
ʀ

Euclidean Space ʀ ρ

σ
ρ ϳρὩ

Different 

Capacities
ὕ ὕά

ά ÌÏÇ , ὧ = largest capacity, ὧ = smallest capacity

(OPT is periodic if we assume integral capacities, rates, distances)



Orienteering Problem:  Tour length quota, L

Prize-Collecting TSP:  Prize quota (possible costs for 
skipping sites)

Profitable Tour Problem:  max (Prize - Tour length)

TSP with Time Windows

Related: Variations of TSP



Orienteering

Given n sites S={p1, p2ΣΧΣpn}; length bound L.

Goal: Find a path/tour ƻŦ ƭŜƴƎǘƘ Җ[ ǘƻ Max # of 
sites visited

Data gathering: maximize the collected data rate

Length L O(1)-approxώ!abΣ {ƻ/DΩфуϐ
PTAS, for rooted case, based 
on improved analysis of m-
guillotine method for k-TSP     
ώ/IΣ {ƻ/DΩлсϐ

Q:O(n log n)?

Improved PTAS [GKR 2020]: 



TSP/Orienteering with Time Windows
Given n sites S={p1, p2ΣΧΣpn}, each with a time 
window, (ri,di); length bound L.

Goal: Find a path/tour to Max # of sites visited 
during their respective time windows

ri=release time at pi 
di=deadline at pi
Laxity = mini (di-ri)

Possible service time, t i, at pi; 
assume t i=0.



Time-Window TSP

ÅTime Window Prize Collecting (TWPC): 

Unit speed robot;  must visit each site i during given 
time window, (r i , di). 

DƻŀƭΥ ƳŀȄ І ǎƛǘŜǎ ǾƛǎƛǘŜŘ όƻǊ ǘƻǘŀƭ άǇǊƛȊŜέύ

ÅTime Window Travelling Salesman (TWTSP):

Robot with speed s; must visit each site i during given 
time window, (r i , di). 

Goal: min distancerobot travels to visit all sites (in TW)

(may not be feasible for small s)

όƻŦǘŜƴ ŎŀƭƭŜŘ ά¢²¢{tέύ

[WAFR 2016, JieGao, Su Jia, M]



Time-Window TSP

Various results, including:

Dual-approximation algorithms for 2D and metric spaces, 
yielding approxopt solution, using relaxed speed 
constraint

[WAFR 2016, JieGao, Su Jia, M]





m-Guillotine Method Revisited



Traveling Salesperson Problem: TSP
ÅIn Euclidean plane: Find a cycle (polygonal) to visit n 

points, S, that has the shortest Euclidean length

ÅNecessarily: it will be a simple polygon with vertex 
set S  (Why? Triangle inequality!)



TSP

ÅExtremely well studied combinatorial 
optimization problem

ÅMany methods to solve to optimality (in 
worst-case exponential time) or near 
optimality

ÅNP-hard, even in Euclidean 2D

49 cities, 1954



Approximating TSP



Recent News: 
Breaking Below 1.5

https://arxiv.org/pdf/2007.01409.pdf

1.499999999999999999999999999999999999 -approximation!

https://arxiv.org/pdf/2007.01409.pdf


Can Geometry Help?



PTAS for Geometric TSP

Â PTAS in 2D, any fixed dim

Â O(n log n): spanners/ banyons

Â NP-hard to get (1+ e)-approx in RO(log n) , 
for some e>0

[Arõ96,Mõ96,Arõ97,Mõ97]

[Rao-Smithõ98]

[Trõ97]



Recipe for PTAS

OPT Network with special
recursive structure

increasing length by 
¢(1+e) factor

Use dynamic programming to compute shortest network with the required 
structure (connectivity, Eulerian subgraph, etc)

Optimal network with 
special structure

Structure Theorem

What should the special recursive structure be?

Solution to original
problem (tour, tree, etc)



Recipe for PTAS

OPT Spanner with special
recursive structure

increasing length by 
¢(1+e) factor

Use dynamic programming to compute shortest subgraph of special spanner 
with the required structure (connectivity, Eulerian subgraph, etc )

Optimal subgraph with 
special structure

Structure Theorem

What should the special recursive structure be?

Solution to original
problem (tour, tree, etc)

Spanner

The Role of Spanners: [ Rao-Smith]



m-Guillotine Structure

Network edge set E is m-guillotine if it can be recursively partitioned by 
horiz/vertical cuts, each having small (O( m)) complexity wrt E

Example:  3 -guillotine
Each cut intersects E in at most 3 connected components

One Possibility:



Why m-Guillotine?
Desired Recursive Structure

Constant 
(O(m))

information 
flow across 
boundary

Rectangular subproblem in dynamic program (recursion)

It is òjustó what is needed for dynamic programming to work!

















m-Guillotine Structure Theorem
Any set E of edges of length L can be made to be  
m-guillotine by adding length  O(L/m) to E, for any 
positive integer m.

Proof: Based on a charging scheme.

While this ñscribbleò may not 

be m-guillotine, it is ñcloseò

in that it can be made m-guillotine

by adding only (1/m)th of its length 



Possible Vertical Cuts

f(x)

x
f(x) = length of m -bridge   (m=3)

= cost of construction



Paying for the Bridge Construction: 
The Chargeable Length

h(x) = chargeable length
x

Blue portion: òm-darkó

NOTE: After cut, charged lengths never charged again

h(x)/2 charged to 
the right (left 
sides of m levels)

h(x)/2 charged to 
the left (right 
sides of m levels)

Level 1
Level 2
Level m=3



Key Lemma

Â There exists a cut whose chargeable 
length is Ó its cost (length of m-span)

There exists a òfavorable cutó



WLOG:   RED area  Ó   BLUE area

Thus, there exists a y * such that 
m-dark portion of cut y=y * Ó   g(y) = cost of cut = m-span

y*

Chargeable Length Cost of CutÓ

Key Lemma: A cut exists with chargeable 
length Ó cost (length of m-span)



A Simple O(n log n) PTAS
Â Build (1+e)-spanner, G, of n points O(n log n)

Â Compute m-guillotine version, G m O(n log n)

ÅAssociated (balanced) tree, T(G m)

1

1

2 3

2

3
4 5

4

5

6

6

7

8

9

7 8

9

(1+e)-spanner, G, of weight O(|MST|)

Points  S Tree  T(Gm)

[Rao-Smith]



A Simple O(n log n) PTAS
Â Build (1+e)-spanner, G, of n points O(n log n)

Â Compute m-guillotine version, G m O(n log n)
ÅAssociated (balanced) tree, T(G m)

Â DP: Min-weight spanning subgraph of G m
ÅO(n) Subproblems : nodes of T(G m), plus O(1) info

1
2

21

1

Specify which subset of the O(m) 
boundary segs of G m OPT should use 
and how many times (1 or 2) it uses it

OPT can be moved onto spanner G (factor (1+e)), 
which is subgraph of Gm

ï |OPTG| Ò (1+e)|OPT|

Sum of bridge lengths added: 

|bridges| = O(e|G|)=O(e|MST|)=O(e|OPT|)

Algorithm computes OPTG m

|OPTG m
| Ò  |OPTG| + |bridges|

Ò (1+e)|OPT| + O(e|OPT|)

(2O(m))



Higher Dimensions

Â m-guillotine applies:



View of a Slice

Cross section orthogonal to  x i

Graph Gi(x i) = green  Çmagenta edges



View of a Slice

Cross section orthogonal to  x i

Graph Gi(x i) = green  Çmagenta edges
= union of disjoint green/magenta paths



View of a Slice

Cross section orthogonal to  x i

m-deep green edges



View of a Slice

Cross section orthogonal to  x i

m-deep (m=3) green edges

Similarly define m -deep 
magenta edges. 

Gi
(m) (x i) = all m-deep edges

Claim: The m-deep graph, 
Gi

(m)(x i), has O(md-1) 
connected components



m-Guillotine in R d

ÂòCostó of cut orthogonal at xi = length of 
the m -deep edge set = f i(x i)=|Gi

(m)(x i)|
ÅIntegrate wrt x i = Area i (of 2 -manifold M i)

ÂòChargeableó length of cut =  В Ὤὼ , 
where Ὤὼ = length of the x iðcross-
section of M j

Â Lemma: If Area i = minj (Area j ), then there 

exists ὼ
ᶻ

with f i (x i
*) Ò 1/(d-1) В Ὤ(x i

*) 

i.e., there exists a favorable cut



m-Guillotine in R d

Â Each unit of edge length parallel to x j gets 
charged at most (d -1) times, each time 
with 1/m(d -1) of its length (and will not be 
charged again after the cut)



Other Metrics
Â General metric TSP: APX -hard

Â Bounded intrinsic (doubling) dimension:

ÅTalwarõ04: QPTAS

ÅBartal -Gottlieb -Krauthgamerõ12: PTAS

Doubling dimension k=ddim(S) of finite metric space S: Every ball of radius 
r can be covered by 2k balls of radius r/2



Many Applications

Â Optimal paths, tours, trees

Â Min weight networks

Â Optimal partitioning

Â Packing problems, MIS

Â Covering problems (disk cover, guarding, 
jamming)

Â Facility location, relay placement

Â Optimal separation

Â Robot localization


