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Freeze Tag!:

Given: robots at points in a metric space

robots are “asleep”

1 robot is awake

An awake robot “wakes up” a sleeping robot at point by going to

As robots wake up, there are more robots to assist in waking up others

Goal: Wake up all robots as soon as possible

Minimize makespan
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Other Motivations:

Distribute data (or other commodity) to agents, where physical
proximity is necessary for transmittal
Secret sharing by whisper
Natural network optimization problem:

Minimize the length of a root-to-leaf path in a binary spanning tree
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Related Work:

Dissemination of data in graphs:

minimum broadcast time problem

multicast problem

minimum gossip time problem

Key differences from FTP:
messages sent along edges of graph (no need for proximity)
broadcast problem poly in trees, but FTP is NP-hard even for stars



Simple Approximation Bounds:

Any “brain-dead” strategy gives -approx:

Source robot awakens one other robot
(travelling distance , diameter)
Now 2 awake robots.

Each travels to a distinct other asleep robot (dist ), awakens it
and waits (if necessary) for the other robot to reach its destination
Now 4 awake robots.

Etc, etc, rounds, each of length

Lower bound on OPT:

OPEN: Is there an approximation algorithm?

14
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Fundamental Question:

Whether to awaken a nearby robot or go further to (start to) awaken
a larger swarm?

zzz

zzz zzzzzz

zzz

zzz

Close individual

Further away cluster

??
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Summary of Results:

1. FTP is NP-hard, even for stars, with one robot per leaf

2. -approx for (general) stars

3. PTAS for stars, same number of robots at each leaf

4. Tight analysis of greedy heuristic on stars: 7/3-approx

5. -approx for FTP in ultrametrics ( -approx)

6. Simple linear-time on-line algorithm, -competitive
( max degree)

7. NP-hard to get 5/3-approx in offline problem, even if

8. PTAS for geometric instances in fixed-dimension, metric
Time
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Stars: Equal-Length Spokes:

v0

ni
vi  robots

Natural greedy strategy:

A robot arriving to chooses the (unclaimed) leaf having the
most asleep robots
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v0

ni
vi  robots

Claim: Greedy is optimal
Proof: two exchange arguments:

optimal schedule in which no robot is idle if work to be done

if a robot chooses a branch with fewer robots than unclaimed branch
, swap
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Stars: Unequal Length Spokes:

Assume robots asleep at each of leaves
v0

vi q robots

Natural greedy strategy:

A robot arriving to chooses the shortest (unclaimed) spoke
having asleep robots

Question: How good is Greedy in this case?
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Example: Greedy Strategy:

v0

v0

A

B
C D

100
1

A

B C

D

GREEDY  wake−up tree

Makespan  =  104
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Example: Optimal Strategy:

v0

v0

A

B
C D

100
1

A

B

OPT  wake−up tree

Makespan  =  102D

C

Thus, Greedy can be suboptimal (104 vs. 102)
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Analysis of Greedy on Stars:

Amazingly, greedy is a 7/3-approx, and this bound is tight
Claim: Greedy is at best a 7/3-approx
Example:

v0

2  −1k

2k

3k

k

1
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Time = 2:
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Time = 4:
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Time = 2k:
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Time = 2k+4:
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Time = 3k+2:

v0
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2k

3k

k

1

GREEDY

v0

2  −1k

2k

3k

k

1

OPT

Greedy still has another to go!
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Analysis of Greedy on Stars:

Our analysis relies on the following fact, of independent interest:

Theorem: Greedy minimizes the average completion time
( completion time of robot is the time when the robot is awake and no
longer busy (moving))
Proof Idea: Exchange arguments
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Analysis of Greedy on Stars:

Theorem: Greedy gives 7/3-approx in stars, and this is tight
(assume asleep robots at each leaf initially)
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NP-hardness for Stars:

Theorem: FTP is strongly NP-hard, even for weighted stars with
robot at each leaf
Proof: Reduction from NUMERICAL 3-DIM MATCHING (N3DM)
Input: Sets , , , each with elements of integral sizes , , ,
and a number
Question: Can be partitioned into disjoint sets ,
with each a triple (one element of , of , of ) of size ?

WLOG:
Let be sufficiently small ( )
Let be sufficiently large ( )
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Hardness Construction:

v0

αi

A 2K

2K

2  −1K
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β j

γ k
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Claim: schedule of makespan to awaken all robots within time iff
solution to N3DM

“IF”: ( “ONLY IF” is more involved)
“greedy cascade” brings all robots to , time
these robots go to A-leaves

v0

αi

A 2K

2K

2  −1K
αi

β j

γ k

2K

2 * 2K

ε

A

B

E

C
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2 each return to at times
of each pair to , along
the other of each pair to , along : , in same

v0

αi

A 2K

2K

2  −1K
αi

β j

γ k

2K

2 * 2K

ε

A

B

E

C
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2 robots get back to by time
they go to , down pair of edges of length :
all robots at awake by time

v0

αi

A 2K

2K

2  −1K
αi

β j

γ k

2K

2 * 2K

ε

A

B
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PTAS for Stars with Robots per Leaf:

Theorem: There is a PTAS for weighted stars with robots at each leaf
Proof idea:
Let be a good lower bound on makespan

(use 3/7 times greedy solution)
Partition edges: “short” (length ) and “long” (length )
Round up lengths of long edges to multiples of
Suffices to consider schedules in which each long edge is entered by
a robot at a time that is a multiple of

Only different lengths/start-times of long edges
Enumerate (in ) all possibilities of how many long edges of
a given length are started at a given time

In this way, we have “guesssed” the correct positions of all long edges
Fill in short edges with a variant of greedy
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General Stars with Robots at Leaf :

Now: centroid metric
(star with various spoke lengths, various )

Consider a natural greedy strategy:

“Shortest Edge First” (SEF): An awake robot at picks a
shortest edge leading to asleep robots, breaking ties
according to # robots
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Example: Shortest Edge First Can be Bad:

v0

1

n−1   leaves

1+ε

n−1   robots
SEF: OPT:

Key Dilemma: Choose a short edge leading to few robots or a long edge
leading to many?
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Devising an Alternative Strategy:

Round edge lengths to powers of 2 (may double approx factor)
Issue: How to pick what length class to visit first?
Idea: Hedge our bets by repeated doubling

“Repeated Doubling” (RD): Edge lengths traversed repeatedly
(roughly) double in size; in each length class be greedy in #
robots
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Example: Repeated Doubling Can be Bad:

v0

1

n/2   leaves

log n

n/2   leaves

RD: OPT:

Idea: Merge the SEF and RD strategies
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Tag-Team Algorithm:

Awaken one edge in each length class , but before going to
the next length class, awaken the shortest available edge.

This combination of two -approxmethods yields an -approx!

Theorem: The Tag-Team Algorithm gives a 14-approx
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General Weighted Graphs:

General graph with non-negative edge weights
# asleep robots at degree of

Lemma: Suppose for the source node , and
at any other node in . Then the FTP can be solved by breadth-

first search.
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General Weighted Graphs:

Theorem: There is a linear-time on-line algorithm for the FTP in that
guarantees a competitive ratio of .
Proof Sketch: Simulate BFS: At use a greedy strategy to wake up all
robots adjacent to , with binary tree of depth for the root, and

for
Greedy implies that any edge in the resulting wake-up tree can only be
placed below edges that satisfy .
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Bad Example for Local Greedy Strategy:

v
0

vk

1+ε

1

∆ ∗  r (v  ) robots0

ε/2

Local greedy takes ; OPT takes
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Hardness of Approx:

FTP is NP-hard even if one high-degree vertex ( )
Question: If degrees are all small, can we do much better?
Theorem: Even if all nodes have degree and at most one robot per
node, it is NP-hard to get better than 5/3-approx.
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Proof Sketch: From 3SAT:

x2

length 1

length 1/2

length ε Root

Literal
vertices

1

1(x      x      x   )
1(x      x      x   )

1(x      x      x   )

1(x      x      x   )
1(x      x      x   )

(x     x  )2

x x x x x x
3 4 5 4 6 7

x1 x1 x2

Clause vertices

(To other variables) 

Preliminary leaves

1(x     x  )1
2 3

(x      x      x   )2 4

2 5

2 4

2 6

2 7

2

A solution with makespan if satisfying truth assignment;
makespan if none (pick )
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Geometric Instances:
Robots at points in the plane:

v0

Question: Can we exploit geometry to get good approx?

OPEN: Is the problem NP-hard?
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Geometric Instances: -approx:

Theorem: an -approx, time , for the geometric FTP
in any fixed dimension . The algorithm gives wake-up schedule with
makespan .

Strategy: When robot at awakens, it awakens nearest asleep robot in
each of sectors, in order of increasing distance from

1

2

3

4

5

6
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is a -graph (which is a -spanner)

Distances in approx Euclidean

Let be the last robot to be awakened

If robot at point is awakened at time , then all neighbors of in
are awakened by time , where length of path .

The path from to in the wake-up tree has length at most
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PTAS for Geometric Instances:

Rescale so that all robots lie in unit square
Look at -by- grid of pixels,

v0

P

Consider an enumeration over a special class of wake-up trees on a set
of representative points, one per occuppied pixel
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Awake-up tree is pseudo-balanced if each root-to-leaf path has
nodes

ALGORITHM:
0. Pick a representative point in each occuppied pixel set
1. Among all pseudo-balanced wake-up trees for , pick one ( ) of
min makespan,
(outdegree at most if robots in pixel)

Only trees.
2. Convert into a wake-up tree for all robots by replacing each

with an -approx wake-up tree for robots in ’s pixel
(time )

Total time:
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Correctness:

Lemma 1. There is a choice of representative points such that the
makespan of an optimal wake-up tree of is at most .
Proof: Just pick the representative point to be the location of the first
robot that is awakened in an opt solution, , for the set of all
robots.
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Lemma 2. If wake-up tree, , of makespan , then, for any ,
there exists a pseudo-balanced awakening tree, , of makespan

.
Proof Sketch:
Use a heavy path decomposition of
Any root-to-leaf path has only light edges
Decompose each heavy path into short subpaths of length
(only subpaths on any root-to-leaf path of )

Modify wake-up tree to transform each subpath into a wake-up tree of
height , with a small increase in makespan
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Lemma 3. For any two choices, and , of the set of representative
points, .
Proof: Pixels have size and there are at most
awakenings in each root-to-leaf path of a pseudo-balanced tree;
thus, any additional wake-up cost is bounded by .
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Lemma 4. For any pseudo-balanced wake-up tree of , there exists a
wake-up tree, , with makespan .
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Putting the Pieces Together:

Theorem: There is a PTAS, with running time ,
for the geometric FTP in any fixed dimension .
Proof:
The makespan, , of the wake-up tree we compute obeys:

for appropriate choices of and , depending on .
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Experimental Studies [with Marcelo Sztainberg]:

Experimental analysis of 3 natural heuristics, including greedy
Analysis of greedy on geometric data: -approx
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Conclusion – Summary of Results:

1. FTP is NP-hard, even for stars, with one robot per leaf

2. -approx for (general) stars

3. PTAS for stars, same number of robots at each leaf

4. Tight analysis of greedy heuristic on stars: 7/3-approx

5. -approx for FTP in ultrametrics ( -approx)

6. Simple linear-time on-line algorithm, -competitive
( max degree)

7. NP-hard to get 5/3-approx in offline problem, even if

8. PTAS for geometric instances in fixed-dimension, metric
Time
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Conclusion – Open Problems:

OPEN: Is FTP in the Euclidean plane NP-hard?

OPEN: Is there an -approx for general metric spaces?



1. Introduction 

2. Freeze Tag 

3. Angular Freeze Tag 

4. Angular Scan Cover

Overview

59



Angular Freeze Tag

60



Angular Freeze Tag

60



61

Institute of Operating Systems
and Computer Networks

Beam It Up, Scotty:

Angular Freeze-Tag with Directional Antennas

Sándor P. Fekete and Dominik Krupke

March 20, 2018



62

Introduction Hardness Approximation Integer Programming Conclusion

Motivation

Highly focused antennas.

Expensive rotations.

How can we quickly distribute

information from one satellite

to all others?

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 2

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks
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Introduction Hardness Approximation Integer Programming Conclusion

Wikipedia
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Introduction Hardness Approximation Integer Programming Conclusion

Problem Description

Distribute data from one satellite to all other with minimal

makespan.

Informed/activated satellites can participate in the distribution.

Some simplifications:

1. Only sender has to adjust.

2. Exact adjustment, i.e. beam is a ray.

3. Fixed positions.

4. Geometric plane.

5. Negligible transmission time.

6. Rotation time equal rotation angle.

Start
p0

p1

p2

p3

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 4

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks
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Introduction Hardness Approximation Integer Programming Conclusion

A simple observation

Independent of the number of satellites,
the objective value is between 0 and 2⇡.

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 5

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks
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Hardness

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 6
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Introduction Hardness Approximation Integer Programming Conclusion

Hardness

Theorem

A c-approximation algorithm for the AFT with c < 5/3 implies P = NP .

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 7

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks
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Introduction Hardness Approximation Integer Programming Conclusion

Hardness Construction

x1 _ x2 _ x3 x1 _ x2 _ x3 x1 x1 _ x2

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 8
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Introduction Hardness Approximation Integer Programming Conclusion

Hardness Construction

x1 _ x2 _ x3 x1 _ x2 _ x3 x1 x1 _ x2

variable assignment agents

decision agents

literal agents
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Introduction Hardness Approximation Integer Programming Conclusion

Hardness Construction
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9-Approximation Algorithm

Theorem

There is a 9-approximation in the plane

Even for unknown locations and headings as long as we know a lower
bound of " > 0
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Recap: The linear search problem

Theorem (Beck and Newman, 1970)

The path of the doubling strategy is at most 9 times the length of the
direct path.
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Rotating Linear Search

Strategy

For each satellite: As soon as activated, start doubling rotation.

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 12

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



105

Integer Programming

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 13

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



106

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



107

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



108

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



109

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

π

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



110

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



111

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



112

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



113

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



114

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



115

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



116

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



117

Introduction Hardness Approximation Integer Programming Conclusion

Integer Programming

v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

min max
pi2P

yvi

X

e2Ein(vj!i ),pj2P

xe = 1 8pi 2 P \ {p0}

X

Eout(vi!j )

xe 
X

Ein(vi!j )

xe  1 8vi!j 2 V

X

Eout(vi )

xe  1 8pi 2 P

X

v,w2S

xvw  |S| � 1 8S ⇢ V

yvi =

X

pj2P

yvj!i
8pi 2 P \ {p0}

yw � yv + cost(vw)+(3⇡xvw � 3⇡) 8vw 2 E
X

pi ,pj2S

X

e2Ein(vi!j )

xe  |S| � 1 8S ⇢ P \ {p0}

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 14

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



118

Introduction Hardness Approximation Integer Programming Conclusion

Experiments

 0

 1.57

 3.14

 4.71

 6.28

 7.85

 5  10  15  20  25  30
 0

 20

 40

 60

 80

 100
up

pe
r b

ou
nd

 - 
lo

we
r b

ou
nd

in
st

an
ce

s 
(%

) s
ol

ve
d 

to
 o

pt
im

al
ity

n

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 15

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



119

Conclusion

Sándor P. Fekete and Dominik Krupke | Angular Freeze-Tag | 16

d.krupke@tu-bs.de

Institute of Operating Systems
and Computer Networks



120

Introduction Hardness Approximation Integer Programming Conclusion

This is just the beginning. . .

Still to do:

Adjustment of receiver

Transmission time and delay

Satellites can prepare before they actually
receive the data

3D, Sphere, Orbital Movement.

Cost of changing rotation.

Thank you for your attention!
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✦ Immediate scan if both 
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2.3 Polynomially Solvable Cases

Even though there is no constant-factor approximation in general, we would like to note that
bipartite and complete graphs in 1D can be solved in polynomial time.

I Observation 3. For instances of msc in 1D for which the underlying graph G is bipartite,

there exists a polynomial-time algorithm for computing an optimal scan cover.

Proof. We assume that ‰(G) = 2, otherwise there is no edge to scan. If for every vertex, all
its neighbors lie either before or after it, G can be scanned within one step, which is clearly
optimal. Otherwise, every scan cover needs at least two steps. By Theorem 1, there exists a
scan cover with 2 steps. Because bipartite graphs can be colored in polynomial time, the
proof of Theorem 1 provides a scan cover. J

I Observation 4. For instances of msc in 1D for which the underlying graph G is a complete

graph, there exists a polynomial-time algorithm for computing an optimal scan cover.

Proof. Because every scan cover induces a cut cover and c(G) = Álog2 nË, it su�ces to
provide a scan cover with this number of steps. To this end, we recursively scan the bipartite
graphs induced by two vertex sets when split into halves with respect to <L. J

3 Two-Dimensional Point Sets

For two-dimensional point sets, we show that even for bipartite graphs, it is hard to
approximate msc better than 3/2. Conversely, we present a 9/2-approximation algorithm for
these graphs and apply the gained insights to achieve approximations for k-colorable graphs.

3.1 Bipartite Graphs

By Theorem 3, we cannot hope for a constant-factor approximation for general graphs.
However, bipartite graphs in 1D can be solved in polynomial time. We show that the added
geometry of 2D makes the msc hard to approximate even for bipartite graphs.

3.1.1 No Approximation Better than 1.5 for Bipartite Graphs in 2D

As a stepping stone for the geometric case, we establish the following.

I Lemma 5. It is NP-hard to approximate a-msc better than 3/2 even for bipartite graphs.

Proof. The proof is based on a reduction from Not-All-Equal-3-Sat where a satisfying
assignment fulfills the property that each clause has a true and a false literal, i.e., all false
or all true is prohibited. The nice feature of this variant is that the negation of a satisfying
assignment is also a satisfying assignment.

For every instance I of Not-All-Equal-3-Sat, we construct a graph GI and a cost
function – where each edge pair has a transition cost of 0, „, or 2„. Thus, every optimal
scan cover has discrete time steps at distance „. We show that there exists a scan cover
of (GI , –) with three time steps, i.e., a scan time of 2„, only if I is a satisfiable instance.
Otherwise, every scan cover has at least four steps, i.e., a value of 3„.

We now describe our construction of GI , which is a special variant of a clause-variable-
incidence graph. For an illustration, see Figure 5. There are four types of vertices and three
types of edges: For every clause Ci of I, we introduce a clause gadget consisting of a clause

vertex and three entry vertices, each of which represents one of the literals appearing in

arX iv
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C1 C2

x1 x1 x2 x2 x3 x3 x4 x4

C3 �2� 0

(x2 _ x3 _ x4)(x1 _ x2 _ x3) (x1 _ x2 _ x3)

Figure 5 Illustration of the graph GI for the instance I = (x1‚x2‚x3)·(x1‚x2‚x3)·(x1‚x2‚x3).
The edge set consists of clause edges (blue), incidence edges (orange), and variable edges (black).

the clause. The clause vertex is adjacent to every entry vertex of its gadget by a clause

edge. For every variable xi of I, we introduce a variable vertex and two literal vertices. The
variable vertex is adjacent to both literal vertices via a variable edge. Moreover, for every
entry vertex, we introduce an incidence edge to the literal vertex that it represents.

We define – as follows: The transition cost for any edge pair is „ if it contains a clause
edge, 2„ if it contains a variable edge, and 0 otherwise. Note that every variable and clause
edge are pairwise disjoint; hence this is well-defined.

We now show that if I is a satisfiable instance of Not-All-Equal-3-Sat, then there
exists a scan cover with three time steps: If a literal is set to true, then the variable edge
of this literal vertex is scanned in the first time step and all remaining edges of the literal
vertex in the third step. Likewise, if a literal is false, then its variable edge is scanned in the
third step, and all other incident edges in the first step.

For each clause we choose one positive and negative literal to be responsible, the third
literal is intermediate. The clause edges are scanned in the first, second, or third step,
depending on whether their entry vertex corresponds to a responsible positive literal, an
intermediate literal, or a responsible negative literal, respectively. Note that the edge pairs
with transition costs of 2„, namely the edges incident to literal vertices, are scanned in the
first or third step. Thus, the value of this scan cover is 2„. For an example, consider Figure 6.

C1 C2

x1 x1 x2 x2 x3 x3 x4 x4

C3

(x2 _ x3 _ x4)(x1 _ x2 _ x3) (x1 _ x2 _ x3)

1

3
2

Figure 6 Illustration of a scan cover of the graph GI as in Figure 5. Green edges are scanned in
the first, yellow in the second, and red edges in the third step.
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Now, we consider the reverse direction and show that a scan cover with three time steps
corresponds to a satisfying assignment of I. Because the transition cost of any two edges
incident to a literal vertex is 2„, each variable or incidence edge is scanned either in the
first or third step. Therefore, we may define an assignment of I by setting the literals
whose variable edge is scanned in the first time step to true. It remains to argue that in
this assignment, every clause has a true and false literal. Note that the three edges of a
clause gadgets, must be scanned at di�erent time steps. Consequently, there exists a clause
edge that is scanned in the first time step. Its adjacent incident edge is therefore scanned
in the third step. This implies that the variable edge of the literal vertex is also scanned
in the first time step and thus set to true. Likewise, the clause gadget in the third step
corresponds to a false literal. Consequently, this assignment shows that I is a true-instance
of Not-All-Equal-3-Sat. J

We now use Lemma 5 for showing hardness of bipartite graphs in the geometric version.

I Theorem 4. Even for bipartite graphs in 2D, a C-approximation for msc for any C < 3/2

implies P = NP.

Proof. Suppose that there is a (3/2 ≠ Á)-approximation for some Á > 0. For every instance I

of Not-All-Equal-3-Sat, we can construct a graph GI for msc in 2D such that it has
a scan time of 240¶ if I is satisfiable, and a scan time of at least 360¶ ≠ Á otherwise. We
essentially use the same reduction as in the proof of Lemma 5. It remains to embed the
constructed graph GI in the plane such that the transition costs are reflected by the angle
di�erences. The basic idea is to embed GI on a triangular grid; see Figure 7 for some of the
gadgets.

clause gadget

incidence path

variable gadget

Figure 7 Embedding the graph GI into the plane by using „ = 120¶. Additional leaves are added
to force the usage of the larger angle of 240¶. The clause and variable gadgets are connected by
paths instead of edges (solid and dashed orange edges).

In particular, we choose „ = 120¶. For each clause gadget we create a star on four vertices
with 120¶ angles between the edges. The incidence edges also leave with 120¶ from the three
entry vertices.

The vertices of the variable gadget can also easily be embedded in the triangular grid.
However, because the smaller angle between any two segments is at most 180¶, we cannot
directly construct angles of 240¶. Therefore, we insert additional edges and vertices into the
240¶ angle with an angle di�erence of Á as illustrated in Figure 7. If an incident vertex uses
the shorter 120¶ angle, it would still need to cover the additional edges resulting in an overall
turning angle of at least 360¶ ≠ Á = 3„ ≠ Á.
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To connect the clause gadgets with the variable gadgets we now need incidence paths

instead of incidence edges. We use paths consisting of three edges with angles of 240¶ on the
interior vertices. A path will propagate the decision by always scanning all odd or all even
edges at the same time with a di�erence of 240¶. Thus, the first and the last edge of it are
scanned at the same time.

If we allow the points to share the same coordinates, we can position all clause and
variable gadgets at the same locations, respectively. This results in a constant number of
coordinates.

If all coordinates shall be unique, the gadgets can easily be moved up or down as the
incident paths can be stretched. This replicates the behavior of the original construction
except of a tiny angle di�erence of Á for the 2„ angles.

A (3/2 ≠ Á)-approximation would now yield for a satisfiable instance a scan time of at
most (3/2 ≠ Á) · 240¶ = 360¶ ≠ Á · 240¶ and decide the satisfiability because an unsatisfiable
solution would have a scan time of at least 360¶ ≠ Á > 360¶ ≠ Á · 240¶. This is a contradiction
to the NP-hardness of Not-All-Equal-3-Sat. J

3.1.2 4.5-Approximation for Bipartite Graphs in 2D

Conversely, we give absolute and relative performance guarantees for bipartite graphs in 2D.

I Theorem 5. Let I = (P, E) be a bipartite instance of msc with vertex classes P = P1 fi P2.

Then I has a scan cover of time 360¶
. Moreover, if P1 and P2 are separated by a line, there

is a scan cover of time 180¶
.

Proof. We show that the following strategy yields a scan cover of time 360¶: All points turn
in clockwise direction, with the points in P1 starting with heading north and the points in P2
with heading south; see Figure 8a for an example. Note that the connecting line between any
point p1 œ P1 and any point p2 œ P2 forms alternate angles with the parallel vertical lines
through p1 and p2, so both face each other when reaching this angle during their rotation;
see Figure 8b. In the case of separated point sets, a rotation of 180¶ su�ces to sweep the
other set, as illustrated in Figure 8c. J

(a)

'3

'1

'2

'2

'1

'3

'4

'4

(b) (c)

Figure 8 (a) The vertices in P1 and P2 rotate clockwise and start by heading north and south,
respectively. (b) Due to alternate angles, vertices of di�erent parts of the vertex partition face each
other at the same time. (c) When P1 and P2 are separated by a line, a scan time of 180¶ su�ces.

Theorem 5 yields an absolute bound for bipartite graphs. Now we give a constant-factor
approximation even for small optimal values.

I Theorem 6. There is a 4.5-approximation algorithm for msc for bipartite graphs in 2D.
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Scanning bipartite graphs in constant time

NOT AN APPROXIMATION!
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A simple lower bound

 optimal solution of  to cover neighborsmax
s∈V

s

i.e., the largest smallest cone that encloses all neighbors
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Proof idea: With , only -partite subgraphs     
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90∘ 2d
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