Approximation Algorithms
 Chapter 5: Freeze Tag and Scan Cover

Sándor P. Fekete

Algorithms Division
Department of Computer Science
TU Braunschweig

1. Introduction

2. Freeze Tag

3. Angular Freeze Tag
4. Angular Scan Cover

1. Introduction

2. Freeze Tag
3. Angular Freeze Tag
4. Angular Scan Cover

Freeze Tag

Freeze Tag

Algorithmica

0200 Springer Saiamax+Ensinces Mecia, Ire.

The Freeze-Tag Problem: How to Wake Up a Swarm of Robots ${ }^{1}$

Esther M. Arkin, ${ }^{2}$ Michael A. Bender, ${ }^{3}$ Sándor P. Fekete, ${ }^{4}$
Joseph S. B. Mitchell, ${ }^{2}$ and Martin Skutella ${ }^{5}$

Abstract. An optimization problem that naturally arises in the study of swarm robetics is the Freeze-Tag Problem (FTP) of how to awaken a set of "asleep" robots, by having an awakened robot move to their locations. Once a robot is awake, it can assist in awakening other slumbeting robots. The objective is to have all robots awake as early as possible. While the FTP bears some resemblance to problems from areas in combinatorial eptimization such as routing, broadcasting, scheduling, and covering, its algorithmic characteristies are surprisingly different.

We consider both seenarios on graphs and in geometrie environments. In graphs, robots sleep at vertices and there is a length function on the edges. Awake robots travel along edges, with time depending on edge length. For most scenarios, we consider the offline version of the problem, in which each awake robot knows the position of all other robots. We prove that the problem is NP-hard, even for the special case of star graphs. We also establish hardness of approximation, showing that it is NP-hard to obtain an approximation factor better than $\frac{5}{5}$, even for graphs of bounded degree.

These lower bounds are complemented with several positive algorithmic results, including:

- We show that the natural greedy strategy on star graphs has a tight worst-case performance of $\frac{7}{3}$ and give a polynomial-time approximation scheme (PTAS) for star graphs.
- We give a simple $O(\log \Delta)$-competitive online algorithm for graphs with maximum degree Δ and locally bounded edge weights.
- We give a FTAS, ruming in nearly linear lime, for geometrically embedded instances.

The Freeze-Tag Problem: How to Wake Up a Swarm of Robots

Estie Arkin ${ }^{1}$
Michael Bender ${ }^{1}$
Sándor Fekete ${ }^{2}$
Joe Mitchell ${ }^{1}$
Martin Skutella ${ }^{3}$

${ }^{1}$ University at Stony Brook
${ }^{2}$ TU Braunschweig
${ }^{3}$ TU Berlin

Freeze Tag!:

Given: n robots at points in a metric space
$n-1$ robots are "asleep"

1 robot is awake

An awake robot "wakes up" a sleeping robot at point p by going to p

As robots wake up, there are more robots to assist in waking up others

Goal: Wake up all robots as soon as possible

Minimize makespan

$$
\begin{aligned}
& \text { n. } \\
& \text { n. } \\
& \text { i } \\
& \pi \\
& \text { n. } \\
& 1
\end{aligned}
$$

$$
\begin{array}{cc}
\text { in } \\
\text { nim } \\
\text { nim } \\
i n
\end{array}
$$

Other Motivations:

- Distribute data (or other commodity) to agents, where physical proximity is necessary for transmittal
- Secret sharing by whisper
- Natural network optimization problem:

Minimize the length of a root-to-leaf path in a binary spanning tree

Related Work:

Dissemination of data in graphs:

- minimum broadcast time problem
- multicast problem
- minimum gossip time problem

Key differences from FTP:

- messages sent along edges of graph (no need for proximity)
- broadcast problem poly in trees, but FTP is NP-hard even for stars

Simple Approximation Bounds:

Any "brain-dead" strategy gives $O(\log n)$-approx:

- Source robot awakens one other robot

(travelling distance $\leq D$, diameter)

Now 2 awake robots.

- Each travels to a distinct other asleep robot (dist $\leq D$), awakens it and waits (if necessary) for the other robot to reach its destination Now 4 awake robots.
- Etc, etc, $\log n$ rounds, each of length $\leq D$
- Lower bound on OPT: $t^{*} \geq R_{0}=\max _{p_{i}} d\left(v_{0}, p_{i}\right) \geq D / 2$

OPEN: Is there an $o(\log n)$ approximation algorithm?

Fundamental Question:

Whether to awaken a nearby robot or go further to (start to) awaken a larger swarm?

Summary of Results:

1. FTP is NP-hard, even for stars, with one robot per leaf
2. $O(1)$-approx for (general) stars
3. PTAS for stars, same number of robots at each leaf
4. Tight analysis of greedy heuristic on stars: 7/3-approx
5. $o(\log n)$-approx for FTP in ultrametrics $\quad\left(2^{O(\sqrt{\log \log n})}\right.$-approx $)$
6. Simple linear-time on-line algorithm, $O(\log \Delta)$-competitive ($\Delta \leq$ max degree)
7. NP-hard to get $<5 / 3$-approx in offline problem, even if $\Delta \leq 5$
8. PTAS for geometric instances in fixed-dimension, L_{p} metric Time $O\left(n \log n+2^{\text {poly }(1 / \varepsilon)}\right)$

Stars: Equal-Length Spokes:

Natural greedy strategy:
A robot arriving to v_{0} chooses the (unclaimed) leaf having the most asleep robots

Claim: Greedy is optimal
Proof: two exchange arguments:

- \exists optimal schedule in which no robot is idle if \exists work to be done
- if a robot chooses a branch B with fewer robots than unclaimed branch B^{\prime}, swap

Stars: Unequal Length Spokes:

Assume q robots asleep at each of n leaves

Natural greedy strategy:
A robot arriving to v_{0} chooses the shortest (unclaimed) spoke having asleep robots

Question: How good is Greedy in this case?

Example: Greedy Strategy:

Example: Optimal Strategy:

Thus, Greedy can be suboptimal (104 vs. 102)

Analysis of Greedy on Stars:

Amazingly, greedy is a 7/3-approx, and this bound is tight
Claim: Greedy is at best a $7 / 3$-approx
Example:

Time = 2:

2^{k}

Time = 4:

 2^{k}

Time $=\mathbf{2 k}$:

Time $=\mathbf{2 k}+\mathbf{4}$:

 2^{k}

Time $=3 \mathrm{k}+2$:

Greedy still has another $\approx 4 k$ to go!

Analysis of Greedy on Stars:

Our analysis relies on the following fact, of independent interest:
Theorem: Greedy minimizes the average completion time
(completion time of robot i is the time when the robot is awake and no longer busy (moving))

Proof Idea: Exchange arguments

Analysis of Greedy on Stars:

Theorem: Greedy gives 7/3-approx in stars, and this is tight (assume q asleep robots at each leaf initially)

NP-hardness for Stars:

Theorem: FTP is strongly NP-hard, even for weighted stars with $q=1$ robot at each leaf

Proof: Reduction from Numerical 3-Dim Matching (N3DM)
Input: Sets W, X, Y, each with n elements of integral sizes a_{i}, b_{j}, c_{k}, and a number d
Question: Can $W \cup X \cup Y$ be partitioned into n disjoint sets S_{1}, \ldots, S_{n}, with each S_{h} a triple (one element of W, of X, of Y) of size d ?

WLOG: $\quad n=2^{K} \quad a_{i}, b_{j}, c_{k} \leq d$
Let ε be sufficiently small
Let L be sufficiently large

```
(\varepsilon<1/(2K))
    (L:= 15d)
```


Hardness Construction:

$$
\begin{aligned}
& \alpha_{i}:=a_{i} / 2-\varepsilon K+d \quad \overline{\alpha_{i}}:=L-a_{i}-2 d \\
& \beta_{j}:=b_{j} / 2+2 d \quad \gamma_{k}:=L-7 d+c_{k}
\end{aligned}
$$

Claim: $\quad \exists$ schedule of makespan to awaken all robots within time L iff \exists solution to N3DM
"IF":
('ONLY IF" is more involved)

- "greedy cascade" brings all $n=2^{K}$ robots to v_{0}, time $2 \epsilon K$
- these robots go to A-leaves

$$
\alpha_{i}:=a_{i} / 2-\varepsilon K+d, \quad \overline{\alpha_{i}}:=L-a_{i}-2 d
$$

- 2 each return to v_{0} at times $a_{i}+2 d$
- of each pair to \bar{A}, along α_{i}
- the other of each pair to B, along $\beta_{j}: a_{i}, b_{j}$ in same S_{h}

$\alpha_{i}:=a_{i} / 2-\varepsilon K+d, \quad \overline{\alpha_{i}}:=L-a_{i}-2 d$
$\beta_{j}:=b_{j} / 2+2 d, \quad \gamma_{k}:=L-7 d+c_{k}$
- 2 robots get back to v_{0} by time $a_{i}+b_{j}+6 d$
- they go to C, down pair of edges of length $\gamma_{k}: a_{i}+b_{j}+c_{k}=d$
- all robots at C awake by time L

$$
\begin{aligned}
& \alpha_{i}:=a_{i} / 2-\varepsilon K+d, \quad \overline{\alpha_{i}}:=L-a_{i}-2 d \\
& \beta_{j}:=b_{j} / 2+2 d, \quad \gamma_{k}:=L-7 d+c_{k}
\end{aligned}
$$

PTAS for Stars with q Robots per Leaf:

Theorem: There is a PTAS for weighted stars with q robots at each leaf

Proof idea:

- Let $T \leq t^{*}$ be a good lower bound on makespan
(use $3 / 7$ times greedy solution)
- Partition edges: "short" (length $\leq \epsilon T$) and "long" (length $>\epsilon T$)
- Round up lengths of long edges to multiples of $\epsilon^{2} T$
- Suffices to consider schedules in which each long edge is entered by
a robot at a time that is a multiple of $\epsilon^{2} T$
- Only $O\left(1 / \epsilon^{2}\right)$ different lengths/start-times of long edges
- Enumerate (in $O\left(n^{O\left(1 / \epsilon^{4}\right)}\right)$) all possibilities of how many long edges of a given length are started at a given time
- In this way, we have "guesssed" the correct positions of all long edges
- Fill in short edges with a variant of greedy

General Stars with n_{i} Robots at Leaf v_{i} :

Now: centroid metric
(star with various spoke lengths, various n_{i})
Consider a natural greedy strategy:
"Shortest Edge First" (SEF): An awake robot at v_{0} picks a shortest edge leading to asleep robots, breaking ties according to \# robots

Example: Shortest Edge First Can be Bad:

SEF: $\Theta(\log n)$
OPT: $\quad O(1)$
Key Dilemma: Choose a short edge leading to few robots or a long edge leading to many?

Devising an Alternative Strategy:

Round edge lengths to powers of 2
(may double approx factor)
Issue: How to pick what length class to visit first?
Idea: Hedge our bets by repeated doubling
"Repeated Doubling" (RD): Edge lengths traversed repeatedly (roughly) double in size; in each length class be greedy in \# robots

Example: Repeated Doubling Can be Bad:

Idea: Merge the SEF and RD strategies

Tag-Team Algorithm:

Awaken one edge in each length class $1,2,4,8, \ldots$, but before going to the next length class, awaken the shortest available edge.

This combination of two $\Theta(\log n)$-approx methods yields an $O(1)$-approx!
Theorem: The Tag-Team Algorithm gives a 14-approx

General Weighted Graphs:

General graph $G=(V, E)$ with non-negative edge weights
$r(v)=\#$ asleep robots at $v \quad \delta(v)=$ degree of v
Lemma: Suppose $r\left(v_{0}\right) \geq \delta\left(v_{0}\right)$ for the source node v_{0}, and $r\left(v_{i}\right) \geq$ $\delta\left(v_{i}\right)-1$ at any other node in G. Then the FTP can be solved by breadthfirst search.

General Weighted Graphs:

$$
\Delta_{G}:=\max \left\{\frac{\delta\left(v_{0}\right)}{r\left(v_{0}\right)}, \frac{\delta\left(v_{i}\right)-1}{r\left(v_{i}\right)}, i=1, \ldots, n-1\right\}
$$

Theorem: There is a linear-time on-line algorithm for the FTP in G that guarantees a competitive ratio of $O\left(\log \Delta_{G}\right)$.
Proof Sketch: Simulate BFS: At v_{i} use a greedy strategy to wake up all robots adjacent to v_{i}, with binary tree of depth $\left\lceil\log \frac{\delta\left(v_{0}\right)}{r\left(v_{0}\right)}\right\rceil$ for the root, and $\left\lceil\log \frac{\delta\left(v_{i}\right)-1}{r\left(v_{i}\right)}\right\rceil$ for v_{i}
Greedy implies that any edge e in the resulting wake-up tree can only be placed below edges f that satisfy $w_{f} \leq w_{e}$.

Bad Example for Local Greedy Strategy:

$\rightarrow \varepsilon / 2<$

$\Delta * r\left(v_{0}\right)$ robots

Local greedy takes $\Theta(\log n)$;
OPT takes $3(1+\epsilon)$

Hardness of Approx:

- FTP is NP-hard even if one high-degree vertex (v_{0}) Question: If degrees are all small, can we do much better?

Theorem: Even if all nodes have degree ≤ 5 and at most one robot per node, it is NP-hard to get better than 5/3-approx.

Proof Sketch: From 3SAT:

A solution with makespan $3 / 2+O(\epsilon \log n)$ if \exists satisfying truth assignment; makespan $\geq 5 / 2$ if none
(pick $\epsilon=o(\log n)$)

Geometric Instances:

Robots at points in the plane:

Question: Can we exploit geometry to get good approx?
OPEN: Is the problem NP-hard?

Geometric Instances: $O(1)$-approx:

Theorem: \exists an $O(1)$-approx, time $O(n \log n)$, for the geometric FTP in any fixed dimension d. The algorithm gives wake-up schedule with makespan $O(\operatorname{diam}(R))$.

Strategy: When robot at p awakens, it awakens nearest asleep robot in each of K sectors, in order of increasing distance from p

- $G_{K}=\left(R, E_{K}\right)$ is a Θ-graph (which is a t-spanner)
- Distances in G_{K} approx Euclidean
- Let v_{ℓ} be the last robot to be awakened
- If robot at point v is awakened at time t, then all neighbors of v in G_{K} are awakened by time $t+\xi$, where $\xi=$ length of path $v, u_{1}, u_{2}, \ldots, u_{j}$.
- $\xi \leq(2 j-1) \cdot d\left(v, u_{j}\right) \leq(2 K-1) \cdot d\left(v, u_{j}\right)$
- The path from v_{0} to v_{ℓ} in the wake-up tree has length at most
$(2 K-1) \cdot d_{G_{K}}\left(v_{0}, v_{\ell}\right) \leq O(1) \cdot d\left(v_{0}, v_{\ell}\right)$

PTAS for Geometric Instances:

Rescale so that all robots lie in unit square
Look at m-by- m grid of pixels, $m=O(1 / \epsilon)$

Consider an enumeration over a special class of wake-up trees on a set P of representative points, one per occuppied pixel

A wake-up tree is pseudo-balanced if each root-to-leaf path has $O\left(\log ^{2} n\right)$ nodes

ALGORITHM:

0 . Pick a representative point in each occuppied pixel \rightarrow set P

1. Among all pseudo-balanced wake-up trees for P, pick one $\left(\mathcal{T}_{b}^{*}(P)\right)$ of min makespan, $t_{b}^{*}(P)$
(outdegree at most $\min \left\{m^{2}-1, \ell+1\right\}$ if ℓ robots in pixel) Only $2^{O\left(m^{2} \log m\right)}$ trees.
2. Convert $\mathcal{T}_{b}^{*}(P)$ into a wake-up tree for all robots by replacing each $p \in P$ with an $O(1)$-approx wake-up tree for robots in p 's pixel (time $O(n \log n)$)

Total time: $\quad O\left(2^{O\left(m^{2} \log m\right)}+n \log n\right)$

Correctness:

Lemma 1. There is a choice of representative points P such that the makespan of an optimal wake-up tree of P is at most $t^{*}(R)$.

Proof: Just pick the representative point to be the location of the first robot that is awakened in an opt solution, $\mathcal{T}^{*}(R)$, for the set R of all robots.

Lemma 2. If \exists wake-up tree, \mathcal{T}, of makespan t, then, for any $\mu>0$, there exists a pseudo-balanced awakening tree, \mathcal{T}_{b}, of makespan $t_{b} \leq(1+\mu) t$.

Proof Sketch:

Use a heavy path decomposition of \mathcal{T}
Any root-to-leaf path has only $O(\log n)$ light edges
Decompose each heavy path into short subpaths of length $\xi=\mu t / \log n$

$$
\text { (only } O((1+1 / \mu) \log n) \text { subpaths on any root-to-leaf path of } \mathcal{T} \text {) }
$$

Modify wake-up tree \mathcal{T} to transform each subpath into a wake-up tree of height $O(\log n)$, with a small increase in makespan

Lemma 3. For any two choices, P and P^{\prime}, of the set of representative points, $t_{b}^{*}(P) \leq t_{b}^{*}\left(P^{\prime}\right)+O\left(\left(\log ^{2} m\right) / m\right)$.
Proof: Pixels have size $O(1 / m)$ and there are at most $O\left(\log ^{2} m\right)$ awakenings in each root-to-leaf path of a pseudo-balanced tree; thus, any additional wake-up cost is bounded by $O\left(\left(\log ^{2} m\right) / m\right)$.

Lemma 4. For any pseudo-balanced wake-up tree of P, there exists a wake-up tree, $\mathcal{T}(R)$, with makespan $t(R) \leq t_{b}(P)+O\left(\left(\log ^{2} m\right) / m\right)$.

Putting the Pieces Together:

Theorem: There is a PTAS, with running time $O\left(2^{O\left(m^{2} \log m\right)}+n \log n\right)$, for the geometric FTP in any fixed dimension d.

Proof:

The makespan, t, of the wake-up tree we compute obeys:

$$
\begin{aligned}
t & \leq t_{b}^{*}(P)+O\left(\left(\log ^{2} m\right) / m\right) \\
& \leq t_{b}^{*}\left(P^{\prime}\right)+2 \cdot O\left(\left(\log ^{2} m\right) / m\right) \\
& \leq(1+\mu) t^{*}+O\left(\left(\log ^{2} m\right) / m\right) \\
& \leq t^{*}\left(1+\mu+\frac{C \log ^{2} m}{m}\right) \\
& \leq t^{*}(1+\epsilon),
\end{aligned}
$$

for appropriate choices of μ and m, depending on ϵ.

Experimental Studies

[with Marcelo Sztainberg]:

Experimental analysis of 3 natural heuristics, including greedy
Analysis of greedy on geometric data: $\quad \Omega(\sqrt{\log n})$-approx

Conclusion - Summary of Results:

1. FTP is NP-hard, even for stars, with one robot per leaf
2. $O(1)$-approx for (general) stars
3. PTAS for stars, same number of robots at each leaf
4. Tight analysis of greedy heuristic on stars: 7/3-approx
5. $o(\log n)$-approx for FTP in ultrametrics $\quad\left(2^{O(\sqrt{\log \log n})}\right.$-approx $)$
6. Simple linear-time on-line algorithm, $O(\log \Delta)$-competitive ($\Delta \leq$ max degree)
7. NP-hard to get $<5 / 3$-approx in offline problem, even if $\Delta \leq 5$
8. PTAS for geometric instances in fixed-dimension, L_{p} metric Time $O\left(n \log n+2^{\text {poly }(1 / \varepsilon)}\right)$

Conclusion - Open Problems:

OPEN: Is FTP in the Euclidean plane NP-hard?

OPEN: Is there an $o(\log n)$-approx for general metric spaces?

1. Introduction

2. Freeze Tag
3. Angular Freeze Tag
4. Angular Scan Cover

Angular Freeze Tag

Angular Freeze Tag

Beam It Up, Scotty:
 Angular Freeze-Tag with Directional Antennas*

Sándor P. Fekete ${ }^{1}$ and Dominik Krupke ${ }^{1}$

1 TU Braunschweig
\{s.fekete, d.krupke)-बtu-bs.de

Abstract

- Abstract

We consider distributing mission data among the members of a satellite swarm. In this process, spacecraft cannot be reached all at once by a single broadcast, because transmission requires the use of highly focused directional antennas. As a consequence, a spacecraft can transmit data to another satellite only if its antenna is aiming right at the rexipient; this may require adjusting the orientation of the transmitter, incurring a time cost proportional to the required angle of rotation. The task is to minimize the total distribution time. This makes the problem similar in nature to the Freeze-Tag Problem of waking up a set of sleeping robots, but with angular cost at vertices, instead of distance cost along the edges of a graph. We prove that approximating the minimum length of a schedule for this Angular free-Tig Problem within a factor of less than $5 / 3$ is NP-complete, and provide a 9 -approximation for the 2-dimensional case that works even in online settings with incomplete information. Furthermore, we develop an exact method based on Mixed Integer Programming that works in arbitrary dimensions and can compute provably optimal solutions for benchmark instances with about a dozen satcllites.

1 Introduction

Technische
Universität
Braunschweig

Beam It Up, Scotty:
 Angular Freeze-Tag with Directional Antennas

Sándor P. Fekete and Dominik Krupke

March 20, 2018

Motivation

- Highly focused antennas.
- Expensive rotations.

How can we quickly distribute information from one satellite to all others?

Wikipedia

Wikipedia

the antenna but tor small antennas can be increased by adding a ferrite rod), and efficiency (again, affected by size, but also resistivity of the materials used and impedance matching). These factors are easy to improve without adjusting other features of the antennas or coincidentally improved by the same factors that increase directivity, and so are typically not emphasized.

Applications [edit]

High gain antennas are typically the largest component of deep space probes, and the highest gain radio antennas are physically enormous structures, such as the Arecibo Observatory. The Deep Space Network uses 35 m dishes at about 1 cm wavelengths. This combination gives the antenna gain of about 100,000,000 (or 80 dB , as normally measured), making the transmitter appear about 100 million times stronger, and a receiver about 100 million times more sensitive, provided the taraet is within the beam. This beam can cover at most one hundred millionth $\left(10^{-8}\right)$ of the sky, so very accurate pointing is required.

Gallery [edit]

Problem Description

Distribute data from one satellite to all other with minimal makespan.
Informed/activated satellites can participate in the distribution.

Problem Description

Distribute data from one satellite to all other with minimal makespan.

Informed/activated satellites can participate in the distribution.
Some simplifications:

Problem Description

Distribute data from one satellite to all other with minimal makespan.

Informed/activated satellites can participate in the distribution.
Some simplifications:

1. Only sender has to adjust.

Problem Description

Distribute data from one satellite to all other with minimal makespan.

Informed/activated satellites can participate in the distribution.
Some simplifications:

1. Only sender has to adjust.
2. Exact adjustment, i.e. beam is a ray.

Problem Description

Distribute data from one satellite to all other with minimal makespan.

Informed/activated satellites can participate in the distribution.
Some simplifications:

1. Only sender has to adjust.
2. Exact adjustment, i.e. beam is a ray.
3. Fixed positions.

Problem Description

Distribute data from one satellite to all other with minimal makespan.

Informed/activated satellites can participate in the distribution.
Some simplifications:

1. Only sender has to adjust.
2. Exact adjustment, i.e. beam is a ray.
3. Fixed positions.
4. Geometric plane.

Problem Description

Distribute data from one satellite to all other with minimal makespan.

Informed/activated satellites can participate in the distribution.
Some simplifications:

1. Only sender has to adjust.
2. Exact adjustment, i.e. beam is a ray.
3. Fixed positions.
4. Geometric plane.
5. Negligible transmission time.

Problem Description

Distribute data from one satellite to all other with minimal makespan.

Informed/activated satellites can participate in the distribution.
Some simplifications:

1. Only sender has to adjust.
2. Exact adjustment, i.e. beam is a ray.
3. Fixed positions.
4. Geometric plane.
5. Negligible transmission time.

6. Rotation time equal rotation angle.

A simple observation

A simple observation

A simple observation

Independent of the number of satellites, the objective value is between 0 and 2π.

Hardness

Hardness

Theorem
 A c-approximation algorithm for the AFT with $c<5 / 3$ implies $P=N P$.

Hardness Construction

Hardness Construction

	$\begin{gathered} x_{1} \vee x_{2} \vee x_{3} \\ \mathbb{O} \end{gathered}$	$\begin{gathered} \overline{x_{1}} \vee x_{2} \vee \overline{x_{3}} \\ (1) \end{gathered}$	$\begin{aligned} & x_{1} \\ & 0 \end{aligned}$	$\begin{gathered} x_{1} \vee \overline{x_{2}} \\ \text { (1) } \end{gathered}$
x_{3}				$\stackrel{\square}{\overline{x_{3}}}$
x_{2}				$\stackrel{\bar{x}}{ }$
x_{1}				$\overline{x_{1}}$
Start \bigcirc				

Hardness Construction

Approximation

9-Approximation Algorithm

Theorem

There is a 9 -approximation in the plane
Even for unknown locations and headings as long as we know a lower bound of $\varepsilon>0$

Recap: The linear search problem

Theorem (Beck and Newman, 1970)

The path of the doubling strategy is at most 9 times the length of the direct path.

Rotating Linear Search

Strategy

For each satellite: As soon as activated, start doubling rotation.

Integer Programming

Integer Programming

O

Technische

Integer Programming

$$
\begin{array}{cr}
\sum_{e \in E_{\text {in }}\left(v_{j \rightarrow i}\right), p_{j} \in P} x_{e}=1 & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
\sum_{E_{\text {out }}\left(v_{i \rightarrow j}\right)} x_{e} \leq \sum_{E_{\text {in }}\left(v_{i \rightarrow j}\right)} x_{e} \leq 1 & \forall v_{i \rightarrow j} \in V \\
\sum_{E_{\text {out }}\left(v_{i}\right)} x_{e} \leq 1 & \forall p_{i} \in P \\
\sum_{v, w \in S} x_{v w} \leq|S|-1 & \forall S \subset V \\
y_{v_{i}}=\sum_{p_{j} \in P} y_{v_{j} \rightarrow i} & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
y_{w} \geq y_{v}+\operatorname{cost}(v w)+\left(3 \pi x_{v w}-3 \pi\right) & \forall v w \in E \\
\sum_{p_{i}, p_{j} \in S} x_{e \in E_{\text {in }}\left(v_{i \rightarrow j}\right)} \leq|S|-1 & \forall S \subset P \backslash\left\{p_{0}\right\}
\end{array}
$$

Integer Programming

$$
\begin{array}{cr}
\sum_{e \in E_{\text {in }}\left(v_{j \rightarrow i}\right), p_{j} \in P} x_{e}=1 & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
\sum_{E_{\text {out }}\left(v_{i \rightarrow j}\right)} x_{e} \leq \sum_{E_{\text {in }}\left(v_{i \rightarrow j}\right)} x_{e} \leq 1 & \forall v_{i \rightarrow j} \in V \\
\sum_{E_{\text {out }}\left(v_{i}\right)} x_{e} \leq 1 & \forall p_{i} \in P \\
\sum_{v, w \in S} x_{v w} \leq|S|-1 & \forall S \subset V \\
y_{v_{i}}=\sum_{p_{j} \in P} y_{v_{j} \rightarrow i} & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
y_{w} \geq y_{v}+\operatorname{cost}(v w)+\left(3 \pi x_{v w}-3 \pi\right) & \forall v w \in E \\
\sum_{p_{i}, p_{j} \in S} x_{e \in E_{\text {in }}\left(v_{i \rightarrow j}\right)} \leq|S|-1 & \forall S \subset P \backslash\left\{p_{0}\right\}
\end{array}
$$

Integer Programming

$$
\begin{array}{cr}
\sum_{e \in E_{\text {in }}\left(v_{j \rightarrow i}\right), p_{j} \in P} x_{e}=1 & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
\sum_{E_{\text {out }}\left(v_{i \rightarrow j}\right)} x_{e} \leq \sum_{E_{\text {in }}\left(v_{i \rightarrow j}\right)} x_{e} \leq 1 & \forall v_{i \rightarrow j} \in V \\
\sum_{E_{\text {out }}\left(v_{i}\right)} x_{e} \leq 1 & \forall p_{i} \in P \\
\sum_{v, w \in S} x_{v w} \leq|S|-1 & \forall S \subset V \\
y_{v_{i}}=\sum_{p_{j} \in P} y_{v_{j} \rightarrow i} & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
y_{w} \geq y_{v}+\operatorname{cost}(v w)+\left(3 \pi x_{v w}-3 \pi\right) & \forall v w \in E \\
\sum_{p_{i}, p_{j} \in S} x_{e \in E_{\text {in }}\left(v_{i \rightarrow j}\right)} \leq|S|-1 & \forall S \subset P \backslash\left\{p_{0}\right\}
\end{array}
$$

Integer Programming

$$
\begin{array}{cr}
\sum_{e \in E_{\text {in }}\left(v_{j \rightarrow i}\right), p_{j} \in P} x_{e}=1 & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
\sum_{E_{\text {out }}\left(v_{i \rightarrow j}\right)} x_{e} \leq \sum_{E_{\text {in }}\left(v_{i \rightarrow j}\right)} x_{e} \leq 1 & \forall v_{i \rightarrow j} \in V \\
\sum_{E_{\text {out }}\left(v_{i}\right)} x_{e} \leq 1 & \forall p_{i} \in P \\
\sum_{v, w \in S} x_{v w} \leq|S|-1 & \forall S \subset V \\
y_{v_{i}}=\sum_{p_{j} \in P} y_{v_{j} \rightarrow i} & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
y_{w} \geq y_{v}+\operatorname{cost}(v w)+\left(3 \pi x_{v w}-3 \pi\right) & \forall v w \in E \\
\sum_{p_{i}, p_{j} \in S} x_{\left.e \in E_{\text {in }} \leq \mid v_{i \rightarrow j}\right)} \quad \forall S \subset P \backslash\left\{p_{0}\right\}
\end{array}
$$

Integer Programming

$$
\begin{array}{cr}
\sum_{e \in E_{\text {in }}\left(v_{j \rightarrow i}\right), p_{j} \in P} x_{e}=1 & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
\sum_{E_{\text {out }}\left(v_{i \rightarrow j}\right)} x_{e} \leq \sum_{E_{\text {in }}\left(v_{i \rightarrow j}\right)} x_{e} \leq 1 & \forall v_{i \rightarrow j} \in V \\
\sum_{E_{\text {out }}\left(v_{i}\right)} x_{e} \leq 1 & \forall p_{i} \in P \\
\sum_{v, w \in S} x_{v w} \leq|S|-1 & \forall S \subset V \\
y_{v_{i}}=\sum_{p_{j} \in P} y_{v_{j} \rightarrow i} & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
y_{w} \geq y_{v}+\operatorname{cost}(v w)+\left(3 \pi x_{v w}-3 \pi\right) & \forall v w \in E \\
\sum_{p_{i}, p_{j} \in S} x_{e \in E_{\text {in }}\left(v_{i \rightarrow j}\right)} \leq|S|-1 & \forall S \subset P \backslash\left\{p_{0}\right\}
\end{array}
$$

Integer Programming

$$
\begin{array}{cr}
\sum_{e \in E_{\text {in }}\left(v_{j \rightarrow i}\right), p_{j} \in P} x_{e}=1 & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
\sum_{E_{\text {out }}\left(v_{i \rightarrow j}\right)} x_{e} \leq \sum_{E_{\text {in }}\left(v_{i \rightarrow j}\right)} x_{e} \leq 1 & \forall v_{i \rightarrow j} \in V \\
\sum_{E_{\text {out }}\left(v_{i}\right)} x_{e} \leq 1 & \forall p_{i} \in P \\
\sum_{v, w \in S} x_{v w} \leq|S|-1 & \forall S \subset V \\
y_{v_{i}}=\sum_{p_{j} \in P} y_{v_{j} \rightarrow i} & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
y_{w} \geq y_{v}+\operatorname{cost}(v w)+\left(3 \pi x_{v w}-3 \pi\right) & \forall v w \in E \\
\sum_{p_{i}, p_{j} \in S} x_{e \in E_{\text {in }}\left(v_{i \rightarrow j}\right)} \leq|S|-1 & \forall S \subset P \backslash\left\{p_{0}\right\}
\end{array}
$$

Integer Programming

$$
\begin{array}{cr}
\sum_{e \in E_{\text {in }}\left(v_{j \rightarrow i}\right), p_{j} \in P} x_{e}=1 & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
\sum_{E_{\text {out }}\left(v_{i \rightarrow j}\right)} x_{e} \leq \sum_{E_{\text {in }}\left(v_{i \rightarrow j}\right)} x_{e} \leq 1 & \forall v_{i \rightarrow j} \in V \\
\sum_{E_{\text {out }}\left(v_{i}\right)} x_{e} \leq 1 & \forall p_{i} \in P \\
\sum_{v, w \in S} x_{v w} \leq|S|-1 & \forall S \subset V \\
y_{v_{i}}=\sum_{p_{j} \in P} y_{v_{j} \rightarrow i} & \forall p_{i} \in P \backslash\left\{p_{0}\right\} \\
y_{w} \geq y_{v}+\operatorname{cost}(v w)+\left(3 \pi x_{v w}-3 \pi\right) & \forall v w \in E \\
\sum_{p_{i}, p_{j} \in S} x_{e \in E_{\text {in }}\left(v_{i \rightarrow j}\right)} \quad|S|-1 & \forall S \subset P \backslash\left\{p_{0}\right\}
\end{array}
$$

Experiments

Conclusion

Sándor P. Fekete and Dominik Krupke \| Angular Freeze-Tag | 16

This is just the beginning. . .

Still to do:

- Adjustment of receiver
- Transmission time and delay
- Satellites can prepare before they actually receive the data
- 3D, Sphere, Orbital Movement.
- Cost of changing rotation.

This is just the beginning. . .

Still to do:

- Adjustment of receiver
- Transmission time and delay
- Satellites can prepare before they actually receive the data
- 3D, Sphere, Orbital Movement.
- Cost of changing rotation.

Thank you for your attention!

1. Introduction

2. Freeze Tag

3. Angular Freeze Tag
4. Angular Scan Cover

Angular Scan Cover

Angular Scan Cover

MINIMUM SCAN COVER WITH ANGULAR TRANSITION COSTS*

SANDOR P FEKETE ${ }^{\dagger}$, LINDA KLEIST ${ }^{\dagger}$, AND DOMINIK KRUPKE ${ }^{\dagger}$

Abstract. We provide a comprehensive study of a natural graph optimisation problem that arises from transition costs between incident edges. In the problem Mrwnumm Scan Cower with Anctrar Costs (MSC), we are given a graph G that is embedded in Euclidean space. The edges of G need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex takes some time proportional to the corresponding turn angle. Our goal is to minimize the time until all scans are completed, i.e., to campute a schedule of minimum makespan. A real-world motivation arises in the context of satellite communication and astrophysics. We show that MSO is clnsely related to both graph coloring and the minimum (directed and undirected) cut cover problem; in particular, we show that the minimum scan time for instances in 1D and 2D lits in $\Theta(\log \chi(G))$, while for 3D the minimum scan time is not upper bounded by $\chi(G)$. We use this relationship to prove that the existence of a constant-factor approximation implies P $=\mathrm{NP}$, even for one-dimensional instances. In 2D, we show that it is NP-hard to approximate a minimum scan cover within less than a factor of $8 / 2$, even for bipartite graphs; conversely, we presant a $9 / 2$-approximation algorithm for this scenario. Generally, we give an O (c)-approximation for k-colored graphs with $k \leq \chi(G)^{c}$. For general metric cost functions, we provide approximation algorithms whose performance guarantes depend on the arboricity of the graph.

Key words. graph scamning, graph coloring, angular metric, approximation, scheduling
AMS subject classifications, $05 \mathrm{C} 10,05 \mathrm{C} 15,51 \mathrm{Fg9}, 52 \mathrm{C} 45,68 \mathrm{U} 05,90 \mathrm{~B} 35,90 \mathrm{C} 2 \%$
DOI. $10.1137 / 20 \mathrm{M} 1368161$

1. Introduction. Many problems of graph optimization arise from questions of communication, where different locations need to be connected. In many scenarios, this implies objective functions in which the cost of a connection is based on the geometric distance between the involved vertices; a practical example arises in wirebased transmission, where the length of an electro-optic link corresponds to comection

Sándor Fekete

Linda Kleist

Dominik Krupke

Motivation: Directed Antennas

Motivation: Directed Antennas

Motivation: Directed Antennas

Motivation: Directed Antennas

Multiple Tasks

Multiple Tasks

Multiple Tasks

Multiple Tasks

Multiple Tasks

+ 'Scan' all edges
 - Immediate scan if both satellites point to each other

Multiple Tasks

- 'Scan' all edges
- Immediate scan if both satellites point to each other
\rightarrow Rotation time $=$ angle

Multiple Tasks

- 'Scan' all edges
- Immediate scan if both satellites point to each other
- Rotation time = angle
+ Can rotate in parallel

Multiple Tasks

- 'Scan' all edges
- Immediate scan if both satellites point to each other
- Rotation time $=$ angle
+ Can rotate in parallel
+ Start heading can be chosen

Multiple Tasks

- 'Scan' all edges
- Immediate scan if both satellites point to each other
- Rotation time $=$ angle
- Can rotate in parallel
+ Start heading can be chosen

Minimize makespan

1-D

1-D

1-Dimensional

1-Dimensional

Discrete 180° steps!

1-Dimensional

Discrete 180° steps!

$$
\binom{\vec{\rightarrow}}{\rightarrow} \quad\left(\begin{array}{l}
\leftarrow \\
\rightarrow \\
\rightarrow
\end{array}\right) \quad\binom{\vec{\leftarrow}}{\rightarrow} \quad\left(\begin{array}{c}
\leftarrow \\
\rightarrow \\
\leftarrow
\end{array}\right) \quad\left(\begin{array}{c}
\leftarrow \\
\leftarrow \\
\leftarrow
\end{array}\right)
$$

1-Dimensional

Discrete 180° steps!

1-Dimensional

Discrete 180° steps!

1-Dimensional

Discrete 180° steps!

1-Dimensional

Discrete 180° steps!

$2 \times 180^{\circ}=360^{\circ}$ rotation time

Bipartite Graphs

Bipartite Graphs

Bipartite Graphs

Bipartite Graphs

Every scan step is a bipartite graph!

Bipartite Graphs

Every scan step is a bipartite graph!

Bipartite Graphs

Every scan step is a bipartite graph!

Bipartite Graphs

Every scan step is a bipartite graph!

Bipartite Graphs

Every scan step is a bipartite graph!

Bipartite Graphs

Every scan step is a bipartite graph!

Bipartite Graphs

Every scan step is a bipartite graph!

2 steps suffice for bipartite graphs!

Bipartite Graphs

Every scan step is a bipartite graph!

2 steps suffice for bipartite graphs!

- Observation 3. For instances of MSC in $1 D$ for which the underlying graph G is bipartite, there exists a polynomial-time algorithm for computing an optimal scan cover.

Minimum Cut Cover Problem

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB!

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB!

 Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps
Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

> Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

$$
\begin{array}{|l|}
\hline \text { Min partition yields 2-approximation } \\
\text { for scan cover in 1D }
\end{array}
$$

Minimum Cut Cover Problem

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

$$
\begin{aligned}
& \text { Min partition yields 2-approximation } \\
& \text { for scan cover in 1D }
\end{aligned}
$$

Minimum Cut Cover Problem

$$
\vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil
$$

[Motwani \& Naor, 1994]

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

> Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem $\quad \vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil$

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

> Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem $\quad \vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil$

[Motwani \& Naor, 1994]

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

> Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem $\quad \vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil$

[Motwani \& Naor, 1994]

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

> Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem $\quad \vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil$

[Motwani \& Naor, 1994]

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

> Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem $\quad \vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil$

[Motwani \& Naor, 1994]

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

> Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem $\quad \vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil$

[Motwani \& Naor, 1994]

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem
 $$
\vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil
$$

[Motwani \& Naor, 1994]

Minimum Cut Cover Problem

k scan steps \Rightarrow Partition in $\leq k$ bip. graphs LB! Partition in k bip. graphs $\Rightarrow \leq 2 k$ scan steps

Min partition yields 2-approximation for scan cover in 1D

Minimum Cut Cover Problem $\quad \vec{c}(G)=\left\lceil\log _{2} \chi(G)\right\rceil$

[Motwani \& Naor, 1994]

Directed Minimum Cut Cover

Directed Minimum Cut Cover

Directed Minimum Cut Cover

Directed Minimum Cut Cover

Directed Cut

Directed Minimum Cut Cover

Incoming XOR outgoing edges \Rightarrow single scan step

Directed Minimum Cut Cover

Incoming XOR outgoing edges \Rightarrow single scan step

Directed Minimum Cut Cover

Incoming XOR outgoing edges \Rightarrow single scan step

Directed Minimum Cut Cover

Incoming XOR outgoing edges \Rightarrow single scan step

Directed Minimum Cut Cover

Cut

Incoming XOR outgoing edges \Rightarrow single scan step

Partition in k directed cuts $\Leftrightarrow k$ scan steps

Directed Minimum Cut Cover

Cut

Incoming XOR outgoing edges \Rightarrow single scan step

Partition in k directed cuts $\Leftrightarrow k$ scan steps

$$
\vec{c}(\vec{G})=1 \mathrm{D}-\mathrm{MSC}(G)
$$

Directed Min Cut Cover Problem and $\chi(G)$

Directed Min Cut Cover Problem and $\chi(G)$

$$
\left\lceil\log _{2} \chi(G)\right\rceil=c(G)
$$

Directed Min Cut Cover Problem and $\chi(G)$

$$
\left\lceil\log _{2} \chi(G)\right\rceil=c(G) \leq \vec{c}(G)
$$

Directed Min Cut Cover Problem and $\chi(G)$

$$
\begin{array}{r}
\left\lceil\log _{2} \chi(G)\right\rceil=c(G) \leq \vec{c}(G) \leq\left\lceil\log _{2} \chi(G)\right\rceil+\left\lceil\log _{2}\left\lceil\log _{2} \chi(G)+1\right\rceil\right\rceil \\
{[\text { Watanabe et al., 1998] }}
\end{array}
$$

Directed Min Cut Cover Problem and $\chi(G)$

$$
\begin{array}{r}
\left\lceil\log _{2} \chi(G)\right\rceil=c(G) \leq \vec{c}(G) \leq\left\lceil\log _{2} \chi(G)\right\rceil+\left\lceil\log _{2}\left\lceil\log _{2} \chi(G)+1\right\rceil\right\rceil \\
{[\text { Watanabe et al., 1998] }}
\end{array}
$$

- Corollary 2. For every directed graph G, the directed cut cover number is bounded by

$$
\vec{c}(G) \leq\left\lceil\log _{2} \chi(G)+\frac{1}{2} \log _{2} \log _{2} \chi(G)+1\right\rceil
$$

Directed Min Cut Cover Problem and $\chi(G)$

$$
\begin{gathered}
\left\lceil\log _{2} \chi(G)\right\rceil=c(G) \leq \vec{c}(G) \leq\left\lceil\log _{2} \chi(G)\right\rceil+\left\lceil\log _{2}\left\lceil\log _{2} \chi(G)+1\right\rceil\right\rceil \\
{[\text { Watanabe et al., 1998] }}
\end{gathered}
$$

- Corollary 2. For every directed graph G, the directed cut cover number is bounded by

$$
\vec{c}(G) \leq\left\lceil\log _{2} \chi(G)+\frac{1}{2} \log _{2} \log _{2} \chi(G)+1\right\rceil
$$

- Lemma 1. For every C, there exists a graph G and an ordering $<_{L}$ such that $\chi(G)>C$ and the number N of steps in every scan cover of $\left(G,<_{L}\right)$ is at least

$$
N \geq\left\lceil\log _{2} \chi(G)+\frac{1}{4} \log _{2} \log _{2} \chi(G)\right\rceil .
$$

No constant factor approximation!

No constant factor approximation!

- Lemma 2. A C-approximation algorithm for MSC implies a polynomial-time algorithm for computing a coloring of graph $G, k:=\chi(G)$, with $4^{C} \cdot k^{C} \cdot{\sqrt{\log _{2}(k)}}^{C}$ colors.

No constant factor approximation!

Lemma 2. A C-approximation algorithm for MSC implies a polynomial-time algorithm for computing a coloring of graph $G, k:=\chi(G)$, with $4^{C} \cdot k^{C} \cdot{\sqrt{\log _{2}(k)}}^{C}$ colors.

- Theorem 3. Even in 1D, a C-approximation for MSC for any $C \geq 1$ implies $P=N P$.

No constant factor approximation!

Lemma 2. A C-approximation algorithm for MSC implies a polynomial-time algorithm for computing a coloring of graph $G, k:=\chi(G)$, with $4^{C} \cdot k^{C} \cdot{\sqrt{\log _{2}(k)}}^{C}$ colors.

- Theorem 3. Even in 1D, a C-approximation for MSC for any $C \geq 1$ implies $P=N P$.

Improved Inapproximability Results for MaxClique, Chromatic Number and Approximate Graph Coloring

Subhash Khot
Department of Computer Science
Princeron University
khot@cs.princeton.edu *

Abstract

\section*{Abstract}

In this paper, we present improved inappoximability resulfs for three problens ; the problem of finding the maximum clique size in a graph, the problem of finding the chromavic number of a graph, and the problem of coloring a grapk with a snall chrovnatic nuwber with a small number of corions.

Hàstad's celebrated reswht [13) shows that the naximum

1. Introduction

In this paper, we obtain imporved inappoximability fosults for three problem1s, viz. the problem of finding the size of the largest clique in a graph, finding the chromatic mamber of a graph, and approximate coloring of a graph, i.c. colocing a graph with a small number of colors when the graph is guaranteed to have a small constant chromatic mamber. The first tworesults are ebtained via new PCP con-

No constant factor approximation!

Lemma 2. A C-approximation algorithm for MSC implies a polynomial-time algorithm for computing a coloring of graph $G, k:=\chi(G)$, with $4^{C} \cdot k^{C} \cdot{\sqrt{\log _{2}(k)}}^{C}$ colors.

- Theorem 3. Even in 1D, a C-approximation for MSC for any $C \geq 1$ implies $P=N P$.

Improved Inapproximability Results for MaxClique, Chromatic Number and
Approximate Graph Coloring

Subhash Khot
rer inner verifer.
We also present a new hardness result for approximate graph coloring. We show that for all sufficiently large constants k, it is NP-hard to color a k-colorable graph with $k^{\frac{1}{25}(\log k)}$ colors. This improves a result of Fürer [11] that for arbitrarily small constant $\epsilon>0$, for sufficiently large constants k, it is hard to color a k-colorable graph with $k^{3 / 2-\epsilon}$ colors.

Department of Computer Science
Princeron University
khot @cs.princeton.edu *

[^0]1. Introduction

In this paper, we obtain imporved inappmax mability results for three problems, viz. the problem of finding the size of the largest clique in a graph, finding the chromatic mamber of a graph, and approximate coloring of a graph, i.e. coloring a graph with a small number of colors when the graph is guaranteed to have a small constant chromatic mamber. The first two results are ebtained via new PCP con-

2-D

no longer discrete :(

$2-D$

no longer discrete :(

Already bipartite graphs are hard

- Theorem 4. Even for bipartite graphs in 2D, a C-approximation for MSC for any $C<3 / 2$ implies $P=N P$.

Already bipartite graphs are hard

- Theorem 4. Even for bipartite graphs in 2D, a C-approximation for MSC for any $C<3 / 2$ implies $P=N P$.

But: Alternating Angles

Scanning bipartite graphs in constant time

Theorem 5. Let $I=(P, E)$ be a bipartite instance of MSC with vertex classes $P=P_{1} \cup P_{2}$. Then I has a scan cover of time 360°. Moreover, if P_{1} and P_{2} are separated by a line, there is a scan cover of time 180°.

Scanning bipartite graphs in constant time

Theorem 5. Let $I=(P, E)$ be a bipartite instance of MSC with vertex classes $P=P_{1} \cup P_{2}$. Then I has a scan cover of time 360°. Moreover, if P_{1} and P_{2} are separated by a line, there is a scan cover of time 180°.

Scanning bipartite graphs in constant time

Theorem 5. Let $I=(P, E)$ be a bipartite instance of MSC with vertex classes $P=P_{1} \cup P_{2}$. Then I has a scan cover of time 360°. Moreover, if P_{1} and P_{2} are separated by a line, there is a scan cover of time 180°.

Scanning bipartite graphs in constant time

- Theorem 5. Let $I=(P, E)$ be a bipartite instance of MSC with vertex classes $P=P_{1} \cup P_{2}$. Then I has a scan cover of time 360°. Moreover, if P_{1} and P_{2} are separated by a line, there is a scan cover of time 180°.

A simple lower bound

A simple lower bound

max optimal solution of S to cover neighbors $s \in V$

A simple lower bound

max optimal solution of s to cover neighbors $s \in V$
i.e., the largest smallest cone that encloses all neighbors

Approximation for bipartite graphs

Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy
If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy

If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy

$$
\text { If } L B<90^{\circ} \text { : }
$$

$$
\min \frac{360^{\circ}}{2 s} \geq 55^{\circ} \Rightarrow 60^{\circ}
$$

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy If $L B<90^{\circ}$:

Approximation for bipartite graphs

- Theorem 6. There is a 4.5-approximation algorithm for MSC for bipartite graphs in 2D.

If $L B \geq 90^{\circ}$: Use alternating angle strategy If $L B<90^{\circ}$:

Chromatic Number and Approximations

- Lemma 7. Every instance I of MSC in \mathbb{R}^{d} needs a scan time T of at least $\Omega\left(\log _{2} \chi\left(G_{I}\right)\right)$, with G_{I} denoting the underlying graph of I. More precisely, $T \geq \frac{\left[\log _{2} \chi(G)\right]-d}{d} \cdot 90^{\circ}$.

Chromatic Number and Approximations

- Lemma 7. Every instance I of MSC in \mathbb{R}^{d} needs a scan time T of at least $\Omega\left(\log _{2} \chi\left(G_{I}\right)\right)$, with G_{I} denoting the underlying graph of I. More precisely, $T \geq \frac{\left\lceil\log _{2} \chi(G)\right]-d}{d} \cdot 90^{\circ}$.

Proof idea: With 90°, only 2^{d}-partite subgraphs can be scanned

Chromatic Number and Approximations

- Lemma 7. Every instance I of MSC in \mathbb{R}^{d} needs a scan time T of at least $\Omega\left(\log _{2} \chi\left(G_{I}\right)\right)$, with G_{I} denoting the underlying graph of I. More precisely, $T \geq \frac{\left\lceil\log _{2} \chi(G)\right]-d}{d} \cdot 90^{\circ}$.

Proof idea: With 90°, only 2^{d}-partite subgraphs can be scanned

Corollary 8. MSC in $2 D$ allows the following approximation factors.

1. $O\left(\log _{2} n\right)$ for all graphs. Furthermore, the minimum scan time lies in $\Theta\left(\log _{2} \chi(G)\right)$.
2. $O(1)$ for planar graphs.
3. $O\left(\log _{2} d\right)$ for d-degenerate graphs.
4. $O(1)$ for graphs of bounded treewidth.
5. $O(1)$ for complete graphs.

Summary

Summary

1D

Summary

1D

Summary

1D

Summary

Summary

2D

Summary

2D

Summary

Summary

Summary

Summary

3D \& Abstract

Summary

3D \& Abstract

Summary

3D \& Abstract

$$
\Omega\left(\left\lceil\log _{2} \chi(G)\right\rceil\right)
$$

Thank you!

[^0]: Abstract
 apse, we present improved inapprosibability re ree problens; the problem of finding the maxi-- size in a graph, the problem of finding the choober of a graph, and the problem of coloring a a swall chrovatic number with a snoll number scelebrated reswit [13/ shows that the maximum

