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Several Centuries before Euclid
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Given: Agraph G =(V,FE)
with edge lengths w,
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Given: Agraph G =(V,FE)
with edge lengths w,
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The Traveling Salesman Problem

Given: Agraph G =(V,FE)
with edge lengths w,

5

Wanted: A shortest roundtrip through all vertices.

\F”"'Z"'{',
3*’5 a% Technische
3 %ﬁ Universitat

U » -

3 3

oI5 73
9, " gV
("nc\é‘

Braunschweig



The Traveling Salesman Problem

Given: Agraph G =(V,FE)
with edge lengths w,

Wanted: A shortest roundtrip through all vertices.
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The Traveling Salesman Problem

Given: Agraph G =(V,FE)
with edge lengths w,

C—

<

; A shortest roundtrip through all vertices.

Theorem: (Karp 1972) Finding a shortest tour is NP-hard.
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Back to Odysseus

,Couldn‘t you make it any slower?*




The Maximum TSP

MLy

3‘%"0{3 Technische
3 %1 Universitit

’*., *#5' Braunschweig
Op “é
5C



The Maximum TSP

Given:
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The Maximum TSP

Given: Agraph G =(V,E)
with edge lenghts W,
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The Maximum TSP

Given: Agraph G =(V,E)
with edge lenghts W,

P

Wanted:  Alongest tour.
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The Maximum TSP

Given: Agraph G =(V,E)
with edge lenghts W,

Wanted:  Alongest tour.
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The Maximum TSP

Given: Agraph G =(V,E)
with edge lenghts W,

Wanted:  Alongest tour.

Simple excercise:

Do
s e s

Finding a longest tour is NP-hard.
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The Maximum TSP

Given: Agraph G =(V,E)
with edge lenghts W,

Wanted:  Alongest tour.

Simple excercise:

Do
s e s

Finding a longest tour is NP-hard.
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The Maximum TSP

Given: Agraph G =(V,E)

with edge lenghts W,

; Theorem: (Serdyukov 1984)

Wanted:  Alongest tour.
Simple excercise:
Finding a longest tour is NP-hard.
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The Maximum TSP

Given: Agraph G =(V,E)

with edge lenghts W,

Theorem: (Serdyukov 1984)
For metric distances, the
Maximum TSP can be
approximated in polynomial
time within a factor of 3/4.

Wanted:  Alongest tour.
Simple excercise:
Finding a longest tour is NP-hard.
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The Maximum TSP

Given: Agraph G =(V,E)

with edge lenghts W,

Theorem: (Serdyukov 1984)
For metric distances, the
Maximum TSP can be
approximated in polynomial
time within a factor of 3/4.

Wanted:  Alongest tour.
Simple excercise:
Finding a longest tour is NP-hard.
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The Maximum TSP

Given: Agraph G =(V,E)
with edge lenghts W,

Theorem: (Serdyukov 1984)

For metric distances, the
Maximum TSP can be
approximated in polynomial
time within a factor of 3/4.

Theorem: (Barvinok 1996)
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The Maximum TSP

Given: Agraph G =(V,E)
with edge lenghts W,

Theorem: (Serdyukov 1984)

For metric distances, the
Maximum TSP can be
approximated in polynomial
time within a factor of 3/4.

Theorem: (Barvinok 1996)

The Maximum TSP for
: A Iongest tour. geometric instances can be
solved in polynomial time

within a factor of 1/(1+¢).

Simple excercise:
Finding a longest tour is NP-hard.
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Touring the New World
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Touring the New World
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Touring the New World
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Touring the New World
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A Grid Graph




Shortest Tours in Manhattan

A Grid Graph

Theorem: (Itai, Papadimitriou, Szwarcfiter 1982)
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HAMILTON PATHS IN GRID GRAPHS*

ALON ITAIt, CHRISTOS H. PAPADIMITRIOU$ anp JAYME LUIZ SZWARCFITERY

Abstract. A grid graph is a node-induced finite subgraph of the infinite grid. It is rectangular if its set
of nodes is the product of twd intervals. Given a rectangular grid graph aad two of its nades, we give
necessary and sufficient conditions for the graph to have a Hamilton path between these two nodes. In
contrast, the Hamilton path (and circnit) probhlem for general grid graphs & shown ta bhe NP.complete.
This provides ¢ new, relatively simple, proof of the result that the Euclideas traveling salesman problem
is NP-complete.

Key words, Hamilton ciscuit, Hamilton path, grid graphs, rectangulir grid graphs, NP-complete
problem, Euclidean traveling salesman problem

1. Introduction. Let G™ be the infinite graph whose vertex set consists of all
points of the plane with integer coordinates and in which two vertices are connected
if and only if the (Euclidean) distance between them is equal to 1. A grid graph is a
finite, node-induced subgraph of G. Thus, a grid graph is completely specified by
its vertex set. Let v, and v, be the coordinates of the vertex v. We say that vertex v
is even if v, +v, =0 (mod 2); otherwise, v is odd. It is immediate that all grid graphs
are bipartite, with the edges connecting even and odd vertices.

Let R(m, n) be the grid graph whosc vertex sct is V(R(m,n))={v 1sv, =m
and 1sSv,=n}. A rectangular graph is a grid graph which, for some m and n, is
isomorphic to R(m, n). Thus m and n, the dimensions, specify a rectangular graph
up to isomorphism.

Let s and ¢ be distinct vertices of a graph G. We say that the Hamilton path
problem (G,s, t) has a solution if there exists a Hamilton path from s te ¢ in G. In
this paper we examine the Hamilton path problem for grid graphs; rectangular grid
graphs were examined first in [LM]. In § 2 we show that the Hamilton path and
Hamilton circuit problems for general grid graphs are NP-complete. Consider now a
bipartite graph B — (VU V'), E). Iif |V ~|v'+1, then all Hamilton paths of B
must start and end at vertices of V. If (R(m, n), s, t), with m x n 0dd, has a solution,
then the number of even vertices is greater by one than that of the odd vertices.
Hence, a necessary condition for the solvability of (R(m, n), s, ) is that both s and ¢
be even. In § 3 it is shown that this condition is also sufficient for nontrivial (i.e.,
m, n > 1) odd rectanguler graphs. If m X n is even, then a solution is possible only if
s and ¢ have different parity. However, this condition is not sufficient. There are three
families of configurations for which even though s and ( have different parity
(R(m,n),s,t) has no solution. In §3 we give the precise necessary and sufficient
conditions for a Hamilton path problem to have a solution. Partial results in this
direction were first proved in [LM).

* Received by the editors September 22, 1980, and in final form August 25, 1981,

t Department of Computzr Science, Technion, Haifa, Israel. Part of this work was coaducted while
this author wes visiting the Electrical Engincering and Computer Science Department, University of
California at Berkeley, and the Laboratory for Computer Sciznce, Massachusetts Institute of Technology.

£ Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, and National Technical University of Athens, Greece. The work of this author was supported by
the National Science Foundation under grant MCS 76-01193

§ Universidade Federal do Rio de Janeiro, Brasil. Present address: Computer Science Division,
University of California, Berkdey, California §4720. The work of this author was supported by the Conselho
Nacional de Desenvolvimento Cientifico ¢ Technologico (CN?q), Brasil, processo 574/78.
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Shortest Tours in Manhattan

A Grid Graph

Theorem: (Itai, Papadimitriou, Szwarcfiter 1982)
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Shortest Tours in Manhattan

A Grid Graph

Theorem: (Itai, Papadimitriou, Szwarcfiter 1982)
Finding a shortest tour in a grid
graph is NP-hard.
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Longest Tours in Manhattan
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Simplicity and Hardness of the Maximum Traveling Salesman Problem
under Geometric Distances*

Sandor P. Fekete!

Abstract
Recently, Barvinok, Johnson, Woeginger, and Wood-
roofe have shown that the Mazimum TSP, i. e., the
problem of finding a traveling salesman tour of maxi-
mum length, can be solved in polynomial time, provided
that distances are computed according to a polyhedral
norm in Y, for some fixed d. The most natural case of
this class of problems arises for rectilinear distances in
the plane IR?, where the unit ball is a square. With the
help of some additional improvements by Tamir, the
method by Barvinok et al. yields an O(n?logn) algo-
rithm for this case by making elegant use of geometry,
graph theory, and optimization, including some rather
powerful tools.
In this paper, we present a simple algorithm with
O(n) running time for oompnhng the length of a longest
tour for a set of points in the plane with rectilinear
distances. The algorithm does not use any indirect
addressing, so its running time remains valid even
in comparison based models in which sorting requires

(nlogn) time, which implies the same lower bound p;

on verifying a Hamiltonian cycle. In addition, our
approach gives a simple characterization of all optimal
solutions. These results give a good idea what makes
the (polybedral) max TSP so much easier than its
minimization counterpart.

Resolving the complexity status of the max TSP
for Euclidean distances in spaces of fixed dimension
has been stated by Barvinok et al. as a main open
problem. In this paper, the results on simplicity are
complemented by a proof thut the Maximum TSP under
Euclidean distances in IR? for any fixed d > 3 is NP-
hard, shedding new light on the well-studied difficulties
of Euclidean distances. In addition, our result implies
NP-hardness of the Maximum TSP under polyhedral
norms if the number k of facets of the unit ball is

T "Work on this paper was partially supported by the
Hermann-Minkowski-Minerva Center for Geometry at Tel
Aviv University, while the author was visiting the Center in
March 1998, and by DFG travel grant FE 407/3-1 for a visit
to the USA in June 1998,

1Center for Applied Computer Science, Universitit zu Kaln,
50923 Kdln, GERMANY, sandor€zpr eni-Xoeln.de

not fixed. As a corollary, we get NP-hardness of the
Maximum Scatter TSP for geometric instances, where
the objective 1s to find a tour that maximizes the
shortest edge. This resolves a conjecture by Arkin,
Chiang, Mitchell, Skiena, and Yang in the affirmative.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the
classical problems of combinatorial optimization: Given
a set {vy,v3,...,Us} of vertices together with the dis-
tance d (v, v5) between every pair of distinct vertices v,
v,,tbegodnwﬁndupemuhuonto(the vertices (&

“tour”) that minimizes (Minimum TSP) or maximizes
(Maximum TSP) the total tour length

d (vega)s ven) + 2 d (ve(e), veien)) -
i=]

Geometric instances of the TSP have always been
of particular interest: vertices v correspond to points
= (z1,...,2¢) in space IR?, and distances d(v,vy)
are given by some geometric norm ||p; — pjl|. The most
common norms considered include the Euclidean norm
L» and the Manhattan norm L;, which are both special
cases of the L, norms. The L; norm is also an example
of a polyhedral norm, where the set of points at distance
1 from the origin is given by a centrally symmetric
polyhedron with k facets.

Two key questions regarding the complexity of
the Minimum TSP on geometric instances have been
answered. [Itai, Papadimitriou, and Swarcfiter [11]
showed that the Minimum TSP is NP-hard for any fixed
dimension d > 2 and any L, or polyhedral norm. On
the other hand, Arora |2, 3] and Mitchell [13) showed
that all these geometric instances allow a polynomial-
time approximation scheme (PTAS), i.e., a sequence of
algorithms A, that compute a solution ‘within a factor
of 1 + % of the optimum, in time that is polynomial for
any fixed s. This highlights the special role of geometry,
since it is well known that for general Minimum TSP
instances, no PTAS can exist. (See Trevisan [17), and
Papadimitriou and Yannakakis [14) for such results in
more restricted situations.)
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

\F'ﬂ""q"’a
.o_ﬁ a% Technische
%5 Universitat

<
U 4.
L ) J
o35 23,
('hcﬂé

Braunschweig

10



Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
* Find long connections.
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
* Find long connections.
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
* Find long connections.
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
* Find long connections.

ll.q’

max Tour < 2min Star
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
* Find long connections.
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5@ 2% Technische
3 %3 Universitit
“%s Braunschweig

~N
%
.
55
(’h

ce

10



Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
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* Find a point that
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Manhattan distances:
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* Find long connections.
* Find long subtours.
* Find longest tour.
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Longest Tours in Manhattan

* Find a point that
minimizes the sum of
Manhattan distances:

median in x and y!
* Find long connections.
* Find long subtours.
* Find longest tour.
Theorem:

A longest tour for points
In the plane with
Manhattan distances
can be computed in
linear time.
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Think Globally

« Consider a grid graph
embedded on a sphere.
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Think Globally

« Consider a grid graph
embedded on a sphere.
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Think Globally

Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.
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Think Globally

« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.
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Think Globally

« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.

» Grid graphs are bipartite.
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Think Globally

« Consider a grid graph
embedded on a sphere.
» Add second copy at the
antipodes.

» Longest connections are
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« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
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Think Globally

« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.

» Grid graphs are bipartite.

» Keep black and white points
In opposite hemispheres.
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« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.

» Grid graphs are bipartite.

» Keep black and white points
In opposite hemispheres.

» Long connections correspond
to short ones in the original
grid graph.
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Think Globally

LA(S(vy). S(v;iD]°
[ L2 ((cos(x; ) cos(v; W), sin(x; ¥ ) cos(y; ), sin(y;¥r))

(cos(r + x ;3 )cos(—y ;W ), sin(r + x ;) cos(—y ). sin{—y;r)))]

e - [cos(x; ) cos(y; ¥ ) + cos(x ;i) cos(y ;)]
+ [sin(x; ) cos(y; ) + sin(x ;1) COS(__]-’J.'I,’I)]: + [sin(y; W) + sin(y; )]

' (0 ) y » " i i 5 |
- [(1 2 < S Of(x..w:ﬁ)) (l 200 O(t_v.:n.’/)*))

. ’ 2 ., 2 .
4 (1 — Lo O(x ) )) (1 “';') +0((-v;s-‘f)4))]

. , . (i)’ o e
K [(-\‘.: P — O((x;¥))) (l e ; — + O((y; )4))

| e
+ (x; % — 0((.\'_;&’/')3,)(1 ) + O((y;¥) ))]

+ W — O ) + v, 9 — O, ¥ )P
(xifr )y Y () (y) s
s+ o Ee : e o 7 Pes J W b ol
= |i.-. 5 5 5 5 4+ On ")

x4+ O ) + [ + v 4+ On ™))
= [4 = 2(x:) — 20 ¥)’ — 2(x;9)° = 2(;9) + O(n %)
+ [ ) + (x9)° + 2, 1'/2 + O(n %))

FLOvE) + () 4 2y + O(n~™)]
=G — (e RN — L — Vi) l;’/ + O ")

b [ A

« Consider a grid graph

embedded on a sphere.

» Add second copy at the

antipodes.

» Longest connections are

between antipodal points.

 Grid graphs are bipartite.

» Keep black and white points
In opposite hemispheres.

» Long connections correspond
to short ones in the original

grid graph.

ﬂ"’"’c

T3 Technische

53 g%
3 k %1 Universitit

5 Braunschweig

25
T, v

h;c\&




Think Globally

« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.

» Grid graphs are bipartite.

» Keep black and white points
In opposite hemispheres.

» Long connections correspond
to short ones in the original
grid graph.

MLy
.'fl

s‘%’i % Technische
3 %3‘- Universitit
% Braunschweig

55

("h‘: cd

12
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« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.

» Grid graphs are bipartite.

» Keep black and white points
In opposite hemispheres.

» Long connections correspond
to short ones in the original
grid graph.
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« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.

» Grid graphs are bipartite.

» Keep black and white points
In opposite hemispheres.

» Long connections correspond
to short ones in the original
grid graph.

Theorem:

Finding a longest tour for
Euclidean distances in 3D is
an NP-hard problem.
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Abstract We discuss the problem of foding a longest tour for a set of points 1 a
geometric space. In particular, We show that a longest wour Foe z set ol npoints inthe
plane can he computed in time (w) if distances are determined by the Manhatran

C I ° ° I metric, while the same problem is NP-hard for points on a sphere under Euclidean
1 Introduction: Short and Long Roundtrips

Ll Ll o

The Traveling Salesman Problem (TSP) 3s one of the classic problems of combina-
torial optimizetion. Given a complete graph G = (V, £) with edge weights ¢(e) for
all edges ¢ & £, Ond a shortest ouodteip through all vertices, 1.e., a cyclic perinu-

distances.
tation X fram the symmetne group S, of all xoverlices vy, ..., vy, such that the total
tour length ¥ e({vy,vqi }) is minimized.

The difficulties of finding a good roundtrip are well known. The classical Odyssey
o 15 Ulustrated tn Figure 1: according o legend, it ook Ulysses ooy yeurs (o com-
plete his voyage, One jusiification is the computational complexity of the TSI it

15 nae ol the most Bamous NP-hand problems, so it does indeed take many years of
CPU dme to find pravahly optimal solations for non-trivial instances.

¢ However. there i1s an even more convineing justification for Ulvsses® failure o

' I l be home in a more timely fashion: it was not him wha chose his route. Insresd,

0 r I t S malevolent gods cavsed o deliberately long voyage—so the real objective was o
muximize e unveled distunce. This motivates the MaxTSP: Fiod a rounduip tbat

visits all vertices 1o a weighted grapl, such that the total wur leagth 1s maxiouzed,
In this chapter, we study longest tiurs in a geomelric selting, in which the verlices
are paints in two- or three-dimensionel space, and the edge weights are induced

) ] Séndoe P. Fekete

Reportreent of Campurer Science, TU Rreunschweiz, 810G Braunschweip, Germany, s-mail:
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The Geometric Maximum Traveling Salesman Problem

ALEXANDER BARVINOK ARIE TAMIR
University of Michigan, Ann Arbor, Michigan Tel Aviv Universiry, Tel Aviv, Israel
SANDOR P. FEKETE GERHARD J. WOEGINGER
Braunschweig University of Technology, University of Twente, Enschede,
Brawnschweig, Germany The Netherlands

DAVID S. JOHNSON AND
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Cornell University, Ithaca, New York

Abstract. We consider the traveling salesman problem when the cities are points in RY for some fixed
d and distances are computed according to geometric distances, determined by some norm. We show
that for any polybedral norm, the problem of finding a tour of maximum length can be solved in
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Think Globally

« Consider a grid graph
embedded on a sphere.

» Add second copy at the
antipodes.

» Longest connections are
between antipodal points.

» Grid graphs are bipartite.

» Keep black and white points
In opposite hemispheres.

» Long connections correspond
to short ones in the original
grid graph.

Theorem:

Finding a longest tour for
Euclidean distances in 3D is
an NP-hard problem.
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Think Globally

The Open Problems Project.

edited by Erik D. Demaine
Joseph S. B. Mitchell

Joseph O'Rourke
e M- .

e
2roblem 49: Planar Euclldean Maximum TSP

S~ -

CONJECTURE 4.1. The Mazimum TSP for Euclidean
distances in the plane is an NP-hard problem.
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Problem 7.1:
Given: A set P of points in R?
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Wanted: A location ¢ that minimizes the
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Wanted: A location ¢ that minimizes the
total distance to the given points
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Stars and Matchings [Fekete and Meijer 2000]

Proposition 1. For point seis P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.
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Proposition 1. For point seis P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.

——

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we have p(SS, M) = 2//3.
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Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.

——

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we have p(SS, M) = 2//3.
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Lemma 2. For point sets {* in two-dimensional space we can find three directed lines
lo, l1, and 1> such that the three lines intersect in a common peoint, all three lines are
halving lines of P and the smallest angle between any two lines is /3.
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Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.

—_

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we have p(SS, M) = 2//3.
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Lemma 2. For point sets 1* in two-dimensional space we can find three directed lines * T = ,\f’\,{\ *
lo, Iy, and I such that the three lines intersect in a common point, all three lines are "6 IO\
halving lines of P and the smallest angle between any two lines is /3. | e .\\ o
./ N
T — <— i * M \\_
B O\
n J ) \ \

Fig. 1. Finding a small Steiner star and a large matching.
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Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.

——

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we have p(SS, M) = 2//3.

Theorem 6. For point sets P in two-dimensional space with Manhatian distances, we
have p(S, S8) = 3.
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Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.

——

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we have p(SS, M) = 2//3.

Theorem 6. For pomt sets P in two-dimensional space with Manhatian distances, we
have p(S, §S) =

B
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Theorem 7. rfor point sets P of even cardmalzt} in three-dimensional space with Man-
hattan distances, we have p(SS, M) = 3.
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Stars and Matchings [Fekete and Meijer 2000]

Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.

J

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we have p(SS, M) = 2//3.

Theorem 6. For point sets P in two-dimensional space with Manhatian distances, we
have p(S, S8) = 3.

1
l

Theorem 7. rfor point sets P of even cardinality in three-dimensional space with Man-
hattan distances, we have p(SS§, M) = 3

ol

|
l

Theorem 8. for point sets P in three-dimensional space with Manhattan distances,
we have p(SS§, S) = %

l
l

WIL
o™ e,

”iél s 'gz Technische
%

Uf?‘i > Universitit
L .
»7#|* %5 Braunschweig
Of\fscﬂé

15



Stars and Matchings [Fekete and Meijer 2000]

Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhartan distances, we have Ly = Lss.

}

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we have p(SS, M) = 2//3.

Theorem 6. For point sets P in two-dimensional space with Manhatian distances, we
have p(S, S8) = 3.

\
l

Theorem 7. rtor point sets P of even cardinality in three-dimensional space with Man-
hattan distances, we have p(S§, M) = 3

ol

|
l

Theorem 8. for point sets P in three-dimensional space with Manhattan distances,
we have p(S8§, S) = %

Conjecture 1. For paint sets P in two-dimensional space with Euclidean distances,
we have p(S,SS) = 4/x.

Conjecture 2. For point sets P in three-dimensional space with Euclidean distances,
we have p(§, SS) = ‘{
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Stars and Matchings [Fekete and Meijer 2000]

Table 1. Lower and upper bounds [or worst-case ratios.

Distances Dimension Ratio Lower hound Upper bound
Euclidean Two p(SS., M) Z=1I5... ig =1.15...
o(S, SS) 2 =127... J2=141...
p(S, M) ‘=133, 22163,
3
Three p(8S, M) ;’%:1.22... V2=141...
4
p(S, 55) T=133... V2=141...
p(S, M) 3=15 2
Manhattan Two p(SS. M) | 1
3 3
p(S, 55) 3=15 =15
p(S, M) 3=15 3 =15
Three p(SS, M) 2 =15 = =15
} (S, SS) 2 =1.66... > =166...
5
p(S, M) 2 = 1.66... 2
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Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]
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Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]
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Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]

Problem 7.3:

Given: A set P of points in R?

Wanted: A maximum-weight perfect matching
of the given points

NILg

e

3517 > Universitat
- o
»7#|* %5 Braunschweig
)
Nsce

oV e .
,g”:;_& ‘3% Technische
g

16



Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]

Problem 7.3:

Given: A set P of points in R?
Wanted: A maximum-weight perfect matching
of the given points
O(n*)

NILg

e

oM, .
,g”:;_& ‘3% Technische
g

3517 > Universitat
L) o
O ,.j’ Braunschweig

oIVsc?‘

16



Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]

Problem 7.3:
Given: A set P of points in R?
Wanted: A maximum-weight perfect matching 0000,
of the given points 4 e ® o
O(n”) O ®
O O
O O
O O
O O
O O
O O
O O
O O
O
0‘ °
© O O ®
00 09

NILg

e

o & .
5”:;_& ‘3% Technische
g

*}i > Universitit
- (<) o
22445 Braunschweig

OIVch‘

16



Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]

Problem 7.3:
Given: A set P of points in R?
Wanted: A maximum-weight perfect matching 0000,
- - O O
of the given points 4 e o
O(n”) O ®
Problem 7.1: .. ..
O O
O O
O O
O O
O O
O O
O
0. °
© O O ®
00 09

NILg

e

o & .
5”:;_& ‘3% Technische
g

*}i > Universitit
- (<) o
22445 Braunschweig

oIVsc?‘

16



Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]

Problem 7.3:
Given: A set P of points in R?
Wanted: A maximum-weight perfect matching 0000,
: : O O
of the given points 4 o ®
O(n”) O ®
Problem 7.1: .. ..
Given: A set P of points in R? O O
O O
O O
O O
O O
O O
O
0. ®
© O O ®
00 09

NILg

e

oM, .
,g”:;_i ‘3% Technische
g

3517 > Universitat
L) o
O ,.j’ Braunschweig

oIVsc?‘

16



Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]
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The Algebraic Degree of Geometric Optimization Problems

Chanderjit Bajaj ﬂatChlng ‘

Depariment of Computzr Sconce, Purdue Univensity, 'West Lafayeite, IN 47507, USA 4

Abstract. In this paper we apply Galois method: ‘0 cestam fundamental geomeric
oplimization probems whose exact computatioral complexity has been an open
problem [or a lorg time. In particular we thow that the classc Weber problem,
wong with the lineresinced Weber problem and its rhree-dimensional version are
in general not solvable by radicals over the fcdd of rationals. One direct consequence
of these results is that for thes: geometric optimization problems there exists mo
exact algorithm under models of computation where the root of an a'gebra cequstion
15 obtamed using anthmelic aperatians and rthe extracton of kth roocs. This leaves
enly numerical or symbolic approximations to the solutions, where the camplexity e
of the approximatiors is shown w0 be primarily a fencion v the algeoraic degoe

ints o

of the optmum solation poiat.

1. Introduction

Geometric optimization problems areinherzntly aut pure combinaterial problems
since the optimal solution often belongs 10 @n infinite feasible set, the entire rezl
Euclidean space. Such problans frequently anse in computer-aided design and
robolice. It has thus become increasingly important o devise appropriate methods
w analyze the complexity of problems where combdinateriel analysis methods
seem 1o fail. Here we take a step in this direction by epplying Galois elgebraic
methods Lo certain fundamental geometric optimization problems. These problems
are nuncombingtorial and have vo known pelysomial time solutions. Neither
have these problems shown to be intractable (NP-hard, etc.). In fact, the recogn:
tion versions of these optimization preblems are not cven known to be in the
class NP [10].

The ust of algebraic methods for analyzing the complexity of grometric ‘
problems has been popular since the time of Descartes, Gauss, Abel, and Calois.
The complexity of straight-cdge and compess constructions has been known to
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Solving a ,hard“ problem to approximate an ,,easy” one
[Fekete, Meijer, Rohe, Tietze 2002]

Problem 7.3:

Given: A set P of points in R?
Wanted: A maximum-weight perfect matching O

of the given points O(n4)
Problem 7.1:
Given: A set P of points in R? T
Wanted: A location ¢ that minimizes the

total distance to the given points
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Shape Reconstruction

Given: n points in the plane sampled from a shape
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O
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Shape Reconstruction
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Shape Reconstruction

Given: n points in the plane sampled from a shape
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Geometric: \Why a simple curve?!
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Shape Reconstruction
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COMPUTING NONSIMPLE POLYGONS OF MINIMUM PERIMETER®

Sdndor P. Fekete,! Andreas Haas,! Michael Hemmer,! Michael Hoffmann,}
Irina Kostitsyna,’ Dominik Krupke,! Florian Maurer,! Joseph S. B. Mitchell,
Arne Schmidt,! Christiane Schmidt,| Julian Troegel'

ABSTRACT. We consider the Minimum Perimeter Polygon Problem (MP3): for a given set
V of points in the plane, find a polygon P with holes that has vertex set V| such that the
total boundary length is smallest possible. The MP3 can be considered a natural geometric
generalization of the Traveling Salesman Problem (TSP), which asks for a sstmple polygon
with minimum perimeter. Just like the TSP, the MP3 occurs naturally in the context of
curve reconstruction.

Even though the closely related problem of finding a minimum cycle cover is polyno-
mially solvable by matching techniques, we prove how the topological structure of a polygon
leads to NP-hardness of the MP3. On the positive side, we provide constant-factor approx-
imation algorithms.

In addition to algorithms with theoretical worst-case guarantess, we provide practical
methods for computing provably optimal solutions for relatively large instances, based on
integer programming. An additional difficulty compared to the TSP is the fact that only
a subset of subtour constraints is valid, depending not on combinatorics, but on geometry.
We overcome this difficulty by establishing and exploiting geometric properties, This allows
us to reliably solve a wide range of benchmark instances with up to 600 vertices within
reasonable time on a standard machine, We also show that restricting the set of connections
between points to edges of the Delaunay triangulation yields results that are on average
within 0.5% of the optimum for large classes of benchmark instances,

1 Introduction

Two of the most fundamental structures in Computational Geometry are planar point sets
and polygons. In this paper we study a natural algorithmic connection between them. For

*A preliminary extended abstract |13] appeared in the Proceedings of the 15th Symposium on Experi-
mental and Efficient Algorithms (SEA 2016).
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many, {s.fekete,a.haas,n hemmer,d.krupke,arne.schaidt,j.troegel}otu-bs.de
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In addition to algorithms with theoretical worst-case guarantess, we provide practical
methods for computing provably optimal solutions for relatively large instances, based on
integer programming. An additional difficulty compared to the TSP is the fact that only
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Given: n points in the plane
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Figure 1: A Minimum Perimeter Polygon for an instance with 960 vertices.
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An Open Problem Resolved
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An Open Problem Resolved

Theorem 1. The MPP problem is NP-hard.
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Constant-Factor Approximation
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. Theorem 2. There exisls o polynomial time 3-approzimation for the MPP. |
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3-Approximation

Idea: e Compute outer hull
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3-Approximation

Idea: e Compute outer hull < OPT
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3-Approximation

Idea: e Compute outer hull < OPT
 Compute 2-factor of interior points
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3-Approximation

Idea: e Compute outer hull < OPT
 Compute 2-factor of interior points
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3-Approximation

Idea: e Compute outer hull < OPT
 Compute 2-factor of interior points < OPT
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3-Approximation

Idea: e Compute outer hull < OPT
 Compute 2-factor of interior points < OPT
* Merge cycles
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3-Approximation

Idea: e Compute outer hull < OPT
 Compute 2-factor of interior points < OPT
* Merge cycles < OPT
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Technical Detalls: Merge Cycles (1)

i We now cescioe pnase 1. Let 7' be & noatrivial tree of £, Associated with 2

are a =et of cycles, one per node. A node w of T that has no ontgoing edge of T
\i.e., U has no children) is a sink node, it corresponds to a cycle that has no cycle
contained within it. Let © be a node of T that has at least ane child, but no grand-
children. (Such a node must exist in & nontrivial tree T.) Then, v corresponds
0 & cyole (simple polygon] Py, within which there is one ar more disjoint simple
polygonnl eyeles, P, (P, .... P, , une for each of the & 2 1 children of ». We
describe an operation Lhat replaces P, with a pew weakly simple polygon, Q..
whose interior is disjoint from those of £, , F,,,.... F,,. Lete=pg (p.ge V) |
he any edge of P,; sssume that pg i8 a counterclockwise edge, so that the inmerior
of £, lies to the left of the oriented segment pg. Let {7 be a shortest path within
) P, from p to q, that has all of the polygonz Py, Py, ..., P, toits right; thus, |
I is a “taut string” path within F,, homotopically equivelent to @F,, from p to

. (Such a geodesic path 8 related to the ‘relative convex hull™ of the polygzons
P..,FP.,.... P, within P, which is the shortest cycle within P, that encloses
all of the polypons; the diference is that I 18 “snchored” at the endpoints p and
) g.) Note that I is a polygonal path whose vertices are either (convex) vertices of
the polygons Py, or (reflex) vertices of Py. Consider the clesed polygonal walk
thut starts 2t p, follows the path I to g, then continues connterclockwise around
the boundery, &F,, of P, until it returns to p. This closed polygunal walk is the
counterclockwise traversal of a weakly simple polygon, @,, whose interior is dis
joint from the interiors of the polygons P, , P, ..., P, . Refer to Figure 8. The
ﬁ length of this closed walk {the counterclockwise sraversal of the boundary of @)
is at most twice the perimeter of P, since the path I'” has length at most that
of the counterclockwise boundary 9F,, from g to p (since /' is a homotopically
equivalent shortening of this boundary]. We consider the boundary of P, to be
replaced with the cyvcle around the boundary of @.,, and this process has reduced
the degree of nesting in 7 node » that uaad to have & children (leaves of T') is
now replaced by a node v/ corresponding to @, and v and the & children of v
are now all siblings in the modified tres, 7°. 7 » had a parent, w, in T, then o'
amd the k children of » are now children of W5 il v had no parent in T [le. it
| was the root of T), then T' has been transformed into a set of k 4 1 cycles, none
of which ere nested within nnother evele of (7). (Ench &5 within the convex
hall CH{V'), but there is no other surrounding eycle of 4(L7).) We continue this
process of transforming a surrounding parent cycle (node v) into & sibling cycle
node »'), until each tree T of F beeomes a set of isolated nodes, and finally F
has no edees (there is no nesting).
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1 is a “taut string” pasth within F,,, homotopically cqu;w.l
q. (Such a geodesic path 8 related to the “relative convex
P. P, ....P., within P, which is the shortest cycle
all of the pnlygrmn the diference is that I 18 “snchored” s
g.) Note that I' is a polygonal path whose vertices ere eit
the polygoms Py, or (reflex) vertices of P. Consider the
that starts at p, follows the path I to g, then continues eor
the boundary, &F,, of P, until it returns to p. This closed
counterclockwise traversal of a weakly simple polygon, @,y
joint from the interiors of the polygons P, P, ,... . P, .
sength of this closed walk (the counterclockwxse .ravetse.l
is at most twice the perimeter of P, since the path I'
of the counterclockwise boundary 9F,, from g to p (since I
equivalent shortening of this boundary]. We consider the bouie it P, to he
replaced with the cycle around the boundary of Q.., and this procem has reduced
the dagree of nesting in T node » that uaad to have k children (Jeaves of T') is
now replaced by a node v corresponding to @, aad v end the & children of v
are now all siblings in the modified tres, T°. ¥ » had a parent, w, in T, then o
amd the k children of » are now children of W5 il v had no parent in T [le. it
was the root of T), then T has been transformed into a set of k 4 1 cycles, none
of which ere nested within nnother evele of (7). (Ench &5 within the convex
hall CH{V), but there is no other surrounding eycle of 4(U7).) We continue this
process of transforming a surrounding parent cyele (node v) into a sibling cycle
node »'), until each tree T of F beeomes a set of isolated nodes, and finally F
has no edees (there is no nesting).
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Technical Detalls: Merge Cycles (2)

AT OE e ety ST el yeon 4, s 10T J1 Dn oo vOrTeX O o o o
P repeated in the evele specifying the houndary @Q. This implies that there are
four edges of the (counterclockwise) eycle, pyp, pp., pap, and pps, incident on
p, all of which lie within a halfplane throngh g (by local aptimality). There are
then two subeases: (1) py, p,p; is a left turn (Figure 9, left); end (ii) p,pp, is
a right turn (Figure 9, right). In subease (i), pyp, pp, define a left turn at p
(making p locally convex for @Q), and pap, pp: define a right turn at p (making
p locally reflex for Q). In this case, we replace the pair of edges pyp, pp, with a
shorter polygonal chain, namely the “taut” version of this path. from pg to p-,
1 along a shortest path, 8 1, among the polygons Q;, including . treating them
as obstacles. The taut path £n1 consists of left turns only, at (locally convex)
vertices of polygons Q: (Q; # Q) or (locelly reflex) vertices of Q, where new pinch
' po:nts of @ are created. Refer to Figure 9, left. Case (ii) is treated similarly; see
Figure 9, right. Thus, resolving cne repeated vertex, p, of ¢ can result in the
crealion ol olher repealed verlices of @, or repeated vertices where two cycles
come togelher (discussed below). The prucess is [inile, though, since the Lotal
length of all cycles strictly decreases with each operation; in fact, there can be
only a polynomial number of such adjustinents, since each Lriple (po,p, 1), 18
resolved at most once,

Now consider a vertex p that appears onee as a reflex vertex in @, (with in-
cident cew edges p,p and pp,) and once as a convex vertex in Q. (with incident
cew edges pup and ppy). (Because cycles resulting after phase 1 are loczally short-
est, p must be reflex in one cycle and convex in the other.) Qur local operation

in this case results in a merging of the two cycles (J; and (Q» into a single cvcle,
? replacing edges pyp (of @) and pps (of Q) with the taut shortest path, 2 3.
As in the process described above, this replacement can result in new repeated
vertices, as the merged cycle may come into contact with other cycles, or with
itsell,
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Technical Detalls: Merge Cycles (2)
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ﬁ repeated in the evele specifying the houndary 8Q. This implies thar there are
four edges of the (counterclockwise) eycle, pyp, pp., pap, and pps, incident on
p, all of which lie within a halfplane throngh g (by local aptimality). There are
then two subeases: (1) py, p,p; is a left turn (Figure 9, left); and (ii) pypp, is
a right turn (Figure 9, right). In subease (i), pyp, pp, define a left turn at p
(making p locally convex for @Q), and pap, pp: define a right turn at p (making
p locally reflex for Q). In this case, we replace the pair of edges pyp, pp, with a
shorter polygonal chain, namely the “taut” version of this path, from pg to p-,
along a shortest path, 8 1, among the polygons @Q;, including Q. treating them
as obstacles. The taut path £n1 consists of left turns only, at (locally convex) t
vertices of polygons Q: (Q: # Q) or (locelly reflex) vertices of Q, where new pinch i
po:nts of @ are created. Refer to Figure 9, left. Case (ii) is treated similarly; see
Figure 9, right. Thus, resolving cne repeated vertex, p, of ¢ can result in the
crealion of olher repealed verlices of @, or repeated vertices where two cycles
come togelher (discussed below). The prucess is [inile, though, since the Lotal
length of all cycles strictly decreases with each operation; in fact, there can be
only a polynomial number of such adjustinents, since each Lriple (po,p, 1), 18
resolved at most once.,

.t

Now consider a vertex p that appears onee as a reflex vertex in @, (with in-
cident cew edges p,p and pp,) and once as a convex vertex in Q. (with incident
cew edges pup and ppy). (Because cycles resulting after phase 1 are loczally short-
est, p must be reflex in one cycle and convex in the other.) Qur local operation
in this case results in a merging of the two cycles (0, and (J» into a single cvcle,
replacing edges pyp (of @) and pps (of Q) with the taut shortest path, 2 3.
As in the process described above, this replacement can result in new repeated
vertices, as the merged cycle may come into contact with other cycles, or with
itsell,
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four edges of the (counterclockwise) eycle, pyp, pp., pap, and pps, incident on
p, all of which lie within a halfplane throngh g (by local aptimality). There are
then two subeases: (1) py, p,p; is a left turn (Figure 9, left); and (ii) pypp, is
a right turn (Figure 9, right). In subease (i), pyp, pp, define a left turn at p
(making p locally convex for @Q), and pap, pp: define a right turn at p (making
p locally reflex for Q). In this case, we replace the pair of edges pyp, pp, with a
shorter polygonal chain, namely the “taut” version of this path, from pg to p-,
along a shortest path, 8 1, among the polygons @Q;, including Q. treating them
as obstacles. The taut path £n1 consists of left turns only, at (locally convex) t
vertices of polygons Q: (Q: # Q) or (locelly reflex) vertices of Q, where new pinch i
po:nts of @ are created. Refer to Figure 9, left. Case (ii) is treated similarly; see
Figure 9, right. Thus, resolving cne repeated vertex, p, of ¢ can result in the
crealion of olher repealed verlices of @, or repeated vertices where two cycles
come togelher (discussed below). The prucess is [inile, though, since the Lotal
length of all cycles strictly decreases with each operation; in fact, there can be
only a polynomial number of such adjustinents, since each Lriple (po,p, 1), 18
resolved at most once.,
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Now consider a vertex p that appears onee as a reflex vertex in @, (with in-
cident cew edges p,p and pp,) and once as a convex vertex in Q. (with incident
cew edges pup and ppy). (Because cycles resulting after phase 1 are loczally short-
est, p must be reflex in one cycle and convex in the other.) Qur local operation {
in this case results in a merging of the two cycles (0, and (J» into a single cvcle,
replacing edges pyp (of @) and pps (of Q) with the taut shortest path, 2 3.
As in the process described above, this replacement can result in new repeated
vertices, as the merged cycle may come into contact with other cycles, or with
itsell,

R~

~F‘N‘L~'

o,& % Technische

'}J& S% Universitat
% Braunschweig

?\;c\)

24



Overall Goals

MLy,
- ?J

s‘%’s % Technische
15 %f Universitit

'*.:”3 “%& Braunschweig

("’5‘: ce

25



Overall Goals

MLy,

~F

sﬁﬁi Technische
£ Universitit
*&’ Braunschweig




Overall Goals

MLy,
- ?J

s‘%’s % Technische
15 %f Universitit

'*.:”3 “%& Braunschweig

("’5‘: ce

25



~F

o
-
<
U

)
"

MI':?QJ .
% Technische

)

("h‘: cd

%3‘- Universitat
#5  Braunschweig

7, T8

Overall Goals

IBM ILOG
CPLEX

Faser and Siarter Than Ever

meets

25



Subtour Elimination (TSP)
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r. € {0,1}. (4)
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Subtour Elimination (TSP)

min Z TeCe . (1)
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r. € {0,1}. (4)
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Subtour Elimination (TSP)

min Z TeCe . (1)
eck
VvEV:Zme=2, (2)
e€dé(v)
r. € {0,1}. (4)
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Subtour Elimination (TSP)

r

min Z TeCe . (1)
eck
VvEV:Zme=2, (2)
e€dé(v)
vCeC: Y z.<|C|-1, (3)
ecC
r. € {0,1}. (4)
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Subtour Elimination (TSP)

v =

min E TeCe - (1)
ecl
VvEV:er=2, (2)
e€déd(v)
vCeC: Y z.<|C|-1, (3)
ecC
r. € {0,1}. (4)
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Problem: Which cycles are illegal for MPP?
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lllegal Cycles
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lllegal Cycles

> o ] o
& .:“:.(@\I
(_'> ..D..\ /

(a) Invalid cycle of type 1 (b) Invalid cycle of (c) Invalid cycle of |

type % B type 3 :
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lllegal Cycles

>, » [ N
(_'f ..D..\ //

(a) Invalid cycle of type 1 (b) Invalid cycle of (c) Invalid cycle of |

type 2 type 3 ;
s ET—

- 1. at least one and at most |C'H| — 1 convex hull points. (See Figure 11(a)):
S -_— e
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lllegal Cycles

5/\ = el
(_Q/ ..D..\ //

(a) Invalid cycle of type 1 (b) Invalid cycle of (c) Invalid cycle of |

type 2 type 3 ;
e _—

- 1. at least one and at most |[CH| — 1 convex hull points. (See Figure 11(a)):
e R

¢ 2. all convex hull points but does not. enc l()b(—‘ rL]] other points. (See Figure 11(b)
e J—————_—d
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lllegal Cycles

5/\ = el
(_Q/ ..D..\ //

(a) Invalid cycle of type 1 (b) Invalid cycle of (c) Invalid cycle of |

type 2 type 3 ;
e _—

- 1. at least one and at most |[CH| — 1 convex hull points. (See Figure 11(a)):
e R

¢ 2. all convex hull points but does not. enc l()b(—‘ rL]] other points. (See Figure 11(b)
e J—————_—d

- 3. no convex hull point but encloses other points. (See Figure 11(c))
T ———————— ————-——-—-—d
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Eliminating Cycles May Be Inefficient (1)
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Eliminating Cycles May Be Inefficient (1)

For an invalid cycle with property 1, we use the equivalent cut constraint

VCEC : Y me>2. (5)
ecd(C)
st et e « B ——
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Eliminating Cycles May Be Inefficient (1)

For an invalid cycle with property 1, we use the equivalent cut constraint

VO €Cy: Z Te > 2. (5) |
e 3(C)
I S
sa| | oo o | o oo f o (
(a) (b) (c)
oo rps 0| | n | 0 | 1
g afa o e |

!; (d) (e) (f)

. Figure 12, (a) - () show consecutive iterations when trying to solve an instance using
only constraint (5).
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More Efficient: Glue Cuts
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More Efficient: Glue Cuts

0o 4 (1 0 8P l
oo 98 8RS 0o
(a) (b)

( Figure 15. Solving instance from Figure 12 with a glue cut (red). (a) The red curve
needs to be crossed at least twice; it is found using the Delaunay 'I'riangulation (grey).
; (b) The first iteration after using the glue cut.
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TSPLIB Instances (Results)

Basicl?  +J$+DC +~JS+TC +JS+DC +JS+DC +DC+TC ‘
IO G UG LG TC LG BasicIl’  +J5+DC +J5+TC +J5+DC +J5+DC +DC+TC

+TC-HIHC +HIHC +HIHC —TC +HIHC

burmald 20 22 17 19 26 19
ulysses16 48 42 35 43 32 42 d198 - 19329 133650 - 19398 41118
ulysses22 a0 34 35 31 32 61 kroA200 - 26360 13093 - 26389 11844
attd8 180 a8 72 62 a7 129 kroB200 . A492 f239 . n5H25 15248
€ils 1 i 53 2 8 81 99 gra)2 - 4975 7512 - 4304 9670
Bemliz e R . N 1s225 18902 TG 9750 7505 7603 6OLGT
st ) a0 oo e ald (sp225 91423 11600 9741 28756 11531 44297
cili6 714 144 105 530 148 239 o _ " SROD i sond  1RS4R
pri6 : 711 711 : 731 1238 pra26 s 30 e o
@96 376 388 340 10982 384 367 gra29 - 5462 26478 - 10158 25674
ratg9 922 180 485 464 513 1190 gil262 - 23000 22146 - - 12772
kroA 100 981 6]9 as0 1204 pr264 24690 6237 - 6719 6549 23641
kroRB1(H) . 1470 2624 . 1484 PI85 a280 22023 3601 3857 3930 3619 12983
kraC100 . 470 431 . 465 57 290 ! 16251 333423 - 161734 85780
kroD1(W) 467 509 451 4334 514 %35 lin318 . 23863 1511219 - 24035 10312
kroE1(0 - 273 273 - 272 a7 linhp318 - 23107 1313680 - 23064 79352
rd 1(0) - 894 7ali - 890 2561 rd400 . 111128 92095 . 302363
elllv] : S : il e fi417 . 198013 - - 215210 825808
finltis - woae - 12 e grd3l : 56716 173609 - 78133 265416
prifir— bl o mme e le o 0r439 : 46685 36592 - 48231 273873
prl24 495 S 2064 322 308 40 . -
bierl27 439 288 70 267 276 AT6 pcbdd2 ] 1356796 - - - -
. B - e ‘ — d493 - 359072 - - - 837229
ch130 - 1758 1802 - 1504 2853 : A § 2
prid6 1505 964 1029 392 0500 3001 atwod2 : 217679 256394 - 218665 817096
arld7 . 1262 1361 . 1252 1724 ali335 - 93771 427800 - 91828 323101
pridad 6276 10028 2026 085 1030 2012 us71 - 71523 199114 - - 1010276
ch150) - 4038 BGT - HR6T 707 ratoid - 417494 191193 - 280320 034988
kroA140 - 3427 HH1a - 3327 7474 p651 - x61066 - - - -
kroB160 - 2083 2396 - 2043 5265 d6s7 - 455378 253371 - 646148 1352747
pr1H2 13285 2161 1614 10078 2151 19479 er6686 _ 366157 _ _ 670818 _
uldd 13285 1424 1262 3349 1410 2513
rat195 106030 16188 19780 77216 16117 27580
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A Sparser Version: Delaunay Edges

—Average gap

4,0%
3,5%
3,0%
2,5%
2,0% -
1,5% -
1,0% -
0,5% -
0,0% -

W
R
¥
A
=
1=
¥ ]
W
et

A
o
-L.\«.\b

vt Universitit
#$  Braunschweig
&

32



oV,
‘3% Technische

ONs

v 2 . g oo
> Universitat
¢ Braunschweig

ct‘é

1. Introduction

2. Longest Tours

3. Stars and Matchings
4. Nonsimple Polygons
5. Optimal Area

6. Turn Cost

Overview

33



Optimal Polygonizations
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Optimal Polygonizations

Given: Aplanar point set P
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Optimal Polygonizations

Given: A planar point set P
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Optimal Polygonizations

Given: A planar point set P

Wanted: A simple polygon with vertex set P
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P

AL

5,

e, £
30%5 §‘z Technische

£ Universitit

UV e
'*., *#5' Braunschweig
Op “8

C




Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P

Objective:
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P

Objective: Minimize Perimeter
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P

Objective: Minimize Perimeter —Pp Traveling Salesman Problem
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P

Objective:
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P

Objective: Minimize Area!
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P
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Objective: Minimize Area!

. Fig. 2. Pick’s theorem. ‘
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P

'I

@ @ 'o/ '
/

(' ’

l/

\@ ‘9 / '
~—— - /,
/
~

Objective: Minimize Area!

. Fig. 2. Pick’s theorem. ‘
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Optimal Polygonizations

Given: Aplanar point set P

Wanted: A simple polygon with vertex set P
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Abstract. We discuss the problem of (inding a simple polygonalization for a given set of
vertices P that has optimal arca. We show that these problems are very closely related to
problems of optimizing the number of points [fom a set Q in a simple polygon with vertex
set P and prove that it is NP-complete to find a minimum weight polygon or a maximum
T i e weight polygon for a given vertex set, resulting in a proof of NP-completeness for the
corresponding area optimization problems. This answers a generalization of a question
stated by Suri in 1989. Finally, we turn to higher dimensions, where we prove that, for
1 <k <d,2 < d,itis NP-hard to determine the smallest possible total volume of the
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vertices P that has optimal arca. We show that these problems are very closely related to
problems of optimizing the number of points [fom a set Q in a simple polygon with vertex
set P and prove that it is NP-complete to find a minimum weight polygon or a maximum
T i e weight polygon for a given vertex set, resulting in a proof of NP-completeness for the
corresponding area optimization problems. This answers a generalization ol a question
stated by Suri in 1989, Finally, we turn to higher dimensions, where we prove that, for
1 <k <d,2 < d,itis NP-hard to determine the smallest possible total volume of the
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We consider methods for finding a sissple polygon of misimum (MIN-Axza) or muaxisvum (MAX-ARza) possible area for a given set
of points in the plane. Both problems are known to be NP-hard; at the center of the recent CG Challenge, practical methods have
received considerable attention. However, previous methods focused on beuristic metheds, with mo proof of optimality. We develop
exact methods, based on a combination of geometry and integer programming. As a result, we are able to solve instances of up to
n = 25 paints to provable optisnality. Whale this extends the range of solvable instances by a considerable amoust, it also flustrates

the practical difficulty of both problem variants

CCS Concepts: « Theory of computation — Design and analysis of algorithms; Compurational Geometry.

Additional Key Words and Phrases: Computatiomal Geometry, geometric optimization, algorithm engineering, exact algorithms,
polygonalization, area optimizatson.

ACM Reference Format:
Sandor P. Fekete, Andreas Haas, Phillip Keldenich, Michael Perk, and Amne Schanidt. 2020. Computing Arca-Optimal Simple Polygonal-
tzations. ACM Trans. Algor. 99,99, Article 99 ( 2020), 23 pages. https//dolorg/10.1 145/ nnannan nnsmnsn

1 INTRODUCTION

While the classic geometric Traveling Salesman Problem (TSP) is to find a (simple) polygon with a given set of vertices
that has shortest perimeter, it is natural to ook for a simple polygon with a given set of vertices that minimizes another
basic geometric measure: the enclosed area. The problem Mix-Anga asks for a simple polygon with minimum enclosed
area, while Max-Azga demands one of maximum area; see Figure 1 for an illustration.

Both problem variants were shown to be NP -complete by Fekete [2, 3, 6], who also showed that no polynomial-time
approximation scheme (PTAS) exists for MiN-AngA problem and gave a §-approximation algorithm for MAX-ARgA.
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A

12 We give an overview of thearetsead and practical aspects of finding a simple polygon of mésimum (MIN-AREA) or maxisuesn (MAX-AREA)
1 possible area for a given set of n points in the plane. Both problems are known to be N'¥-hard and were the subject of the 2019
" Computational Geometry Challenge, which presented the quest of finding good solutsons to more than 200 instances, ranging from
3 n = 10 all the way to m = 1, 000, 000,

1 CCS Concepts: » Theory of computation — Design and analysis of algerithms; Computational Geometry.

1 ACM Reference Format:
x Erik D. Demaine, Skndor P. Fekete, Philllip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. 2020. Area-Optimal Simple
o Polygomalizations: The CG Challenge 2019. ACM 1 Exp. Algor. 99, 99, Article 99 ( 2020), 12 pages. https//doi.org/10.1145 nnnnnan.

nnoannan

1 INTRODUCTION

y 1.1 The Computational Geometry Challenge

" The "CGSHOP Challenge” (Computational Geometry: Solving Hard Optimization Problems) originated as a workshop
at the 2019 Computational Geometry Week (CG Week) in Portland, Oregon in June, 2019. The goal was to conduct
" a computational challenge competition that focused attention on a specific hard geometric optimization problem,
9 encouraging researchers to devise and implement solution methods that could be compared scientifically based on
: how well they performed on a database of instances. While much of computational geometry research has targeted
theoretical rescarch, often secking provable approximation algorithms for NP -hard optimization problems, the goal
of the CG Challenge was to set the metric of success based on computational results on a specific set of benchmark
geometric instances. The 2019 CG Challenge focused on the problem of computing simple polygons whose vertices
were a given set of points in the plane.
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The 2019 CG Challenge

The contest consists of a total of 247 instances, as folows. or n=
{10,15,20,25,30,35,40,45,50,60,70,80,90,100,20C,300,400,500,60C,700,80C,900,1000,
2000,3000.4000,5000.6000,70C0.8000.£000,10000,20000,30000.40000,5000C.60000, 70000,80000,80000,1000C0}, there are six instances each. In
addition, there will be one instance of size n=1000000.
These irstances are of three different types:

« uniform: uniformly at random from a square

« edge: randomly generated according to the distribution of the rate of change (the "edges") of an image

e illumination: randomly generaled according o the distribution of brightness ol an image (such as an illumination map)

Ezach instance cansists of n points in the plane wth even integer coordinates. (This ensures that the area of any simple polygon will be an integer.)
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The 2019 CG Challenge

The contest consists of a total of 247 instances, as folows. or n=
{10,15,20,25,30,35,40,45,50,60,70,80,90,100,20C,300,400,500,60C,700,80C,900,1000,
2000,3000.4000,5000.6000,70C0.8000.£000,10000,20000,30000.40000,5000C.60000, 70000,80000,80000,1000C0}, there are six instances each. In
addition, there will be one instance of size n=1000000.
These irstances are of three different types:

« uniform: uniformly at random from a square

« edge: randomly generated according to the distribution of the rate of change (the "edges") of an image

e illumination: randomly generaled according o the distribution of brightness ol an image (such as an illumination map)

Ezach instance cansists of n points in the plane wth even integer coordinates. (This ensures that the area of any simple polygon will be an integer.)

For each instance, the score is the ratio between the achieved area, divided by the area of the convex hull, i.e., a number beiween 0 and 1. For
instances without a feasible soluton, the default score is 1 (for minimization) or 0 (for maximizat on). The total score is the sum of all 247 individual
scores.

‘NH.J,I.

‘1- Technische
5% Universitit
% Braunschweig

37



The 2019 CG Challenge

The contest consists of a total of 247 instances, as folows. or n=
{10,15,20,25,30,35,40,45,50,60,70,80,90,100,20C,300,400,500,60C,700,80C,900,1000,
2000,3000.4000,5000.6000,70C0.8000.£000,10000,20000,30000.40000,5000C.60000, 70000,80000,80000,1000C0}, there are six instances each. In
addition, there will be one instance of size n=1000000.
These irstances are of three different types:

« uniform: uniformly at random from a square

« edge: randomly generated according to the distribution of the rate of change (the "edges") of an image

e illumination: randomly generaled according Lo the cistribulion of brightness ol an image (such as an illumination map)

Ezach instance cansists of n points in the plane wth even integer coordinates. (This ensures that the area of any simple polygon will be an integer.)

For each instance, the score is the ratio between the achieved area, divided by the area of the convex hull, i.e., a number beiween 0 and 1. For
instances without a feasible soluton, the default score is 1 (for minimization) or 0 (for maximizat on). The total score is the sum of all 247 individual
scores.
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The contest will be run in several different categories. These categories include:

(Ecore_min] The best tctal score for minimum area polycons

(Scorc_max) The best total score for maximum arca polygons

(Opt_min) The ‘argest number of instances solved to optimality fcr a minimum area polygon
(Opt_max) The largest rumber of instances solved to optimality for a maximum arca pclygen
(Bound_mn) Tha bast bounds for minimization

(Eound_max) The best bounds for maximization
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The 2019 CG Challenge

The contest consists of a total of 247 instances, as folows. or n=
{10,15,20,25,30,35,40,45,50,60,70,80,90,100,20C,300,400,500,60C,700,80C,900,1000,
2000,3000.4000,5000.6000,70C0.8000.£000,10000,20000,30000.40000,5000C.60000, 70000,80000,80000,1000C0}, there are six instances each. In
addition, there will be one instance of size n=1000000.
These irstances are of three different types:

« uniform: uniformly at random from a square

« edge: randomly generated according to the distribution of the rate of change (the "edges") of an image

e illumination: randomly generaled according Lo the cistribulion of brightness ol an image (such as an illumination map)

Ezach instance cansists of n points in the plane wth even integer coordinates. (This ensures that the area of any simple polygon will be an integer.)

For each instance, the score is the ratio between the achieved area, divided by the area of the convex hull, i.e., a number beiween 0 and 1. For
instances without a feasible soluton, the default score is 1 (for minimization) or 0 (for maximizat on). The total score is the sum of all 247 individual
scores.
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The contest will be run in several different categories. These categories include:

(Ecore_min] The best tctal score for minimum area polycons

(Scorc_max) The best total score for maximum arca polygons

(Opt_min) The ‘argest number of instances solved to optimality fcr a minimum area polygon
(Opt_max) The largest rumber of instances solved to optimality for a maximum arca pclygen
(Bound_mn) Tha bast bounds for minimization

(Eound_max) The best bounds for maximization

Contest opens 24.00 (midnight, CET), February 28, 2019.
Contest closes 24:00 (midnight, CET), May 31, 2019.
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Thank you!

GREAT NEWs, EVERYONE/
IT TORNS QUT THE PROBLEM
WE SPENT QUR CAREERS
WORKING ON CAN'T
BE SOLVED/

Mathematicians are weird.
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