Online Algorithms

Online Algorithms
 Tutorial 2 - Scheduling

Book chapter:
https://link.springer.com/chapter/10.1007/BFb0029570
Technische
Universität
Braunschweig

Finalizing Bin Packing

Remarks regarding Bin Packing:

- First Fit 1.7-competitive
- Best possible for Any Fit algorithms
- But there are better algorithms!
- Lower bound for any algorithm: 1.5401 (LP technique)
- Idea: Categorize items by size
- Harmonic algorithm uses categories $\left(\frac{1}{2}, 1\right],\left(\frac{1}{3}, \frac{1}{2}\right], \ldots$
- Next Fit within categories
- With sufficient categories, better than 1.7
- Better algorithms: More categories, more complex packing
- Currently: 1.57829 ... (Advanced Harmonic) (2018)
- Current best lower bound: 1.54278 ... (2020)

Randomized Online Algorithm Adversaries

Oblivious adversary

- Adversary knows A
- Adversary generates σ and optimal offline solution OPT (σ)
- A runs on σ, generating $A(\sigma)$

$$
c=\sup _{\sigma} \frac{\mathbb{E}(A(\sigma))}{\operatorname{OPT}(\sigma)}
$$

Randomized Online Algorithm Adversaries

Oblivious adversary

- Adversary knows A
- Adversary generates σ and optimal offline solution OPT(σ)
- A runs on σ, generating $A(\sigma)$

$$
c=\sup _{\sigma} \frac{\mathbb{E}(A(\sigma))}{\operatorname{OPT}(\sigma)}
$$

Adaptive online adversary

- Adversary knows A
- While not done:
- Adversary generates request σ_{i}
- A is given σ_{i}
- Adversary learns response and state of A
- Adversary responds to σ_{i}
- Next input request or end

Randomized Online Algorithm Adversaries

Which of these adversaries is stronger?

Randomized Online Algorithm Adversaries

Which of these adversaries is stronger?
Clearly, adaptive online can simulate oblivious beforehand!

Randomized Online Algorithm Adversaries

Which of these adversaries is stronger?
Clearly, adaptive online can simulate oblivious beforehand!
Did we already see adaptive online adversaries in the lecture?

Randomized File Migration

Claim from the lecture:

Any (deterministic or randomized) online file migration algorithm has a competitive ratio of at least 3 .

Randomized File Migration

Claim from the lecture:

Any (deterministic or randomized) online file migration algorithm has a competitive ratio of at least 3 .

How did the proof go? What was the input sequence?

Randomized File Migration

Claim from the lecture:

Any (deterministic or randomized) online file migration algorithm has a competitive ratio of at least 3 .

How did the proof go? What was the input sequence?
Always request the file where the algorithm does not have it.

Randomized File Migration

Claim from the lecture:

Any (deterministic or randomized) online file migration algorithm has a competitive ratio of at least 3 .

How did the proof go? What was the input sequence?
Always request the file where the algorithm does not have it.
Can an oblivious adversary do that?

Randomized File Migration

Claim from the lecture:

Any (deterministic or randomized) online file migration algorithm has a competitive ratio of at least 3 .

How did the proof go? What was the input sequence?
Always request the file where the algorithm does not have it.
Can an oblivious adversary do that?
No! Can an adaptive online algorithm do that?

Randomized File Migration

Claim from the lecture:

Any (deterministic or randomized) online file migration algorithm has a competitive ratio of at least 3 .

How did the proof go? What was the input sequence?
Always request the file where the algorithm does not have it.
Can an oblivious adversary do that?
No! Can an adaptive online algorithm do that?

Claim:

Against an adaptive online adversary, any randomized online file migration algorithm has a competitive ratio of at least 3 .

Online Scheduling

Another classic problem: Distribute jobs on machines

- m machines M_{1}, \ldots, M_{m}, m known
- n jobs J_{1}, \ldots, J_{n}, n unknown
- Running time $t\left(J_{i}\right)>0$

Online Scheduling

Another classic problem: Distribute jobs on machines

- m machines M_{1}, \ldots, M_{m}, m known
- n jobs J_{1}, \ldots, J_{n}, n unknown
- Running time $t\left(J_{i}\right)>0$

Many different versions:

- Precedence constraints
- Release times
- Preemption
- Machine faults
- Unsure job running time
- Different machines (speed, possible jobs)
- Parallel jobs
- Minimum makespan
- Minimum waiting time, equal load, ...

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

Online Scheduling

Natural online problem: nearly all variants NP-hard ($m \geq 2$) Our variant:

- m identical machines, n jobs
- Running times $t\left(J_{i}\right)$
- Minimize makespan
- Assign job J_{i} to some machine before getting J_{i+1}
- Somewhat similar to bin packing

Idea for simple online algorithm?
List Scheduling

- Always put the next job on the machine with least load

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

$$
\begin{aligned}
& M_{1} M_{2}
\end{aligned}
$$

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

$$
\begin{aligned}
& M_{1} \begin{array}{l|c|}
\hline J_{1} & J_{3} \\
\hline
\end{array} M_{2} \begin{array}{l}
J_{2} \\
t\left(J_{3}\right)=2 t\left(J_{1}\right)=2 t\left(J_{2}\right)
\end{array}
\end{aligned}
$$

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

$$
t\left(J_{3}\right)=2 t\left(J_{1}\right)=2 t\left(J_{2}\right)
$$

\square
OPT

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

$$
t\left(J_{3}\right)=2 t\left(J_{1}\right)=2 t\left(J_{2}\right)
$$

Competitive ratio $3 / 2$

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

$$
t\left(J_{3}\right)=2 t\left(J_{1}\right)=2 t\left(J_{2}\right)
$$

J_{1}	J_{2}	

Competitive ratio $3 / 2$
Idea: We fill machines evenly, but should reserve one.

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

$$
t\left(J_{3}\right)=2 t\left(J_{1}\right)=2 t\left(J_{2}\right)
$$

J_{1}	J_{2}	

\square
OPT

Competitive ratio $3 / 2$
Idea: We fill machines evenly, but should reserve one.
Arbitrary m : $m(m-1)$ jobs with time 1,1 job with time m

List Scheduling: Competitive Ratio?

Competitive ratio for $m=2$?

| J_{1} | J_{3} | |
| :--- | :--- | :--- | :--- |

\square

$$
t\left(J_{3}\right)=2 t\left(J_{1}\right)=2 t\left(J_{2}\right)
$$

Competitive ratio $3 / 2$
Idea: We fill machines evenly, but should reserve one.
Arbitrary m : $m(m-1)$ jobs with time 1,1 job with time m
Competitive ratio?
Our makespan: $(m-1)+m$, OPT: $m, c \geq 2-1 / m$

List Scheduling — Competitive Ratio

Can it get worse?

List Scheduling - Competitive Ratio

Can it get worse?
No! Proof: Consider J_{k}, the job that ends last

$M_{1} \square$		J_{n}

\square
\square

List Scheduling - Competitive Ratio

Can it get worse?
No! Proof: Consider J_{k}, the job that ends last

Time τ : Starting time of $J_{k}, T=t\left(J_{k}\right)$

List Scheduling - Competitive Ratio

Can it get worse?

No! Proof: Consider J_{k}, the job that ends last

Time τ : Starting time of $J_{k}, T=t\left(J_{k}\right)$
Up to τ : All machines busy! Why?

List Scheduling - Competitive Ratio

Can it get worse?
No! Proof: Consider J_{k}, the job that ends last

Time τ : Starting time of $J_{k}, T=t\left(J_{k}\right)$
Up to τ : All machines busy! Why? \Rightarrow OPT $\geq \tau+\frac{T}{m}$. Why?

List Scheduling - Competitive Ratio

Can it get worse?
No! Proof: Consider J_{k}, the job that ends last

Time τ : Starting time of $J_{k}, T=t\left(J_{k}\right)$
Up to τ : All machines busy! Why? \Rightarrow OPT $\geq \tau+\frac{T}{m}$. Why?
$T \leq \mathrm{OPT} \Rightarrow \tau+T \leq \mathrm{OPT}-\frac{T}{m}+\mathrm{OPT}=\left(2-\frac{1}{m}\right) \mathrm{OPT}$.

List Scheduling - Competitive Ratio

Can it get worse?

No! Proof: Consider J_{k}, the job that ends last

Time τ : Starting time of $J_{k}, T=t\left(J_{k}\right)$
Up to τ : All machines busy! Why? \Rightarrow OPT $\geq \tau+\frac{T}{m}$. Why?
$T \leq \mathrm{OPT} \Rightarrow \tau+T \leq \mathrm{OPT}-\frac{T}{m}+\mathrm{OPT}=\left(2-\frac{1}{m}\right) \mathrm{OPT}$.
Note: Both lower bounds on OPT tight in worst case!

More Complex Models

We can adapt this analysis to:

- Unknown running times
- Precedence constraints (analysis technical)
- Jobs with release times

Can we do better?

$m=2:$ No. Why?

$$
\begin{array}{l|l|l|l|}
M_{1} & \begin{array}{l|l|l|l|l|}
J_{1} & J_{3} & & \begin{array}{|l|l|}
\hline J_{1} & J_{2} \\
\hline
\end{array} & \\
M_{2} & J_{2} & & \begin{array}{|l}
|c| \\
\cline { 2 - 5 }
\end{array} & \begin{array}{|l}
3 \\
\\
\hline
\end{array} \\
\hline
\end{array} & \\
\hline
\end{array}
$$

Can we do better?

$m=2:$ No. Why?

M_{2}		J_{2}

$m=3:$ No.
\square
$M_{2} \quad 1$
$M_{3} \quad 1$

Can we do better?

$m=2:$ No. Why?

$m=3:$ No.

M_{3}| 1 | 3 |
| :--- | :--- |

$$
\frac{7}{4}>\frac{5}{3}
$$

Can we do better?

$m=2:$ No. Why?

M_{1}| J_{1} | J_{3} | |
| :--- | :--- | :--- |

J_{1}	J_{2}	

\square
\square
$m=3:$ No.

$\frac{7}{4}>\frac{5}{3} \quad$ What item comes next?

Can we do better?

$m=2:$ No. Why?

$m=3:$ No.

$\frac{7}{4}>\frac{5}{3} \quad$ What item comes next?

Can we do better?

$m=2:$ No. Why?

$m=3:$ No.

M_{1}| 1 | 3 |
| :--- | :--- |

M_{3}| 1 | 3 |
| :--- | :--- |

$\frac{7}{4}>\frac{5}{3} \quad$ What item comes next?
$m>3$: Yes, but not much, and it gets difficult.

Randomization

Competitive ratio of A against an oblivious adversary:

$$
c:=\sup _{\sigma} \frac{\mathbb{E}[A(\sigma)]}{O P T(\sigma)} .
$$

Randomization

Competitive ratio of A against an oblivious adversary:

$$
c:=\sup _{\sigma} \frac{\mathbb{E}[A(\sigma)]}{O P T(\sigma)} .
$$

First, a lower bound: For $m \geq 2$, we cannot be better than $4 / 3$.

- m jobs of length 1 , possibly followed by a single 2
- p probability of makespan 1 after the 1 s
- After the 1s: OPT $=1, \mathbb{E}[A(\sigma)]=p+(1-p) \cdot 2=2-p$
- After the $2: \mathrm{OPT}=2, \mathbb{E}[A(\sigma)]=3 p+2(1-p)=2+p$

Randomization

Competitive ratio of A against an oblivious adversary:

$$
c:=\sup _{\sigma} \frac{\mathbb{E}[A(\sigma)]}{O P T(\sigma)} .
$$

First, a lower bound: For $m \geq 2$, we cannot be better than $4 / 3$.

- m jobs of length 1 , possibly followed by a single 2
- p probability of makespan 1 after the 1 s
- After the 1s: OPT $=1, \mathbb{E}[A(\sigma)]=p+(1-p) \cdot 2=2-p$
- After the $2: \mathrm{OPT}=2, \mathbb{E}[A(\sigma)]=3 p+2(1-p)=2+p$

$$
c \geq \max \left\{2-p, \frac{2+p}{2}\right\} \geq \frac{4}{3} \quad(p=2 / 3)
$$

Bounds for Scheduling

	deterministic			randomized	
m	lower bound	upper bound	LS	lower bound	upper bound
2	1.5000	1.5000	1.5000	1.3333	1.3334
3	1.6666	1.6667	1.6667	1.4210	1.5567
4	1.7310	1.7333	1.7500	1.4628	1.6589
5	1.7462	1.7708	1.8000	1.4873	1.7338
6	1.7730	1.8000	1.8333	1.5035	1.7829
7	1.7910	1.8229	1.8571	1.5149	1.8169
∞	1.8520	1.9230	2.0000	1.5819	-

