Algorithms Group
 Department of Computer Science - IBR
 TU Braunschweig

Summer 2020

Prof. Dr. Sándor P. Fekete

Phillip Keldenich

Online Algorithms
 Exercise 2
 May 20, 2020

Hand in your solutions as PDF file until June 3, 2020, 11:30 AM via e-mail to v.sack@tu-bs.de, with CC to keldenich@ibr.cs.tu-bs.de. If you cannot turn your solution into a PDF file (for example by writing it in LaTeX or Word), you can also submit photographs or scans. In that case, be careful to keep the file size acceptable (about 3 MB per page) by using appropriate compression and resolution; however, make sure that your solutions are still readable.

Exercise 1 (Online Bin Covering):

In this exercise, we consider the problem of Bin Covering in an online scenario. Analogous to the situation for online bin packing, we are given a sequence of items of unknown weights $a_{1}, \ldots, a_{n} \in[0,1]$ and want to assign these items to bins in an online fashion; however, the bins do not have limited capacity. In the Bin Covering problem, we want to maximize the number of covered bins, i.e., the number of bins that receive items of total weight at least 1.
a) Find an online algorithm for Bin Covering with an absolute competitive ratio of 2 and prove its competitive ratio. Prove that no deterministic online algorithm can have an absolute competitive ratio $c<2$.
b) Prove that no deterministic online algorithm for Bin Covering can have an asymptotic competitive ratio $c<3 / 2$.

$$
(10+10 \mathrm{pts} .)
$$

Exercise 2 (Directed Graph Exploration):

In this exercise, we consider the problem of exploring an unknown directed graph. Each vertex is labeled by a natural number $i \in\{1, \ldots, n\}$. We do not know the set of arcs in advance; whenever we visit a vertex i for the first time, we get to know its outgoing arcs and the vertices they point to.
For example, if vertex 3 has an outgoing arc to vertices $1,2,4,5,6$, we get to know this only once we visit 3 for the first time. This holds even if we visited vertices $1,2,4,5,6$ before; in other words, we do not learn anything about the incoming arcs of v when visiting v.
We start at vertex 1 . Our goal is to visit each vertex of the graph at least once and return to 1 with minimum possible cost. Traversing any arc costs 1 .
a) Prove that no deterministic online algorithm has a competitive ratio strictly less than $\frac{n+1}{2}-\frac{1}{n}$.
b) Devise a deterministic online algorithm with competitive ratio $\frac{n+1}{2}-\frac{1}{n}$ and prove this upper bound.

