

Algorithmen und Datenstrukturen II

9. Vorlesung

Linda Kleist, 26.06.2019

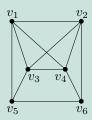
Graphen - Wiederholung / Einführung

Graph
$$G = (V, E)$$

- Knotenmenge V
- Kantenmenge $E\subseteq \binom{V}{2}$

Beispiel

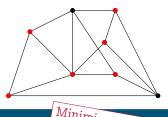
$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5, v_6\} \\ E &= \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_1, v_5\}, \\ \{v_2, v_3\}, \{v_2, v_4\}, \{v_2, v_6\}, \\ \{v_3, v_4\}, \{v_3, v_5\}, \{v_4, v_6\}, \\ \{v_5, v_6\}\} \end{split}$$



Vertex Cover

Sei G = (V, E) ein Graph.

Ein Vertex Cover von G ist eine Knotenteilmenge $S \subseteq V$, so dass für jede Kante $\{u, v\} \in E$ gilt: $u \in S$ oder $v \in S$.



Minimierungsproblem

Problem 11 (MIN VERTEX COVER)

Gegeben: Graph G = (V, E)

Gesucht: Kleinste Menge $S \subseteq V$, so dass S ein Vertex Cover ist.

Problem 12 (VERTEX COVER)

Entscheidungsproblem

Gegeben: Graph $G=(V,E),\,k\in\mathbb{N}$

Gesucht: Gibt es ein Vertex Cover $S \subseteq V$, so dass $|S| \leq k$.

Vertex Cover

Problem 12 (VERTEX COVER)

 \overline{Ent} scheidungsproblem

Gegeben: Graph $G=(V,E),\,k\in\mathbb{N}$

Gesucht: Gibt es ein Vertex Cover $S \subseteq V$, so dass $|S| \leq k$.

Satz 12

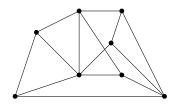
VERTEX COVER ist NP-vollständig.

Beweis.

Tafel...

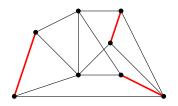
Sei G = (V, E) ein Graph.

• Eine Kantenmenge $M \subseteq E$ ist ein Matching, wenn keine zwei Kanten aus M einen gemeinsamen Knoten besitzen.



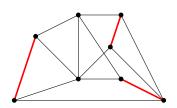
Sei G = (V, E) ein Graph.

• Eine Kantenmenge $M\subseteq E$ ist ein Matching, wenn keine zwei Kanten aus M einen gemeinsamen Knoten besitzen.



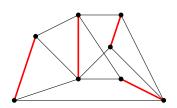
Sei G = (V, E) ein Graph.

- Eine Kantenmenge $M \subseteq E$ ist ein Matching, wenn keine zwei Kanten aus M einen gemeinsamen Knoten besitzen.
- Ein Matching M ist inklusions-maximal, wenn f
 ür jedes Matching M'
 mit M ⊆ M' gilt M' = M.



Sei G = (V, E) ein Graph.

- Eine Kantenmenge $M \subseteq E$ ist ein Matching, wenn keine zwei Kanten aus M einen gemeinsamen Knoten besitzen.
- Ein Matching M ist inklusions-maximal, wenn f
 ür jedes Matching M'
 mit M ⊆ M' gilt M' = M.



Sei G = (V, E) ein Graph.

- Eine Kantenmenge $M \subseteq E$ ist ein Matching, wenn keine zwei Kanten aus M einen gemeinsamen Knoten besitzen.
- Ein Matching M ist inklusions-maximal, wenn für jedes Matching M'
 mit M ⊂ M' gilt M' = M.

Satz 13

Sei G ein Graph, M ein inklusions-maximales Matching und S ein kleinstes Vertex Cover von G. Dann gilt: $|M| \leq |S| \leq 2|M|$.

Beweis.

Tafel...

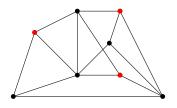
Satz 14

Es existiert eine 2-Approximation für Vertex Cover.

Zusammenhang zwischen Graphen-Problemen

Sei G = (V, E) ein Graph. $S \subseteq V$ ist eine

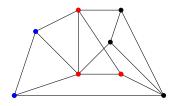
- unabhängige Menge, wenn für alle $u, v \in S$ gilt: $\{u, v\} \notin E$.
- Clique, wenn für alle $u,v\in S$ gilt: $\{u,v\}\in E.$



Zusammenhang zwischen Graphen-Problemen

Sei G = (V, E) ein Graph. $S \subseteq V$ ist eine

- unabhängige Menge, wenn für alle $u, v \in S$ gilt: $\{u, v\} \notin E$.
- Clique, wenn für alle $u, v \in S$ gilt: $\{u, v\} \in E$.



Zusammenhang zwischen Graphen-Problemen

Sei G = (V, E) ein Graph. $S \subseteq V$ ist eine

- unabhängige Menge, wenn für alle $u, v \in S$ gilt: $\{u, v\} \notin E$.
- Clique, wenn für alle $u, v \in S$ gilt: $\{u, v\} \in E$.

Satz 15

Sei G=(V,E) ein Graph und $S\subseteq V.$ Dann sind die folgenden Aussagen äquivalent:

 $V \setminus S$ ist ein (kleinstes) Vertex Cover in G

 $\iff S$ ist eine (größte) unabhängige Menge in G

 $\iff S$ ist eine (größte) Clique im Komplementgraph $\overline{G}:=(V,({V \choose 2}\setminus E)$

Beweis.

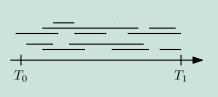
Tafel ...

Beispiel: Hörsaal-Belegung

Gegeben: - Zeitspanne (T_0, T_1)

- Veranstaltungen mit Start- und Endzeiten $(s_i, e_i), i \in \{1, ..., n\}$

Gesucht: Auswahl möglichst vieler Veranstaltungen mit disjunkten Zeitspannen



äquivalente Formulierung

Gegeben: (Intervall-)Graph

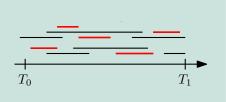
Gesucht: größte unabhängige

Beispiel: Hörsaal-Belegung

Gegeben: - Zeitspanne (T_0, T_1)

- Veranstaltungen mit Start- und Endzeiten $(s_i, e_i), i \in \{1, \dots, n\}$

Gesucht: Auswahl möglichst vieler Veranstaltungen mit disjunkten Zeitspannen



äquivalente Formulierung

Gegeben: (Intervall-)Graph

Gesucht: größte unabhängige

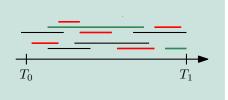


Beispiel: Hörsaal-Belegung

Gegeben: - Zeitspanne (T_0, T_1)

- Veranstaltungen mit Start- und Endzeiten $(s_i, e_i), i \in \{1, \dots, n\}$

Gesucht: Auswahl möglichst vieler Veranstaltungen mit disjunkten Zeitspannen



äquivalente Formulierung

Gegeben: (Intervall-)Graph

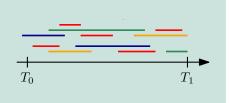
Gesucht: größte unabhängige

Beispiel: Hörsaal-Belegung

Gegeben: - Zeitspanne (T_0, T_1)

- Veranstaltungen mit Start- und Endzeiten $(s_i, e_i), i \in \{1, \dots, n\}$

Gesucht: Auswahl möglichst vieler Veranstaltungen mit disjunkten Zeitspannen



äquivalente Formulierung

Gegeben: (Intervall-)Graph

Gesucht: größte unabhängige



