

Technische Universität Braunschweig

Online Algorithms Tutorial 1

Phillip Keldenich

Organization

Part I — Organization

Small tutorial

- Held by Jannik Heroldt (j.heroldt@tu-bs.de)
- Mondays, every other week, starting from next week (23.4.2018)
- Same time & place as the big tutorial

Small tutorial

- Held by Jannik Heroldt (j.heroldt@tu-bs.de)
- Mondays, every other week, starting from next week (23.4.2018)
- Same time & place as the big tutorial

Exercise sheet 0

- Not graded
- Solution will be presented in the first small tutorial

Small tutorial

- Held by Jannik Heroldt (j.heroldt@tu-bs.de)
- Mondays, every other week, starting from next week (23.4.2018)
- Same time & place as the big tutorial

Exercise sheet 0

- Not graded
- Solution will be presented in the first small tutorial

Exercise sheets

- Will appear after the big tutorial to be handed in two weeks later
- Hand them in via the box in front of Room IZ337
- Or via E-Mail to <u>both keldenich@ibr.cs.tu-bs.de</u> and <u>j.heroldt@tu-bs.de</u>
- Please register for the mailing list!

Material & Videos

Material & Videos

Material site

- Course website: <u>https://www.ibr.cs.tu-bs.de/courses/ss18/oa/index.html</u>
- Material site: <u>https://www.ibr.cs.tu-bs.de/courses/ss18/oa/mat</u>
- Username: "online", Password: "OA18202SkiRental"
- No script, but there are books
- Referenced on the website, full-text access via eduroam

Material & Videos

Material site

- Course website: <u>https://www.ibr.cs.tu-bs.de/courses/ss18/oa/index.html</u>
- Material site: <u>https://www.ibr.cs.tu-bs.de/courses/ss18/oa/mat</u>
- Username: "online", Password: "OA18202SkiRental"
- No script, but there are books
- Referenced on the website, full-text access via eduroam

Video of lectures / tutorials

- We are videotaping lectures & tutorials
- Accessible shortly after the event on the material site
- If you do not wish to be in the video: sit behind the camera

Mailing list

https://mail.ibr.cs.tu-bs.de/mailman/listinfo/oa

Mailing list

Please register! https://mail.ibr.cs.tu-bs.de/mailman/listinfo/oa

Passing the module

Exercise sheets

- You hand in your solutions to the exercises
- They will be graded individually
- To pass the module, you need 50% of the points

Exercise sheets

- You hand in your solutions to the exercises
- They will be graded individually
- To pass the module, you need 50% of the points

Exam

- Oral or written exam at the end
- You do not need 50% of the exercise points to take the exam
- Grade only depends on the exam

Organization

Part II — Introduction

Recapitulation

Recapitulation

Online algorithm

- Informally: Algorithm that works with incomplete knowledge
- What about a formal definition?
- ➡ See board.

Motivation & Discussion

Motivation & Discussion

Often criticized: focus on the worst case

- We only look at the worst case is that sensible?
- May restrict our view to unlikely inputs
- So, average case analysis but what is a *likely* input?
- Do we play against an adversary in the real world?
- In security contexts, we might!

Motivation & Discussion

Often criticized: focus on the worst case

- We only look at the worst case is that sensible?
- May restrict our view to unlikely inputs
- So, average case analysis but what is a *likely* input?
- Do we play against an adversary in the real world?
- In security contexts, we might!

Alternative concepts

- Randomized online algorithms (average case analysis)
- Other, non-standard scenarios (more later)

Ski Rental

Part III — Ski Rental

BahnCard Problem

- Generalization of Ski Rental
- Buying only reduces cost by a factor (e.g., 0.5 for BahnCard 50)
- Only lasts for a finite time (e.g., a year)
- Different costs for different travels

BahnCard Problem

- Generalization of Ski Rental
- Buying only reduces cost by a factor (e.g., 0.5 for BahnCard 50)
- Only lasts for a finite time (e.g., a year)
- Different costs for different travels
- ➡ Formal definition: See board.

BahnCard Problem

- Generalization of Ski Rental
- Buying only reduces cost by a factor (e.g., 0.5 for BahnCard 50)
- Only lasts for a finite time (e.g., a year)
- Different costs for different travels
- ➡ Formal definition: See board.
- ➡ Cheap and expensive intervals: See board.

BahnCard Problem

- Generalization of Ski Rental
- Buying only reduces cost by a factor (e.g., 0.5 for BahnCard 50)
- Only lasts for a finite time (e.g., a year)
- Different costs for different travels
- ➡ Formal definition: See board.
- ➡ Cheap and expensive intervals: See board.

Lemma 3.1: In each expensive interval of length at most *T*, the optimal offline solution owns a BahnCard at some point.

BahnCard Problem

- Generalization of Ski Rental
- Buying only reduces cost by a factor (e.g., 0.5 for BahnCard 50)
- Only lasts for a finite time (e.g., a year)
- Different costs for different travels
- ➡ Formal definition: See board.
- ➡ Cheap and expensive intervals: See board.

Lemma 3.1: In each expensive interval of length at most *T*, the optimal offline solution owns a BahnCard at some point.

Lemma 3.2: The optimal solution never buys a BahnCard if it still owns one.

Question: Is the following offline algorithm optimal?

- For every request (t_i, c_i) , check whether we have a valid BahnCard
- If yes, simply buy the reduced ticket
- Otherwise, buy a BahnCard if $[t_i, t_i+T]$ is expensive

Question: Is the following offline algorithm optimal?

- For every request (t_i, c_i) , check whether we have a valid BahnCard
- If yes, simply buy the reduced ticket
- Otherwise, buy a BahnCard if $[t_i, t_i+T]$ is expensive

Answer: No! Proof: See board.

Question: Is the following offline algorithm optimal?

- For every request (t_i, c_i) , check whether we have a valid BahnCard
- If yes, simply buy the reduced ticket
- Otherwise, buy a BahnCard if $[t_i, t_i+T]$ is expensive

Answer: No! Proof: See board.

Correct algorithm: Exercise sheet 1.

Theorem 3.3: No deterministic online algorithm can achieve a competitive ratio better than $2 - \beta$.

Theorem 3.3: No deterministic online algorithm can achieve a competitive ratio better than $2 - \beta$.

Question: If you were an evil adversary, what would you do?

Theorem 3.3: No deterministic online algorithm can achieve a competitive ratio better than $2 - \beta$.

Question: If you were an evil adversary, what would you do?

➡ Proof: See board.

Question

How do we apply the idea for Ski Rental to the BahnCard Problem?

Question

How do we apply the idea for Ski Rental to the BahnCard Problem? Ski Rental buys when it notices OPT would have bought...

Question

How do we apply the idea for Ski Rental to the BahnCard Problem? Ski Rental buys when it notices OPT would have bought...

Algorithm SUM

- For a request (*t_i*, *p_i*), buy BahnCard iff
 - we do not own one,
 - the cost of all regular requests in $(t_i T, t_i]$ is at least the critical cost c^*

Question

How do we apply the idea for Ski Rental to the BahnCard Problem? Ski Rental buys when it notices OPT would have bought...

Algorithm SUM

- For a request (*t_i*, *p_i*), buy BahnCard iff
 - we do not own one,
 - the cost of all regular requests in $(t_i T, t_i]$ is at least the critical cost c^*

Question: Competitive ratio?

Question

How do we apply the idea for Ski Rental to the BahnCard Problem? Ski Rental buys when it notices OPT would have bought...

Algorithm SUM

- For a request (*t_i*, *p_i*), buy BahnCard iff
 - we do not own one,
 - the cost of all regular requests in $(t_i T, t_i]$ is at least the critical cost c^*

Question: Competitive ratio?

Theorem 3.4: SUM is $(2 - \beta)$ -competitive.

Time

0

Proof:

- Decomposition into phases [0, τ_1), [τ_1 , τ_2), ..., [τ_k , ∞)
- τ_i is when OPT buys its *i*th BahnCard

Time

()

- Decomposition into phases [0, τ_1), [τ_1 , τ_2), ..., [τ_k , ∞)
- τ_i is when OPT buys its *i*th BahnCard

Proof:

- Decomposition into phases [0, τ_1), [τ_1 , τ_2), ..., [τ_k , ∞)
- τ_i is when OPT buys its *i*th BahnCard

- Decomposition into phases [0, τ_1), [τ_1 , τ_2), ..., [τ_k , ∞)
- τ_i is when OPT buys its *i*th BahnCard
- Show for each phase $I = [\tau_i, \tau_{i+1})$: $c_{SUM} \le (2 \beta)c_{OPT}$

- Decomposition into phases [0, τ_1), [τ_1 , τ_2), ..., [τ_k , ∞)
- τ_i is when OPT buys its *i*th BahnCard
- Show for each phase $I = [\tau_i, \tau_{i+1})$: $c_{SUM} \le (2 \beta)c_{OPT}$
- How many BahnCards can SUM buy in phase I? At most one!

- Decomposition into phases [0, τ_1), [τ_1 , τ_2), ..., [τ_k , ∞)
- τ_i is when OPT buys its *i*th BahnCard
- Show for each phase $I = [\tau_i, \tau_{i+1})$: $c_{SUM} \le (2 \beta)c_{OPT}$
- How many BahnCards can SUM buy in phase I? At most one!
- Splits $[\tau_i, \tau_i + T)$ into three intervals I_1, I_2, I_3

- Decomposition into phases [0, τ_1), [τ_1 , τ_2), ..., [τ_k , ∞)
- τ_i is when OPT buys its *i*th BahnCard
- Show for each phase $I = [\tau_i, \tau_{i+1})$: $c_{SUM} \le (2 \beta)c_{OPT}$
- How many BahnCards can SUM buy in phase I? At most one!
- Splits $[\tau_i, \tau_i + T)$ into three intervals I_1, I_2, I_3
- ➡ Details: Exercise sheet 1.

