
Abteilung Algorithmik Summer term 2018
Institut für Betriebssysteme und Rechnerverbund
TU Braunschweig

Prof. Dr. Sándor P. Fekete
Phillip Keldenich

Online Algorithms

4th Homework Assignment, 11th of June 2018

Solutions are due Monday, the 25th of Ju-
ne 2018, until 1:15 PM in the homework
cupboard. You can also hand in your so-
lution in person before the small tutori-
al begins. If you cannot hand in the ho-
mework in person, you can also hand it
in via e-mail to both j.heroldt@tu-bs.de

and keldenich@ibr.cs.tu-bs.de. Please
clearly label your solutions using your name
and matriculation number.

Luft
(Atrium)

3. Stock
Informatikzentrum

Exercise 1 (Bounded Size Bin Packing): In the tutorial, we have considered the
online problem Bin Packing where one is given a sequence a1, . . . , an of items with
weights ai ∈ (0, 1] and has to pack these items into as few bins of capacity 1 as possible.
In the cases we have seen, the biggest losses for online algorithms were caused by large
items in the input sequence. In this exercise, we consider the case where the weight ai
of each item is bounded by a constant α ∈ (0, 1) known to the algorithm, i.e., all items
satisfy ai ≤ α.

Consider the algorithm Next Fit presented in the tutorial. For each value α ∈ (0, 1),
determine (with proof) the asymptotic competitive ratio c∞NF (α) of Next Fit if all items
satisfy ai ≤ α. (12 points)

Exercise 2 (Bin Packing with Unlimited Capacity): In this exercise, we consider
a variant of Bin Packing that has applications in task scheduling. In this variant of Bin
Packing, we receive a sequence of items ai ∈ (0,∞); this modifies the original problem
setting by allowing items of arbitrary size. Moreover, we have a fixed number of m bins
with unlimited capacity; as in the original Bin Packing problem, we have to pack each
incoming item into a bin that we have to fix before the next item is given to us. The goal
is to distribute the weight onto the bins as evenly as possible. More formally, we want to
minimize the total weight W packed into the fullest bin.

In this exercise, we consider the following algorithm Greedy for this problem. Initially,
all bins are empty. On receiving the ith item ai, Greedy packs ai into the emptiest bin;
ties are broken arbitrarily. For an example of the algorithm, refer to Figure 1.

Page 1 / 3



6
a1

7
a2

5
a3

11
a4

4
a55

a6 6
a7

Figure 1: The packing that results from applying Greedy to m = 4 bins and the input
sequence (6, 7, 5, 11, 4, 5, 6). The quality of the solution produced by Greedy is WG = 13 (the
fullest bin contains 7 + 6 = 13 units of weight). The optimal solution has quality WO = 11.

a) Prove that Greedy cannot be better than (2− 1
m

)-competitive. Hint: Consider a
sequence that begins with small items and ends with a big item.

b) Prove that Greedy is (2− 1
m

)-competitive. Hint: Consider the last item aT placed
into the fullest bin and the value WG − aT .

(10+15 points)

Exercise 3 (Looking Around a Corner): In the lecture, we considered the problem
of looking around a corner with scan costs. In this situation, a robot it located at a
known distance d from a corner. Distances are measured in travel time, normalized by
scan time, i.e. traveling distance d takes the same time as d scans. Behind the corner,
at an unknown angle, there is some hidden object. The goal is to move to the corner,
performing scans along the way until the object is seen, minimizing the time taken for
traveling and scanning.

We restrict ourselves to traveling on a polygonal chain inscribed in a semicircle of diameter
d defined by the corner C and our starting location s. Given any fixed competitive ratio
c we want to achieve, we can compute the distances xi traveled between the ith and the
(i− 1)st scan using a recursive formula as presented in the lecture:

xi+1 = c (1 + di)︸ ︷︷ ︸
offline cost

− (1 + i)︸ ︷︷ ︸
scan cost

−
i∑

j=1

xi︸ ︷︷ ︸
travel cost

.

Here, di denotes the distance from the starting point to the ith scan point. For the first
step, set d0 = 0 and thus x1 = c − 1. The distance di can be computed from the angles
ϕi = 2 arcsin(xi

d
) covered by the ith segment as

di = d sin

(
1

2

i∑
j=1

ϕj

)
.

Depending on the parameter c, this recursion either reaches the corner (after finitely
many steps, the angle covered reaches or exceeds π) or collapses (distance we are allowed
to travel becomes non-positive). In the first case, a competitive ratio of c is achievable by
traveling on a semicircle; otherwise, it is not.

Page 2 / 3



d s

x1 = d1
d2

x2

ϕ1

ϕ2

C

Figure 2: The first two steps of looking around a corner

a) Why does the robot have to move to the corner?

b) Prove that moving to the corner directly is not c-competitive for any c ≥ 1.

c) Using a common programming language of your choice, implement a program that
is able to check for a given pair c, d, whether a competitive ratio of c is achievable
for the starting distance d.

d) Use your program in conjunction with the bisection method to find the best achie-
vable competitive ratio for d = 30. Hint: For d = 40, the factor c satisfies 2.0015 <
c < 2.0016.

(1+2+12+10 points)

Page 3 / 3


