Abteilung Algorithmik Summer term 2018
Institut fiir Betriebssysteme und Rechnerverbund
TU Braunschweig

Prof. Dr. Sandor P. Fekete
Phillip Keldenich

Online Algorithms
15 Homework Assignment, 23'9 of April 2018

Solutions are due Monday, the 7*® of May
2018, until 1:15 PM in the homework cup-
board. You can also hand in your solu-
tion in person before the small tutorial
begins. If you cannot hand in the home-
work in person, you can also hand it in
via e-mail to both j.heroldt@tu-bs.de
and keldenich@Qibr.cs.tu-bs.de. Please
clearly label your solutions using your name
and matriculation number.

Luft
(Atrium)

[TT [T

3. Stock
// Informatikzentrum

— LT

Exercise 1 (The BahnCard Problem: Optimal Offline Algorithm): In the big
tutorial, we considered the BahnCard Problem BC(C, 8, T) with cost C, cost reduction
[and validity duration T'. We proved that, in the worst case, no online algorithm can
perform better than 2 — 3 times the cost of an optimal offline algorithm. Construct an
optimal offline algorithm that, for a given sequence o consisting of n chronologically
ordered ticket requests (¢1,¢1),. .., (tn, cy), produces an optimal solution in O(n) time.

You may make use of the following two facts:
e The optimal offline algorithm never has to buy a BahnCard while it still owns one.

e The optimal offline algorithm never has to buy a BahnCard at a time point that is
not the time point of some ticket request.

Prove that your algorithm is correct and that its running time is O(n). (20 points)

Exercise 2 (The BahnCard Problem: Online Algorithm SUM): For the Bahn-

Card problem BC(C, 3,T'), we presented the online algorithm SUM. Recall that a request

is called a reduced request if SUM possesses a BahnCard for that request and regular
c

otherwise, and the break-even price c* is 5

Page 1/ 2

Input: Sequence o = ((ti, cz)) of travel requests, T', 3, C

1<i<n
Output: v = <7i)1<i<n € {0,1}", where v; = 1 means buying a BC at request i
if We already own a BC at request i then

Output v; =0
else
if The cost of all regular requests in (¢t; — T t;] is at least ¢* then
Output v, =1
else
Output v; =0
end if
end if

Algorithm 1: Online algorithm SUM for the BahnCard problem

Let 0 = (t1,¢1) ... (tn,cn) be a sequence of travel requests. Moreover, let 7,..., 7, be
the times where the optimal offline solution buys a BahnCard and consider the phases
0,71), [11,72), - - -, [Tk, 00). We prove that SUM is (2 — §)-competitive by proving csym <

(2 —) - copr for each phase individually.

a) Recall that we call a time interval I = [b,e) ezpensive if the sum of all costs for
travel requests with time ¢; € I is at least ¢*, and cheap otherwise. Prove that for
each phase [7;, 7;11) with 1 <1 <k, the interval [r;, 7; + T') is expensive. Moreover,
let Tx41 := oo. Prove that any subinterval of [r; + T, 7;41) of length at most 7' is
cheap.

b) Prove that, for the first phase I = [0,71), csum < copr-

c) Prove that csum < (2 — f3) - copr for a phase I = [1;,7;41) if SUM does not buy a
BahnCard in phase I.

d) Finally, prove that csym < (2 —) - copr for a phase I = [r;, 7;11) if SUM buys
a BahnCard in phase I. Hint: Decompose [into three intervals Iy, I, I3 based on
the time until which SUM possesses a BahnCard from the last phase and the time
where SUM decides to buy a new BahnCard.

(3 + 4 + 8 4+ 10 points)

Exercise 3 (The k-Server Problem): In this exercise, we consider the k-server pro-
blem in the Euclidean plane. In this problem, we start with k servers at given points
Py, ...,pp € R%. We are given a sequence of n requests coming from locations r; € R%
Each request r; must be handled immediately by moving one of the servers from its cur-
rent position to r;. The cost for moving a server from a position p € R? to r; correspond
to the Euclidean distance ||r; — pl|2. In other words, the goal is to minimize the sum of
distances travelled by all servers.

The algorithm GREEDY always chooses the cheapest possibility to serve the current re-
quest. In other words, it always serves an incoming request using the server closest to the
request. Show that, even for £ = 2 servers, this greedy strategy is not c-competitive for
any constant c. (15 points)

Page 2 / 2

