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Online Algorithms
15 Homework Assignment, 23'9 of April 2018

Solutions are due Monday, the 7*® of May
2018, until 1:15 PM in the homework cup-
board. You can also hand in your solu-
tion in person before the small tutorial
begins. If you cannot hand in the home-
work in person, you can also hand it in
via e-mail to both j.heroldt@tu-bs.de
and keldenich@Qibr.cs.tu-bs.de. Please
clearly label your solutions using your name
and matriculation number.
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Exercise 1 (The BahnCard Problem: Optimal Offline Algorithm): In the big
tutorial, we considered the BahnCard Problem BC(C, 8, T) with cost C, cost reduction
[ and validity duration T'. We proved that, in the worst case, no online algorithm can
perform better than 2 — 3 times the cost of an optimal offline algorithm. Construct an
optimal offline algorithm that, for a given sequence o consisting of n chronologically
ordered ticket requests (¢1,¢1),. .., (tn, cy), produces an optimal solution in O(n) time.

You may make use of the following two facts:
e The optimal offline algorithm never has to buy a BahnCard while it still owns one.

e The optimal offline algorithm never has to buy a BahnCard at a time point that is
not the time point of some ticket request.

Prove that your algorithm is correct and that its running time is O(n). (20 points)

Exercise 2 (The BahnCard Problem: Online Algorithm SUM): For the Bahn-

Card problem BC(C, 3,T'), we presented the online algorithm SUM. Recall that a request

is called a reduced request if SUM possesses a BahnCard for that request and regular
c

otherwise, and the break-even price c* is 5
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Input: Sequence o = ((ti, cz)) of travel requests, T', 3, C

1<i<n
Output: v = <7i)1<i<n € {0,1}", where v; = 1 means buying a BC at request i
if We already own a BC at request i then

Output v; =0
else
if The cost of all regular requests in (¢t; — T t;] is at least ¢* then
Output v, =1
else
Output v; =0
end if
end if

Algorithm 1: Online algorithm SUM for the BahnCard problem

Let 0 = (t1,¢1) ... (tn,cn) be a sequence of travel requests. Moreover, let 7,..., 7, be
the times where the optimal offline solution buys a BahnCard and consider the phases
0,71), [11,72), - - -, [Tk, 00). We prove that SUM is (2 — §)-competitive by proving csym <

(2 — ) - copr for each phase individually.

a) Recall that we call a time interval I = [b,e) ezpensive if the sum of all costs for
travel requests with time ¢; € I is at least ¢*, and cheap otherwise. Prove that for
each phase [7;, 7;11) with 1 <1 <k, the interval [r;, 7; + T') is expensive. Moreover,
let Tx41 := oo. Prove that any subinterval of [r; + T, 7;41) of length at most 7' is
cheap.

b) Prove that, for the first phase I = [0,71), csum < copr-

c) Prove that csum < (2 — f3) - copr for a phase I = [1;,7;41) if SUM does not buy a
BahnCard in phase I.

d) Finally, prove that csym < (2 — ) - copr for a phase I = [r;, 7;11) if SUM buys
a BahnCard in phase I. Hint: Decompose [ into three intervals Iy, I, I3 based on
the time until which SUM possesses a BahnCard from the last phase and the time
where SUM decides to buy a new BahnCard.

(3 + 4 + 8 4+ 10 points)

Exercise 3 (The k-Server Problem): In this exercise, we consider the k-server pro-
blem in the Euclidean plane. In this problem, we start with k servers at given points
Py, ...,pp € R%. We are given a sequence of n requests coming from locations r; € R%
Each request r; must be handled immediately by moving one of the servers from its cur-
rent position to r;. The cost for moving a server from a position p € R? to r; correspond
to the Euclidean distance ||r; — pl|2. In other words, the goal is to minimize the sum of
distances travelled by all servers.

The algorithm GREEDY always chooses the cheapest possibility to serve the current re-
quest. In other words, it always serves an incoming request using the server closest to the
request. Show that, even for £ = 2 servers, this greedy strategy is not c-competitive for
any constant c. (15 points)

Page 2 / 2




