| Carl-Friedrich-Gauß-Fakultät | Department Informatik

Approximation Algorithms

SemesterSommersemester 2015 [ Andere Semester: Winter 19/20 · Sommer 17 · Sommer 12 · Sommer 09 ]
Veranst.Nr. INF-ALG-015 , INF-ALG-016
Studieng.Master Informatik, Master Informations-Systemtechnik, Master Wirtschaftsinformatik
IBR Gruppe(n)ALG (Prof. Fekete)
PhotoProf. Dr. Sándor P. Fekete
+49 531 3913111
Raum 335
PhotoDr. Victor Alvarez
Ehemaliger Wissenschaftlicher Mitarbeiter
Ort & Zeit

Lecture: Tuesday, 15:00 - 16:30 Room PK 4.4
Exercises: Thursday, 09:45 - 11:15, Room PK 4.4, start: TBA.
Small Tutorial: TBA.


Vorlesung: 21.04.2015, Grosse Uebung: TBA, Kleine Uebung: TBA

Scheinerwerb (Homework assignments during the semester, and)* an oral exam at the end. (*=Studienleistung)
Inhalt Many interesting and natural algorithmic problems (e.g., the Traveling Salesman Problem) are NP-complete - hence, we cannot expect to find a "perfect" algorithm that (i) always and (ii) fast finds (iii) an optimal solution. However, hard problems still need to be solved! In this class we consider algorithms that do not necessarily find an optimal solution, but that (i) always and (ii) fast find a (iii) provably good solution. Prerequisites are knowledge of algorithms and data structures, basic graph problems and graph algorithms (e.g., as provided in the lecture "Netzwerkalgorithmen"); basic knowledge from theoretic computer science (NP-completeness) are helpful, but will definitely be supplemented. Among the topics of this class are: (1) A basic introduction to NP-completeness and approximation (2) Approximation for vertex and set cover (3) Packing problems (4) Tour problems and variations (5) Current research problems In the context of various problems, a wide spectrum of techniques and concepts will be provided.

Announcements and Dates

    General Information

    • Schedule of all lectures, tutorials etc.: [PDF] [28.04.15]

    Homework Sets


    • Vazirani, Vijay V.: Approximation Algorithms, Springer-Verlag, 2001.
    • Approximation Algorithms for NP-hard problems edited by Dorit S. Hochbaum, more info.

    Mailing List

  • There will be a mailing list. We will distribute the homework sets and other announcements via this list, so, please subscribe!
  • Videos

    aktualisiert am 29.06.2015, 16:01 von Prof. Dr. Sándor P. Fekete