Abteilung Algorithmik
 Institut für Betriebssysteme
 und Rechnerverbund
 TU Braunschweig

Prof. Dr. Sándor Fekete
Dr. Victor Alvarez
Melanie Papenberg

Approximation Algorithms

 Homework Set 1, 28. 04. 2015Solutions are due on Monday, May 11th, 2015, until 13:00 in the cupboard for handing in practice sheets. Please put your name on all pages!

Exercise 1 (Independent Set): Let $G=(V, E)$ be a graph. A set of vertices $I \subseteq V$ is called independent if for all $u, v \in I:\{u, v\} \notin E$. The Independent Set Problem (IS) asks for an independent set of maximum cardinality. (1) Show that C is a Vertex Cover of G iff $I=V \backslash C$ is an independent set. (2) Prove that IS is NP-Complete.
$5+5 \mathrm{pts}$.
Exercise 2 (Vertex Cover): We have seen in the lecture that the (minimum) Vertex Cover Problem (VC) is in general NP-complete. Show however that, when the input graph is a tree, VC can be solved in polynomial time.

10 pts.
Exercise 3 (Vertex Cover): We consider two greedy algorithms for the Vertex Cover problem in a graph $G=(V, E)$:

```
Greedy 1:
\(C:=\emptyset\)
while \(E \neq \emptyset\) do
    Choose an edge \(e \in E\) and choose a vertex \(v\) of \(e\).
    \(C:=C \cup\{v\}\)
    \(E:=E \backslash\{e \in E: v \in e\}\)
end
return \(C\)
```

Show that for both algorithm a constant approximation factor cannot be guaranteed, not even in bipartite graphs.

```
Greedy 2:
\(C:=\emptyset\)
while \(E \neq \emptyset\) do
    Choose a vertex with maximal degree in the current graph.
    \(C:=C \cup\{v\}\)
    \(E:=E \backslash\{e \in E: v \in e\}\)
end
return \(C\)
```

Exercise 4 (Diameter of Sets of Points): Let P be a set of n points in \mathbb{R}^{d} (assume d is constant). The diameter (Λ) of P is a pair of points $p, q \in P$ that realizes the maximum distance between any two points of P (two points that are furthest apart). The diameter of P can trivially be computed in $O\left(n^{2}\right)$ time (assuming that the distance between points can be computed in $O(1)$). However, show that in $O(n)$ time a 2-approximation of the diameter can be computed. That is, a number Λ^{\prime} such that: $\Lambda^{\prime} \leq \Lambda \leq 2 \cdot \Lambda^{\prime}$.

10pts.

