Geometric Algorithms

Smallest Enclosing Disk

Michael Hemmer

April 15, 2014

Sources

- Emo Welzl

Smallest enclosing disks (balls and ellipsoids) in New Results and New Trends in Computer Science Lecture Notes in Computer Science 555 pp. 359-370 Springer-Verlag

Problem Definition

Given a set P of points:

Problem Definition

Given a set P of points: compute the smallest enclosing disk.

Naming and Special Cases

Naming:

- P, the set of points
- $m d(P)$, the smallest enclosing disk of P

Special cases:

- For $P=\emptyset$ set $m d(P)=\emptyset$.
- For $P=\{p\}$ set $m d(P)=p$.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Proof.

Suppose there are two different smallest enclosing disks $D_{1}=\left(c_{1}, r\right)$ and $D_{2}=\left(c_{2}, r\right)$, with $P \subset D_{1}$ and $P \subset D_{2}$.
The disk D_{m} with center $\left(c_{1}+c_{2}\right) / 2$ and radius $\operatorname{sqrt}\left(r^{2}-a^{2}\right)$, where a is half the distance of c_{1} and c_{2}, also contains P.

Contradiction, since the radius of D_{m} is smaller.

Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Proof.

Suppose there are two different smallest enclosing disks $D_{1}=\left(c_{1}, r\right)$ and $D_{2}=\left(c_{2}, r\right)$, with $P \subset D_{1}$ and $P \subset D_{2}$.
The disk D_{m} with center $\left(c_{1}+c_{2}\right) / 2$ and radius $\operatorname{sqrt}\left(r^{2}-a^{2}\right)$, where a is half the distance of c_{1} and c_{2}, also contains P.

Contradiction, since the radius of D_{m} is smaller.
It follows that the problem is well defined for $P \neq \emptyset$.

Algorithmic Ideas?

Brain Storming :)

Algorithm

Algorithm 1 Function mindisk (P)
1: if $P=\emptyset$ then
2: $\quad D:=\emptyset$;
3: else
4: choose random $p \in P$;
5: $\quad D:=\operatorname{mindisk}(P-\{p\})$;
6: if $p \notin D$ then
7: $\quad D:=$ mindisk_b $(P-\{p\}, \mathrm{p})$;
8: end if
9: end if
10: return D;

Sketch Complexity Analysis

- Assume that cost for mindisk_b (A, p) costs $c|A|$.
- Cost for mindisk (P) is:

$$
t(|P|)=t(|P|-1)+1+c(|P|-1) \operatorname{Prob}(p \notin m d(P-\{p\}))
$$

Sketch Complexity Analysis

- Assume that cost for mindisk_b (A, p) costs $c|A|$.
- Cost for mindisk (P) is:

$$
t(|P|)=t(|P|-1)+1+c(|P|-1) \operatorname{Prob}(p \notin \operatorname{md}(P-\{p\}))
$$

$\operatorname{Prob}(p \notin P-\{p\}) \leq \frac{3}{|P|} \leftarrow$ Backward Analysis!!!!

Sketch Complexity Analysis

- Assume that cost for mindisk_b (A, p) costs $c|A|$.
- Cost for mindisk (P) is:

$$
\begin{aligned}
t(|P|) & =t(|P|-1)+1+c(|P|-1) \operatorname{Prob}(p \notin m d(P-\{p\})) \\
& \leq t(|P|-1)+1+3 c(|P|-1) /|P|
\end{aligned}
$$

$\operatorname{Prob}(p \notin P-\{p\}) \leq \frac{3}{|P|} \leftarrow$ Backward Analysis!!!!

Sketch Complexity Analysis

- Assume that cost for mindisk_b (A, p) costs $c|A|$.
- Cost for mindisk (P) is:

$$
\begin{aligned}
t(|P|) & =t(|P|-1)+1+c(|P|-1) \operatorname{Prob}(p \notin \operatorname{md}(P-\{p\})) \\
& \leq t(|P|-1)+1+3 c(|P|-1) /|P| \\
& \leq t(|P|-1)+1+3 c
\end{aligned}
$$

$\operatorname{Prob}(p \notin P-\{p\}) \leq \frac{3}{|P|} \leftarrow$ Backward Analysis!!!!

Sketch Complexity Analysis

- Assume that cost for mindisk_b (A, p) costs $c|A|$.
- Cost for mindisk (P) is:

$$
\begin{aligned}
t(|P|) & =t(|P|-1)+1+c(|P|-1) \operatorname{Prob}(p \notin m d(P-\{p\})) \\
& \leq t(|P|-1)+1+3 c(|P|-1) /|P| \\
& \leq t(|P|-1)+1+3 c \\
& \leq(1+3 c) n
\end{aligned}
$$

$\operatorname{Prob}(p \notin P-\{p\}) \leq \frac{3}{|P|} \leftarrow$ Backward Analysis!!!!

Minimum Disk with Boundary Constraints

Definition 2
Let P and R be finite point sets in $\mathbb{R}^{2}, P \cup R \neq \emptyset$. Then $m d_{b}(P, B)$ is the smallest enclosing disk of $P \cup R$ with $R \subset \partial m d_{b}(P, R)$ if it exists.
Obviously:

- $m d_{b}(P, \emptyset)=m d(P)$
- $m d_{b}(P \cup R, \emptyset) \subset \operatorname{md}_{b}(P, R)$

Algorithm

Algorithm 2 Function mindisk_b (P, R)
1: if $P=\emptyset$ then
2: $\quad D:=\operatorname{md}_{b}(\emptyset, R)$;
3: else
4: choose random $p \in P$;
5: $\quad D:=$ mindisk_b $(P-\{p\}, R)$;
6: if $p \notin D$ then
7: $\quad D:=$ mindisk_b $(P-\{p\}, R \cup\{p\})$;
8: end if
9: end if
10: return D;

Algorithm 3 Function mindisk (P)
1: return mindisk_b (P, \emptyset);

Algebraic Formulation

Definition 3 (Algebraic Formulation)
A disk $D(q, r)$ can be define via function

$$
f(p)=1 / r^{2} \cdot\|p-q\|^{2}
$$

that is:

$$
\begin{gathered}
p \in D(q, r) \Leftrightarrow f(p) \leq 1 \\
p \in \partial D(q, r) \Leftrightarrow f(p)=1
\end{gathered}
$$

Convex Combination of Disks

Definition 4 (Convex Combination)
For two disks $D_{1}=D\left(q_{1}, r_{1}\right)$ and $D_{2}=D\left(q_{2}, r_{2}\right)$ define disk D_{λ} for $\lambda \in[0,1]$ via function:

$$
f_{\lambda}(p)=\lambda f_{1}(p)+(1-\lambda) f_{2}(p) \leq 1
$$

Convex Combination of Disks

Definition 4 (Convex Combination)
For two disks $D_{1}=D\left(q_{1}, r_{1}\right)$ and $D_{2}=D\left(q_{2}, r_{2}\right)$ define disk D_{λ} for $\lambda \in[0,1]$ via function:

$$
f_{\lambda}(p)=\lambda f_{1}(p)+(1-\lambda) f_{2}(p) \leq 1
$$

- $D_{1} \cap D_{2} \subset D_{\lambda}$
- $\partial D_{1} \cap \partial D_{2} \subset \partial D_{\lambda}$
- D_{λ} is a disk
- r_{λ} is smaller than $\max \left(r_{1}, r_{2}\right)$

Convex Combination of Disks

Definition 4 (Convex Combination)
For two disks $D_{1}=D\left(q_{1}, r_{1}\right)$ and $D_{2}=D\left(q_{2}, r_{2}\right)$ define disk D_{λ} for $\lambda \in[0,1]$ via function:

$$
f_{\lambda}(p)=\lambda f_{1}(p)+(1-\lambda) f_{2}(p) \leq 1
$$

- $D_{1} \cap D_{2} \subset D_{\lambda}$
- $\partial D_{1} \cap \partial D_{2} \subset \partial D_{\lambda}$
- D_{λ} is a disk
- r_{λ} is smaller than $\max \left(r_{1}, r_{2}\right)$

Convex Combination of Disks

Definition 4 (Convex Combination)
For two disks $D_{1}=D\left(q_{1}, r_{1}\right)$ and $D_{2}=D\left(q_{2}, r_{2}\right)$ define disk D_{λ} for $\lambda \in[0,1]$ via function:

$$
f_{\lambda}(p)=\lambda f_{1}(p)+(1-\lambda) f_{2}(p) \leq 1
$$

- $D_{1} \cap D_{2} \subset D_{\lambda}$
- $\partial D_{1} \cap \partial D_{2} \subset \partial D_{\lambda}$
- D_{λ} is a disk
- r_{λ} is smaller than $\max \left(r_{1}, r_{2}\right)$

Convex Combination of Disks

Definition 4 (Convex Combination)
For two disks $D_{1}=D\left(q_{1}, r_{1}\right)$ and $D_{2}=D\left(q_{2}, r_{2}\right)$ define disk D_{λ} for $\lambda \in[0,1]$ via function:

$$
f_{\lambda}(p)=\lambda f_{1}(p)+(1-\lambda) f_{2}(p) \leq 1
$$

- $D_{1} \cap D_{2} \subset D_{\lambda}$
- $\partial D_{1} \cap \partial D_{2} \subset \partial D_{\lambda}$
- D_{λ} is a disk
- r_{λ} is smaller than $\max \left(r_{1}, r_{2}\right)$

Convex Combination of Disks

Definition 4 (Convex Combination)
For two disks $D_{1}=D\left(q_{1}, r_{1}\right)$ and $D_{2}=D\left(q_{2}, r_{2}\right)$ define disk D_{λ} for $\lambda \in[0,1]$ via function:

$$
f_{\lambda}(p)=\lambda f_{1}(p)+(1-\lambda) f_{2}(p) \leq 1
$$

- $D_{1} \cap D_{2} \subset D_{\lambda}$
- $\partial D_{1} \cap \partial D_{2} \subset \partial D_{\lambda}$
- D_{λ} is a disk
- r_{λ} is smaller than $\max \left(r_{1}, r_{2}\right)$

Convex Combination of Disks

Definition 4 (Convex Combination)
For two disks $D_{1}=D\left(q_{1}, r_{1}\right)$ and $D_{2}=D\left(q_{2}, r_{2}\right)$ define disk D_{λ} for $\lambda \in[0,1]$ via function:

$$
f_{\lambda}(p)=\lambda f_{1}(p)+(1-\lambda) f_{2}(p) \leq 1
$$

- $D_{1} \cap D_{2} \subset D_{\lambda}$
- $\partial D_{1} \cap \partial D_{2} \subset \partial D_{\lambda}$
- D_{λ} is a disk
- r_{λ} is smaller than $\max \left(r_{1}, r_{2}\right)$

Proof on board or exercise ;)

$\operatorname{md}_{b}(P, R)$ is well defined

Lemma 5
If there exists a disk containing P with R on its boundary, then $m_{b}(P, R)$ is well defined.

Proof.

Suppose there are two discs D_{1} and D_{2} with same radius that contain P and with R on boundary.

Consider D_{λ} for D_{1} and D_{2}, since $R \subset \partial D_{1} \cap \partial D_{2}$ it follows that $R \subset D_{\lambda}$.

Same argument as Lemma 1 gives $D_{1 / 2}$, which has smaller radius; contradiction.

$m d_{b}$ - Point on Boundary

Lemma 6
Provided $m d_{b}(P, R)$ exists
and
$p \in P$ with $p \notin D_{1}=m d_{b}(P-\{p\}, R)$, then:
$m d_{b}(P, R)=m d_{b}(P-\{p\}, R \cup\{p\})$

$m d_{b}$ - Point on Boundary

Lemma 6

Provided $m d_{b}(P, R)$ exists and
$p \in P$ with $p \notin D_{1}=m d_{b}(P-\{p\}, R)$, then:
$m d_{b}(P, R)=m d_{b}(P-\{p\}, R \cup\{p\})$

Proof.
Assume $p \in D_{2}=\operatorname{md}_{b}(P, R)$ but $p \notin \partial D_{2}$.

$m d_{b}$ - Point on Boundary

Lemma 6

Provided $m d_{b}(P, R)$ exists and
$p \in P$ with $p \notin D_{1}=m d_{b}(P-\{p\}, R)$, then:
$m d_{b}(P, R)=m d_{b}(P-\{p\}, R \cup\{p\})$

Proof.
Assume $p \in D_{2}=m d_{b}(P, R)$ but $p \notin \partial D_{2}$.
Consider continues deformation of D_{λ} :
There exists a $\lambda^{\prime} \in(0,1)$ such that $p \in \partial D_{\lambda^{\prime}}\left(D_{0}, D_{1}\right)$.
The radius of D_{λ} is smaller than the one of D_{2}; contradiction.

At most three points required

Lemma 7
Provided $m d_{b}(P, R)$ exists, there is $S \subset P$ with
$|S| \leq \max \{0,3-|R|\}$ such that $\operatorname{md}_{b}(P, R)=\operatorname{md}_{b}(S, R)$
Proof.
Obvious since a disk is defined by at most 3 points on the boundary.

Improved Algorithm

Algorithm 4 Function mindisk_b (P, R)
1: if $P=\emptyset$ or $|R|=3$ then
2: $\quad D:=\operatorname{md}_{b}(\emptyset, R)$;
3: else
4: choose random $p \in P$;
5: $\quad D:=$ mindisk_b $(P-\{p\}, R)$;
6: \quad if $p \notin D$ then
7: $\quad D:=$ mindisk_b $(P-\{p\}, R \cup\{p\})$;
8: end if
9: end if
10: return D;

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

It follows:

- $t_{1}(n) \leq n$
- $t_{2}(n) \leq t_{2}(n-1)+1+\frac{2}{n} t_{1}(n-1)$
- $t_{3}(n) \leq t_{3}(n-1)+1+\frac{3}{n} t_{2}(n-1)$

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

It follows:

- $t_{1}(n) \leq n$
- $t_{2}(n) \leq t_{2}(n-1)+1+\frac{2}{n} n$
- $t_{3}(n) \leq t_{3}(n-1)+1+\frac{3}{n} t_{2}(n-1)$

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

It follows:

- $t_{1}(n) \leq n$
- $t_{2}(n) \leq t_{2}(n-1)+3$
- $t_{3}(n) \leq t_{3}(n-1)+1+\frac{3}{n} t_{2}(n-1)$

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

It follows:

- $t_{1}(n) \leq n$
- $t_{2}(n) \leq 3 n$
- $t_{3}(n) \leq t_{3}(n-1)+1+\frac{3}{n} t_{2}(n-1)$

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

It follows:

- $t_{1}(n) \leq n$
- $t_{2}(n) \leq 3 n$
- $t_{3}(n) \leq t_{3}(n-1)+1+\frac{3}{n} 3 n$

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

It follows:

- $t_{1}(n) \leq n$
- $t_{2}(n) \leq 3 n$
- $t_{3}(n) \leq t_{3}(n-1)+10$

Complexity

Complexity:

- Let $t_{j}(n)$ the expected number of calls of $p \notin D$ in mindisk_b (P, R) for $|P|=n$ and $|R|=3-j$, then

We would like to know $t_{3}(n)$.

- $t_{0}(n)=0$ since $|R|=3$
- $t_{j}(0)=0$ since $P=\emptyset$
- $t_{j}(n) \leq t_{j}(n-1)+1+\frac{j}{n} t_{j-1}(n-1)$ for $0<j \leq 3$

It follows:

- $t_{1}(n) \leq n$
- $t_{2}(n) \leq 3 n$
- $t_{3}(n) \leq 10 n$

Generalization to smallest enclosing ball in \mathbb{R}^{d}

- Rename function to minball ;)
- Replace constant 3 by $\delta=d+1$
- $t_{j}(n)=n j!\sum_{k=1}^{j} \frac{1}{k!} \leq(e-1) j!n$
(Exercise)
Theorem 8
The smallest enclosing ball of a set of n points in \mathbb{R}^{d} can be computed in expected time $O(\delta \delta!n)$, where $\delta=d+1$.

Generalization to smallest enclosing ball in \mathbb{R}^{d}

- Rename function to minball ;)
- Replace constant 3 by $\delta=d+1$
- $t_{j}(n)=n j!\sum_{k=1}^{j} \frac{1}{k!} \leq(e-1) j!n$
(Exercise)
Theorem 8
The smallest enclosing ball of a set of n points in \mathbb{R}^{d} can be computed in expected time $O(\delta \delta!n)$, where $\delta=d+1$.

Remark: It is also possible to extend the algorithm to ellipsoids.

Algorithm for Ball in \mathbb{R}^{d}

Algorithm 5 Function minball_b (P, R)
1: if $P=\emptyset$ or $|R|=\delta$ then
2: $\quad D:=m b_{b}(\emptyset, R)$;
3: else
4: choose random $p \in P$;
5: $\quad D:=\operatorname{minball} _\mathrm{b}(P-\{p\}, R)$;
6: if $p \notin D$ then
7: $\quad D:=\operatorname{minball_ b}(P-\{p\}, R \cup\{p\})$;
8: end if
9: end if
10: return D;

Practical Considerations

- For points in high dimension d the expensive operation is computation of $m b_{b}(\emptyset, R)$
- Let $s_{j}(n)$ the expected number of calls of $m b_{b}(\emptyset, R)$ in minball_b (P, R) for $|P|=n$ and $|R|=\delta-j$, where $\delta=d+1$.

Practical Considerations

- For points in high dimension d the expensive operation is computation of $m b_{b}(\emptyset, R)$
- Let $s_{j}(n)$ the expected number of calls of $m b_{b}(\emptyset, R)$ in minball_b (P, R) for $|P|=n$ and $|R|=\delta-j$, where $\delta=d+1$.
- $s_{0}(n)=1$ since R is full
- $s_{j}(0)=1$ since $P=\emptyset$
- $s_{j}(n) \leq s_{j}(n-1)+\frac{j}{n} s_{j-1}(n-1)$ for $0<j \leq \delta$

Practical Considerations

- For points in high dimension d the expensive operation is computation of $m b_{b}(\emptyset, R)$
- Let $s_{j}(n)$ the expected number of calls of $m b_{b}(\emptyset, R)$ in minball_b (P, R) for $|P|=n$ and $|R|=\delta-j$, where $\delta=d+1$.
- $s_{0}(n)=1$ since R is full
- $s_{j}(0)=1$ since $P=\emptyset$
- $s_{j}(n) \leq s_{j}(n-1)+\frac{j}{n} s_{j-1}(n-1)$ for $0<j \leq \delta$
- Claim: $s_{j}(n) \leq\left(1+H_{n}\right)^{j}$, where $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ (Exercise)

Practical Considerations

- For points in high dimension d the expensive operation is computation of $m b_{b}(\emptyset, R)$
- Let $s_{j}(n)$ the expected number of calls of $m b_{b}(\emptyset, R)$ in minball_b (P, R) for $|P|=n$ and $|R|=\delta-j$, where $\delta=d+1$.
- $s_{0}(n)=1$ since R is full
- $s_{j}(0)=1$ since $P=\emptyset$
- $s_{j}(n) \leq s_{j}(n-1)+\frac{j}{n} s_{j-1}(n-1)$ for $0<j \leq \delta$
- Claim: $s_{j}(n) \leq\left(1+H_{n}\right)^{j}$, where $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ (Exercise)
- Since $H_{n} \leq 1+\ln$, it follows that the number of expected calls to minball_b is upper bounded by $(2+\ln)^{\delta}$.

Formulation with one Permutation

Algorithm 6 Function mindisk $(P)-P$ an ordered sequence
1: Compute random permutation π for $1 \ldots|P|$
2: return mindisk_b $(\pi(P), \emptyset)$;

Algorithm 7 Function mindisk_b $(P, R)-P$ an ordered sequence
1: if $P=\emptyset$ or $|R|=3$ then
2: $\quad D:=\operatorname{md}_{b}(\emptyset, R)$;
3: else
4: $\quad p:=\operatorname{last}(P)$;
5: $\quad D:=$ mindisk_b $(P-\{p\}, R)$;
6: if $p \notin D$ then
7: $\quad D:=$ mindisk_b $(P-\{p\}, R \cup\{p\})$;
8: end if
9: end if
10: return D;

Complexity Analysis on Permutation

- For sequence P, let $T(P, R)$ be the cost of mindisk_ $b(P, R)$.
- Let $t_{j}(n)$ be the expected value of $T(P, R)$ over all possible insertion sequences S_{n}, where $j=\delta-|R|$.
- Obviously $t_{0}(n)=0$ and $t_{j}(0)=0$ remain.
- We want to know:

$$
t_{3}(n)=\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), \emptyset)
$$

- Or in general:

$$
t_{j}(n)=\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R), \text { with }|R|=\delta-j
$$

Complexity Analysis on Permutation - Continued

$$
t_{j}(n)=\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\
p=\pi(P)[n]}}[T(\pi(P)-\{p\}, R) \\
& \left.\left.+\chi\left(p \notin \operatorname{md}_{b}(P-\{p\}, R)\right) \cdot T(\pi(P)-\{p\}, R \cup\{p\})\right]\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\
p=\pi(P)[n]}}[T(\pi(P)-\{p\}, R) \\
& \left.\left.+\chi\left(p \notin \operatorname{md}_{b}(P-\{p\}, R)\right) \cdot T(\pi(P)-\{p\}, R \cup\{p\})\right]\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} n \\
p=\pi(P)[n]}}[T(\pi(P)-\{p\}, R) \\
& \left.\left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot T(\pi(P)-\{p\}, R \cup\{p\})\right]\right] \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}\left[1 \sum_{\substack{ \\
p=\pi(P)[n]}} T \sum_{\substack{\pi \in S_{n}}} T(\pi(P)-\{p\}, R)\right. \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\
p=\pi(P)[n]}} T(\pi(P)-\{p\}, R \cup\{p\})\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} n \\
p=\pi(P)[n]}} T(\pi(P)-\{p\}, R) \\
& \left.+\chi\left(p \notin \operatorname{md}_{b}(P-\{p\}, R)\right) \cdot \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\
p=\pi(P)[n]}} T(\pi(P)-\{p\}, R \cup\{p\})\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\
p=\pi(P)[n]}} T(\pi(P)-\{p\}, R) \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\
p=\pi(P)[n]}} T(\pi(P)-\{p\}, R \cup\{p\})\right] \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P-\{p\}), R) \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P-\{p\}), R \cup\{p\})\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P-\{p\}), R) \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P-\{p\}), R \cup\{p\})\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +\frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P-\{p\}), R) \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P-\{p\}), R \cup\{p\})\right] \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +t_{j}(n-1) \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot t_{j-1}(n-1)\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +t_{j}(n-1) \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot t_{j-1}(n-1)\right]
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{1}{n} \sum_{p \in P}[1 \\
& +t_{j}(n-1) \\
& \left.+\chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot t_{j-1}(n-1)\right] \\
t_{j}(n) & =\frac{n}{n} \\
& +\frac{1}{n} \sum_{p \in P} t_{j}(n-1) \\
& +\frac{1}{n} \sum_{p \in P} \chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot t_{j-1}(n-1)
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{n}{n} \\
& +\frac{1}{n} \sum_{p \in P} t_{j}(n-1) \\
& +\frac{1}{n} \sum_{p \in P} \chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot t_{j-1}(n-1)
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & =\frac{n}{n} \\
& +\frac{1}{n} \sum_{p \in P} t_{j}(n-1) \\
& +\frac{1}{n} \sum_{p \in P} \chi\left(p \notin m d_{b}(P-\{p\}, R)\right) \cdot t_{j-1}(n-1) \\
t_{j}(n) & \leq 1 \\
& +\frac{n}{n} t_{j}(n-1) \\
& +\frac{3}{n} \cdot t_{j-1}(n-1)
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & \leq 1 \\
& +\frac{n}{n} t_{j}(n-1) \\
& +\frac{3}{n} \cdot t_{j-1}(n-1)
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & \leq 1 \\
& +\frac{n}{n} t_{j}(n-1) \\
& +\frac{3}{n} \cdot t_{j-1}(n-1)
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & \leq 1 \\
& +\frac{n}{n} t_{j}(n-1) \\
& +\frac{3}{n} \cdot t_{j-1}(n-1) \\
t_{j}(n) & \leq 1+t_{j}(n-1)+\frac{j}{n} \cdot t_{j-1}(n-1), \text { which we know. }
\end{aligned}
$$

Complexity Analysis on Permutation - Continued

$$
\begin{aligned}
t_{j}(n) & =\frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\
t_{j}(n) & \leq 1 \\
& +\frac{n}{n} t_{j}(n-1) \\
& +\frac{3}{n} \cdot t_{j-1}(n-1) \\
t_{j}(n) & \leq 1+t_{j}(n-1)+\frac{j}{n} \cdot t_{j-1}(n-1), \text { which we know. }
\end{aligned}
$$

Thus, as before $t_{3}(n)=10 n$.

Summary

Algorithm:

- algorithm for computing smallest enclosing disk
- expected $O(n)$ time
- $O(n)$ space
- extendable to higher dimensions

Technique: Randomized Incremental Construction (RIC)

- Usually easy to implement
- Complexity analysis may be more tricky
- Backward Analysis

