Abteilung Algorithmik Institut für Betriebssysteme und Rechnerverbund TU Braunschweig

SS 11

Prof. Dr. Sándor Fekete Dr. Iris Reinbacher

Online-Algorithms 5th Homework Assignment, 27. June 2011

Due on 4. July 2011 until 13:00 in the box opposite IZ 252 or in IZ 160 Don't forget to label each sheet with your name!

Exercise 1 (Load Balancing):

In the exercises we presented the problem of load balancing for identical machines and permanent jobs. We proved the theorem that the GREEDY-algorithm (assigning the current job to the machine with smallest load before the assignment) is $(2 - \frac{1}{m})$ -competitive, where m is the number of machines.

Prove that the upper bound shown there is also valid in the case of jobs with finite duration (whether known or unknown).

(20 points)

Exercise 2 (Scheduling):

In the following we are looking at a scheduling problem where n jobs j_1, \ldots, j_n arrive. There are the following limitations:

- \bullet there is only one machine M
- M can work on exactly 1 job at any time
- each job j_i must be executed on M continuously for a period of $p_i > 0$
- each job j_i can be started at the release time r_i or later
- each job j_i has a deadline d_i

The goal is to devise a schedule Σ (i.e., to assign the jobs to M) such that the maximum delay is minimized over all jobs. The schedule determines the start times s_i for all jobs. The delay l_i of a job is defined as the difference between c_i , the time the job is finished (depends on the chosen heuristic), and the deadline:

$$l_i(\Sigma) = c_i(\Sigma) - d_i \tag{1}$$

Hence, the maximum delay is $L_{\max} = \max_{1 \le i \le n} l_i$.

Note that in this model the maximum delay may become negative. However, non-positive deadlines are unrealistic.

Another model uses delivery times as follows: Each job has a delivery time q_i . When the job has been completed, it is delivered only after an additional time q_i (for example on an extra machine). Now, different delivery times may overlap. For a job j_i , the value $s_i + p_i + q_i$ denotes the end of the delivery (for the first model above this would give us $q_i = -d_i$). Let L_{max}^* be the smallest maximal delay over all schedules. Then it holds that

$$L_{\max} = \max_{1 \le i \le n} s_i + p_i + q_i \tag{2}$$

Let further $l_i = c_i + q_i$ be the end of the delivery for job j_i , then it holds that

$$L_{\max}^* \ge P = \sum_{i=1}^n p_i \tag{3}$$

$$L_{\text{max}}^* \ge r_i + p_i + q_i \tag{4}$$

Consider Graham's algorithm LIST SCHEDULING (LS): When (a machine) M is free, assign to it the first available job. A job is available after it has been released.

- (a) Why are the bounds (3) and (4) valid?
- (b) Prove that: $L_{\text{max}}^{LS} < 2L_{\text{max}}^*$

(10 + 20 points)

Exercise 3 (DOUBLE COVERAGE algorithm for k-server problem):

We have seen in Exercise 2.2 that the GREEDY-algorithm for the k-server problem is not necessarily competitive. Let's look at the following algorithm for k servers on a line:

Double Coverage

- If the request lies outside the convex hull of all servers, move the closest server to serve the request.
- Else the request lies between two servers. Move both of them with the same velocity towards the request, until (at least) one server reaches the request point.

Reconsider the worst-case example of Exercise 2.2 (3 request points on a line). Why does the Double Coverage algorithm not produce an arbitrarily bad result in this instance? (10 points)