
Secure communication based on noisy input data
Entropy

Stephan Sigg

June 21, 2011

Random sequences Random number generation Statistical tests Conclusion

Overview and Structure

05.04.2011 Organisational

15.04.2011 Introduction

19.04.2011 Classification methods (Basic recognition, Bayesian, Non-parametric)

26.04.2011 Classification methods (Linear discriminant, Neural networks)

03.05.2011 Classification methods (Sequential, Stochastic)

10.05.2011 Feature extraction from audio data

17.05.2011 Feature extraction from the RF channel

24.05.2011 Fuzzy Commitment

31.05.2011 Fuzzy Extractors

07.06.2011 Error correcting codes

21.06.2011 Entropy

28.06.2011 Physically unclonable functions

Stephan Sigg | Secure communication based on noisy input data | 2

Random sequences Random number generation Statistical tests Conclusion

Outline

Random sequences

Random number generation

Statistical tests

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 3

Random sequences Random number generation Statistical tests Conclusion

Random sequences

The security of many cryptographic systems depends upon the
generation of unpredictable sequences

Stephan Sigg | Secure communication based on noisy input data | 4

Random sequences Random number generation Statistical tests Conclusion

Random sequences

What is a random sequence?
Assume a sequence

U = U0,U1,U2, . . .

Let 0 ≤ ui < vi ≤ 1 be real numbers

If Ui is a random variable, the probability that ui ≤ Ui < vi is equal to
vi − ui

We say that U is a random sequence if

P[u1 ≤ Ui < v1, . . . , u1 ≤ Un+k−1 < vk] = (v1 − u1) · · · (vk − uk)

for any value of k and for any choice of 0 ≤ ui < vi ≤ 11

1
D.E. Knuth, The art of computer programming – seminumerical algorithms, Eddison-Wesley, 1998

Stephan Sigg | Secure communication based on noisy input data | 5

Random sequences Random number generation Statistical tests Conclusion

Outline

Random sequences

Random number generation

Statistical tests

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 6

Random sequences Random number generation Statistical tests Conclusion

Random number generation

Definition
A random bit generator is a device or algorithm which outputs a
sequence of statistically independent and unbiased binary bits.

It can be used to generate uniformly distributed random numbers.

A random integer in the interval [0, n] can be obtained by generating a
random bit sequence of length blog nc+ 1 and interpreting it as a binary
representation of an integer

For a truly random bit generator, some physical sources of random bits
are used.

Stephan Sigg | Secure communication based on noisy input data | 7

Random sequences Random number generation Statistical tests Conclusion

Random number generation

For common electronic devices, it is practically not feasible to employ a
truly random bit generator.

In such cases, pseudo-random bit generators are utilised

Definition
A pseudo-random bit generator is a deterministic algorithm which,
given a truly random binary sequence of length k , outputs a binary
sequence of length l � k which ’appears’ to be random. The input to
the PRBG is called the seed .

The output of a pseudo-random bit generator is not random.

Stephan Sigg | Secure communication based on noisy input data | 8

Random sequences Random number generation Statistical tests Conclusion

Random number generation

The output of a pseudo-random bit generator is not random.

In particular, much fewer than 2l distinct output sequences are possible

The security of such generators has to be verified by various statistical
tests.

A minimum security requirement for pseudo-random bit generators is
that the length of the random seed should not allow for complete
enumeration of all possible values.

Stephan Sigg | Secure communication based on noisy input data | 9

Random sequences Random number generation Statistical tests Conclusion

Random number generation

Example

A linear congruential generator generates a pseudo-random sequence of
values x1, x2, . . . according to the linear recursive function

xi = axi−1 + b mod m;

The parameters a, b,m characterise the generator while x0 is the seed.

Such generators are commonly used for simulation purposes and
probabilistic algorithms.

They are, however, predictable and hence not suitable for cryptographic
applications

Note that these generators will pass common statistical tests!

Stephan Sigg | Secure communication based on noisy input data | 10

Random sequences Random number generation Statistical tests Conclusion

Random number generation

A true random bit generator requires a naturally occurring source of
randomness.

The generation of a hardware or software true RBG is therefore a
difficult task.

Stephan Sigg | Secure communication based on noisy input data | 11

Random sequences Random number generation Statistical tests Conclusion

Random number generation

Hardware-based generators
Hardware-based random bit generators build on the randomness
occurring in physical sources.

These sources, however, might be biased, correlated or subject to
adversarial observation.

Elapsed time between emission of particles during radioactive decay

Thermal noise from a semiconductor diode

Frequency instability of an oscillator

Sound from a microphone or video input

noise fluctuation characteristic of an RF-channel

Stephan Sigg | Secure communication based on noisy input data | 12

Random sequences Random number generation Statistical tests Conclusion

Random number generation

Software-based generators
Software-based random bit generator might build on processes such as

System clock

Elapsed time between keystrokes or mouse movements

Content of input/output buffers

user input

system load or network statistics

The behaviour of these processes varies with the hardware platform
utilised and also with environmental impacts

Possibly, an adversary might also

obtain sufficient knowledge on these values in order to increase its
chances to guess the secret correctly

be able to manipulate values to increase its knowledge on the secret

Stephan Sigg | Secure communication based on noisy input data | 13

Random sequences Random number generation Statistical tests Conclusion

Random number generation

De-skewing
A natural source of random bits may be defective in that the output
bits may be biased or correlated

De-skewing is a technique to generate truly random sequences from
such impaired bit sequences.

Example

Assume that a generator produces biased but uncorrelated bits with
P[xi = 1] = p and P[xi = 0] = 1− p.
A process that divides the sequence of bits into a sequence of bit-pairs
and interpretes any sequence 01 as 1 and 10 as 0 while discarding any
sequence 11 and 00 results in an unbiased and uncorrelated sequence.

Stephan Sigg | Secure communication based on noisy input data | 14

Random sequences Random number generation Statistical tests Conclusion

Random number generation

Pseudo-random bit generation
A one-way function f can be utilised to generate a pseudo-random bit
sequence from a seed s by creating the sequence

f (s), f (s + 1), . . .

Depending on the one-way function it may be necessary, to discard
some of the output values of the sequence in order to guard possible
correlations between successive values.

Stephan Sigg | Secure communication based on noisy input data | 15

Random sequences Random number generation Statistical tests Conclusion

Random number generation

ANSI X9.17 generator
FIPS-approved method for the purpose of pseudo-randomly generating
keys and initialisation vectors for use with DES:

The PRBG is defined as

1: INPUT: 64-bit seed s0, integer m, encryption key k ,
2: OUTPUT: m pseudo-random 64-bit strings x1, x2, . . . , xm
3: Compute I = Ek(date)
4: for i = 1..m do
5: xi ← Ek(I ⊕ si−1)
6: si ← Ek(xi ⊕ I)
7: end for
8: return (x1, x2, . . . , xm)

Stephan Sigg | Secure communication based on noisy input data | 16

Random sequences Random number generation Statistical tests Conclusion

Random number generation

ANSI X9.17 generator

1: INPUT: 64-bit seed s0, integer m, encryption key k ,
2: OUTPUT: m pseudo-random 64-bit strings x1, x2, . . . , xm
3: Compute I = Ek(date)
4: for i = 1..m do
5: xi ← Ek(I ⊕ si−1)
6: si ← Ek(xi ⊕ I)
7: end for
8: return (x1, x2, . . . , xm)

E
k

E
k

E
k

s
i−1

x
i

s
i

XOR

XOR

time

I

Stephan Sigg | Secure communication based on noisy input data | 17

Random sequences Random number generation Statistical tests Conclusion

Random number generation

RSA pseudo-random bit generator
The RSA PRBG is a cryptographically secure pseudo-random bit
generator under the assumption that the RSA problem is intractable.

1: OUTPUT: pseudo-random bit sequence z1, z2, . . . , zl
2: SETUP: Generate two secret RSA-like primes p, q
3: SETUP: Compute n = pq and φ = (p − 1)(q − 1)
4: SETUP: Select a random integer e ∈ [1, φ] such that gcd(eφ) = 1
5: Select a random seed x0 ∈ [1, n − 1]
6: for i = 1..l do
7: xi ← xei−1 mod n
8: zi ← least significant bit of xi
9: end for

10: return (z1, z2, . . . , zl)

Stephan Sigg | Secure communication based on noisy input data | 18

Random sequences Random number generation Statistical tests Conclusion

Outline

Random sequences

Random number generation

Statistical tests

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 19

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

It is infeasible to give a mathematical proof that a generator indeed
produces random bit strings

The reason is that for a purely random bit generator, any sequence of
random bits is equally probable.

This means that such a generator might as well produce an arbitrary
length ’conspicuous’ sequence.

Example

For the ’game’ Lotto (draw 6 numbers out of [1, 49], the set
1, 2, 3, 4, 5, 6 is as probably as any other arbitrary 6-number set.

Stephan Sigg | Secure communication based on noisy input data | 20

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

However, statistical tests are defined that can produce some evidence
whether or not a generator might produce bit sequences that are
considerably random

Each test determines whether a tested sequence contains some
properties that a purely random sequence would contain only with small
probability.

For instance, the number of 1-s and 0-s in the sequence should be
roughly equal for most sequences

A statistical test can only be an indicator that a random number
generator might produce strong random sequences or might have some
weakness.

Stephan Sigg | Secure communication based on noisy input data | 21

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

In order to test for the randomness of binary sequences, it is commonly
checked if the property tested by a statistical test somehow follows a
normal or chi-square distribution

The normal distribution arises when a large number of independent
random variables with the same mean and variance are summed.

Stephan Sigg | Secure communication based on noisy input data | 22

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

A continuous random variable X has a normal distribution with mean µ
and variance σ2 when its probability density function is defined by

f (x) =
1

σ
√

2π
e

(−x−µ)2

2σ2 ,−∞ < x <∞

Stephan Sigg | Secure communication based on noisy input data | 23

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

In order to test for the randomness of binary sequences, it is commonly
checked if the property tested by a statistical test somehow follows a
normal or chi-square distribution

Let v ≥ 1 be an integer. A continuous random variable X has a χ2

distribution with v degrees of freedom if its probability density function
is defined by

f (x) =

 1

Γ(v
2)2

v
2
x(v

2)
−1

e−
x
2 , 0 ≤ x <∞,

0 , x < 0

Where Γ is defined by

Γ(t) =

∫ ∞
0

x t−1e−xdx , for t > 0

Stephan Sigg | Secure communication based on noisy input data | 24

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

In order to test for the randomness of binary sequences, it is commonly
checked if the property tested by a statistical test somehow follows a
normal or chi-square distribution

Stephan Sigg | Secure communication based on noisy input data | 25

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

Frequency test (monobit test)
The purpose of this test is to determine whether the number of 0-s and
1-s are approximately equal in a random sequence

Let n0, n1 denote the number of 0-s and 1-s in a random sequence

The statistic used is

XMonobit =
(n0 − n1)2

n

This approximately follows for n ≥ 10 a χ2-distribution with 1 degree of
freedom.
(typically large values of n � 10000 are utilised)

Stephan Sigg | Secure communication based on noisy input data | 26

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

Serial test (two-bit test)
The purpose of this test is to determine whether the number of
occurrences of 00, 11, 10, 01 are approximately the same.

Let n0, n1, n00, n11, n10, n01 denote the number of occurrences of the
sequences 0, 1, 00, 11.10, 01

The statistic used is

XSerial =
4

n − 1

(
n2

00 + n2
11 + n2

10 + n2
01

)
− 2

n

(
n2

0 + n2
1

)
+ 1

This approximately follows a χ2 distribution with 2 degrees of freedom
for n ≥ 21

Stephan Sigg | Secure communication based on noisy input data | 27

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

Runs test
The purpose of this test is to determine whether the number of
1-sequences and 0-sequences (runs) of various lengths is as expected for
a random sequence.

The expected number of 0/1-sequences of length i can be estimated for
a random sequence of length n by

ei =
n − i + 3

2i+2

Let k be the largest integer for which ek ≥ 5.

Let S0,S1 denote the number of 0 or 1-sequences of length i for
1 ≤ i ≤ k .

Stephan Sigg | Secure communication based on noisy input data | 28

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

Runs test
Let S0,S1 denote the number of 0 or 1-sequences of length i for
1 ≤ i ≤ k .

The statistic of this test is

XRuns =
k∑

i=1

(S1 − ei)
2

ei
+

k∑
i=1

(S0 − ei)
2

ei

This equation should approximately follow a χ2 distribution with 2k − 2
degrees of freedom.

Stephan Sigg | Secure communication based on noisy input data | 29

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

Autocorrelation test
The number of bits in a sequence s that are not equal to their d-shifts is

A(d) =
n−d−1∑
i=0

si ⊕ si+d

The statistic used is

XAutocorrelation = 2

(
A(d)− n−d

2

)
√
n − d

This approximately follows a normal distribution for n − d ≥ 10.

Stephan Sigg | Secure communication based on noisy input data | 30

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

Test suites

FIPS 140-2 statistical tests for randomness2
(Federal Information Processing

Standards)

Die Hard battery of statistical tests 3
(George Marsaglia, Florida State University)

Die Harder 4
(Robert G. Brown)

NIST statistical tests (FIPS 140-1) 5
(National Institute of Standards and Technologies)

2http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
3http://www.stat.fsu.edu/pub/diehard/
4http://www.phy.duke.edu/∼rgb/General/dieharder.php
5http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.zip

Stephan Sigg | Secure communication based on noisy input data | 31

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

The null hypothesis
The null hypothesis for random number generator testing says, that a
generator is a perfect random number generator and for any choice of
seed produces an infinitely long, unique sequence of numbers that have
all the statistical properties of random numbers

This assumption can not hold for any pseudo-random number generator

However, a good pseudo-random number generator should be for
practical applications sufficiently close to fulfilling this hypothesis

Stephan Sigg | Secure communication based on noisy input data | 32

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

The null hypothesis
In order to test the null hypothesis, the random number generator is
utilised to generate a sequence of presumably random numbers

These numbers are applied to a wide range of test statistics.

From a knowledge of the target distribution we can then estimate the
probability that the sequence is truly random

This probability is called the p-value for a particular test-run

Stephan Sigg | Secure communication based on noisy input data | 33

Random sequences Random number generation Statistical tests Conclusion

Statistical tests

The null hypothesis
For a good pseudo-random number generator the p-values should be
approximately evenly distributed in [0, 1]

This means that e.g. a random number generator should produce
p-values less than 0.05 in 5% of all cases

Stephan Sigg | Secure communication based on noisy input data | 34

Random sequences Random number generation Statistical tests Conclusion

Outline

Random sequences

Random number generation

Statistical tests

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 35

Questions?

Stephan Sigg
sigg@ibr.cs.tu-bs.de

Stephan Sigg | Secure communication based on noisy input data | 36

Random sequences Random number generation Statistical tests Conclusion

Literature

C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.

P. Tulys, B. Skoric, T. Kevenaar: Security with Noisy Data – On private
biometrics, secure key storage and anti-counterfeiting, Springer, 2007.

W.W.Peterson, E.J. Weldon, Error-Correcting Codes, MIT press, 1972.

R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

Stephan Sigg | Secure communication based on noisy input data | 37

	Random sequences
	Random number generation
	Statistical tests
	Conclusion

