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Introduction

We consider a communication system in which the channel between the
encoder and the decoder might be impaired by noise
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Introduction

By employing error correcting codes, we try to account for possible
errors during transmission over the channel

Naturally, error correcting codes can not correct all errors but must be
designed to correct the most likely patterns

Stephan Sigg | Secure communication based on noisy input data | 5



Introduction Block codes Convolutional codes Burst-Correcting Convolutional codes Reed-Muller BCH Conclusion

Introduction

Frequently, the assumption has been taken that each symbol is affected
independently by noise

In this case the probability of a given error pattern depends only on the
number of errors

In several fields, for instance for communication technology, errors are
more likely to occur in blocks of symbols (bursts)
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Introduction

Types of Codes

Block codes Breaks the continuous sequence of information digits into
k-symbol sections or blocks. It then operates on these
blocks independently

Tree codes operate on the information sequence without breaking it
up into independent blocks. An important subclass are
convolutional codes since they are simple to implement
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Introduction

In order to predict the performance of a code, it is beneficial to have an
accurate approximation on the channel behaviour

Most extensively studied channels are the Binary Symmetric Channel
and the Binary erasure channel

.
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Block codes

Let q denote the number of distinct symbols employed on the channel

A block code is a set of M sequences of channel symbols of length n

Decision to which code word a received word belongs may be based on
a decoding table
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Block codes

The probability of correct decoding can be calculated with the help of
an assumption on the channel characteristics.

In a Binary Symmetric channel, the probability of correctly decoding the
word 11000 is calculated as

1P0Q5 + 5P1Q4 + 2P2Q3
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Block codes

Linear block codes
For linear block codes we require a set of k basis vectors −→g (generator
vectors) of length n
Basis vectors are linear independent vectors that span the basis of a vector space

These vectors are considered as rows of a matrix G

The row-space of G defines the linear code V and code vectors −→v are
linear combinations of rows in G

It is important that the vectors g are linear independent since otherwise
different linear combinations of vectors would lead to identical code
vectors

G =

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1


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Block codes

Linear block codes
Data vectors

−→
d define which generator vectors g are combined to a

code vector −→v

We define a matrix H of rank n − k whose row space is a basis of
vectors orthogonal to each vector in G (null space)

Since each code vector −→v is the result of a linear combination of
generator vectors −→g , we have

−→v HT =
−→
0

In the case of errors in the code vector, the result is hence

(−→v +−→e )HT 6= −→0

iff (−→v +−→e ) /∈ −→αG
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Block codes

Linear block codes
In the case of errors in the code vector, the result is hence

(−→v +−→e )HT 6= −→0

The error vector −→e then defines the linear combination of rows of HT

that lead to the syndrome:

(−→v + −→e )HT

= −→v HT + −→e HT

=
−→
0 + −→e HT

= −→s

H is spanned by basis vectors→−→s defines uniquely the error vectors that occurred.
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Block codes

Linear block codes

Example

Let

H =

[
1 1 0 0
1 0 1 1

]
H states that the sum of the first two digits and the sum of digits one,
three and four of every code word must be zero.
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Block codes

Linear block codes
The minimum distance for a block code equals the minimum weight of
its nonzero vectors. For a block code with q = 2 and n = 5, the set of
vectors

( 0 0 0 0 0 )
( 1 0 0 1 1 )
( 0 1 0 1 0 )
( 1 1 0 0 1 )
( 0 0 1 0 1 )
( 1 0 1 1 0 )
( 0 1 1 1 1 )
( 1 1 1 0 0 )

have a minimum weight and therefore a minimum distance of 2
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Convolutional codes

Tree codes do not break the information sequence into blocks and
handle them independently.

A tree code associates a code sequence with an information sequence

The code sequence is defined by a tree labelled with binary
sub-sequences at its edges

A 0-information bit translates to an upward step in the tree, a
1-information bit to a downward step.
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Convolutional codes

Example: Encoding of 101100
A well-designed decoder
chooses the branch that leads
to the path with smaller
hamming distance of a
sub-sequence
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Convolutional codes

Due to the structure of tree-codes, the error probability is not as easy
to calculate as for block codes.

Errors in previous code words might impact code words transmitted
later.
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Convolutional codes

Let Fi denote a matrix whose k0 rows are linearly independent vectors
over GF (q)

Further assume that the first (i − 1)n0 columns of Fi are zero while
some of the (i − 1)n0 + 1 through in0 columns are nonzero

A linear tree code is defined as

G =


F1
F2
F3
...


The minimum weight of a code word whose first n0 digits are not all
zero equals the minimum distance d of the code
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Convolutional codes
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Convolutional codes

A code sequence is obtained as

c = iG

A class of linear tree codes, called convolutional codes is achieved by
defining the matrices Fi to be shifted versions of F1:

G =



G0 G1 G2 . . . Gm−2 Gm−1
G0 G1 . . . Gm−3 Gm−2

G0 . . . Gm−4 Gm−3
. . .

G0 G1

G0


The matrices Gi have k0 rows and n0 columns.
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Convolutional codes

For arbitrary k0 × (n0 − k0) matrices Pi and identity matrices I this
code generator matrix is combinatorially equivalent to one in echelon
canonical form:

G =



IP0 0P1 0P2 . . . 0Pm−2 0Pm−1
IP0 0P1 . . . 0Pm−3 0Pm−2

IP0 . . . 0Pm−4 0Pm−3
. . .

IP0 0P1

IP0


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Convolutional codes

The corresponding nullspace is spanned by

H =


PT
0 I

PT
1 0 PT

0 I
...

...
. . .

PT
m−10 PT

m−20 . . . PT
0 I


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Burst-Correcting Convolutional codes

The basic idea behind all burst-correcting convolutional codes is that
the digits involved in the decoding of a particular digit are spread in
time so that only one, or at most a few can be affected by a single
burst of errors.

The simplest way to achieve this is spreading by interleaving

The data stream is then broken into i independent streams

Either symbols or short blocks of symbols are interleaved by i other
symbol or block streams

The parameter i is called the interleaving degree
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Burst-Correcting Convolutional codes

The parity check matrix of an interleaved code is derived from the
parity check matrix of the non-interleaved code:

H1 =


01
10 01
10 10 01
00 10 10 01

 H2 =



01
00 01
10 00 01
00 10 00 01
10 00 10 00 01
00 10 00 10 00 01
00 00 10 00 10 00 01


Interleaving degree 2
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Burst-Correcting Convolutional codes

The coding rate is unaffected by the interleaving

Therefore, arbitrary long, nearly optimal burst-correcting convolutional
codes can be formed by interleaving convolutional codes.

Interleaving an (n, k) block code that corrects bursts of length b to a
degree i produces an (ni , ki) block code with burst-correcting ability bi

Interleaving an (mn0,mk0) convolutional code that corrects bursts of
length b to a degree i produces an (mn0(i − 1) + n0,mk0(i − 1) + k0)
convolutional code with burst-correcting ability bi
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Burst-Correcting Convolutional codes

Berlekamp-Preparata-Massey Codes
Classical (2n20, 2n

2
0 − 2n0) BPM codes have a parity-check matrix of the

form

H = [B0B1B2 . . .B2n0−1]

With Bi down-shifted from Bi−1 as

Bi =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0 0
. . . 0 0

0 0 0 . . . 1 0


Bi−1
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Burst-Correcting Convolutional codes

Berlekamp-Preparata-Massey Codes
An n-tuple that has all its 1’s in the 0-th and the i-th block can be
represented as

E = E0000 . . .Ei00 . . . 0

If B0 is chosen so that EHT 6= 0 for all choices of E0,Ei and i the code
can correct all length n0 bursts of errors

In order for this to occur, it must be that
E0Ei [B0Bi ]

T 6= 0; i ∈ [1, 2n0 − 1]

(It must not be possible that n0 errors can create an all-0 code block
which could result in E0Ei [B0Bi ]

T = 0
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Burst-Correcting Convolutional codes

Berlekamp-Preparata-Massey Codes
The challenging part of defining BPM-codes is to find a matrix B0 that
confines the assumption given above.
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Reed-Muller codes

The Reed-Muller codes are a class of binary group codes covering a
wide range of rate and minimum distance

for any m and r < m there is a reed-Muller code for which

n = 2m

k = 1 +

(
m
1

)
+ · · ·+

(
m
r

)
n − k = 1 +

(
m
1

)
+ · · ·+

(
m

m − r − 1

)
d = 2m−r (minimum weight)
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Reed-Muller codes

Let −→v0 be a vector whose 2m

components are all 1-s and let
−→v1 ,−→v2 , . . . ,−→vm be the rows of a
matrix that has all possible
m-tuples as columns.

Example for m = 4:

−→v0 = 1111111111111111
−→v4 = 0000000011111111
−→v3 = 0000111100001111
−→v2 = 0011001100110011
−→v1 = 0101010101010101
−→v4−→v3 = 0000000000001111
−→v4−→v2 = 0000000000110011
−→v4−→v1 = 0000000001010101
−→v3−→v2 = 0000001100000011
−→v3−→v1 = 0000010100000101
−→v2−→v1 = 0001000100010001
−→v4−→v3−→v2 = 0000000000000011
−→v4−→v3−→v1 = 0000000000000101
−→v4−→v2−→v1 = 0000000000010001
−→v3−→v3−→v1 = 0000000100000001
−→v4−→v3−→v2−→v1 = 0000000000000001
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Reed-Muller codes

The r -th order Reed-Muller
code is formed by using as a
basis the vectors −→v0 ,−→v1 , . . . ,−→vm
and all vector products of r or
fewer of these vectors

Example for m = 4, r = 2:

−→v0 = 1111111111111111
−→v4 = 0000000011111111
−→v3 = 0000111100001111
−→v2 = 0011001100110011
−→v1 = 0101010101010101
−→v4−→v3 = 0000000000001111
−→v4−→v2 = 0000000000110011
−→v4−→v1 = 0000000001010101
−→v3−→v2 = 0000001100000011
−→v3−→v1 = 0000010100000101
−→v2−→v1 = 0001000100010001
−→v4−→v3−→v2 = 0000000000000011
−→v4−→v3−→v1 = 0000000000000101
−→v4−→v2−→v1 = 0000000000010001
−→v3−→v3−→v1 = 0000000100000001
−→v4−→v3−→v2−→v1 = 0000000000000001
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Reed-Muller codes

Decoding of Reed-Muller codes

Assume a second order (16, 11) code for
m = 4.

The r -th order Reed-Muller code is formed
by using as a basis the vectors
−→v0 ,−→v1 , . . . ,−→vm and all vector products of r
or fewer of these vectors

The 11 information symbols are denoted by

a0, a4, a3, a2, a1, a43, a42, a41, a32, a31, a21

The codevector is then

a0
−→v0 + a4

−→v4 + a3
−→v3 + a2

−→v2 + a1
−→v1 + a43

−→v4−→v3
+ a42

−→v4−→v2 + a41
−→v4−→v1 + a32

−→v3−→v2 + a31
−→v3−→v1 + a21

−→v2−→v1
= (b1, b2, . . . , bn)

Example for m = 4, r = 2:

−→v0 = 1111111111111111
−→v4 = 0000000011111111
−→v3 = 0000111100001111
−→v2 = 0011001100110011
−→v1 = 0101010101010101
−→v4−→v3 = 0000000000001111
−→v4−→v2 = 0000000000110011
−→v4−→v1 = 0000000001010101
−→v3−→v2 = 0000001100000011
−→v3−→v1 = 0000010100000101
−→v2−→v1 = 0001000100010001
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Reed-Muller codes

Decoding of Reed-Muller codes

Determine the a’s from a noisy vector.

Note that, in the absence of errors:

b1 + b2 + b3 + b4 = a21

b5 + b6 + b7 + b8 = a21

b9 + b10 + b11 + b12 = a21

b13 + b14 + b15 + b16 = a21

Example for m = 4, r = 2:

−→v0 = 1111111111111111
−→v4 = 0000000011111111
−→v3 = 0000111100001111
−→v2 = 0011001100110011
−→v1 = 0101010101010101
−→v4−→v3 = 0000000000001111
−→v4−→v2 = 0000000000110011
−→v4−→v1 = 0000000001010101
−→v3−→v2 = 0000001100000011
−→v3−→v1 = 0000010100000101
−→v2−→v1 = 0001000100010001

We have in general 2m−r independent determinations of a21

This means that 2m−r

2 − 1 = 2m−r−1 − 1 errors can be corrected.
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Reed-Muller codes

Decoding of Reed-Muller codes

Similar determinations can be made for
a31, a32, a41, a42, a43

after these values are determined,

a43
−→v4−→v3 + a42

−→v4−→v2 + a41
−→v4−→v1

+ a32
−→v3−→v2 + a31

−→v3−→v1 + a21
−→v2−→v1

can be subtracted from the received vector
to achieve

r ′ = a0
−→v0 + a4

−→v4 + a3
−→v3 + a2

−→v2 + a1
−→v1

= (b′1, b
′
2, . . . , b

′
n)

Example for m = 4, r = 2:

−→v0 = 1111111111111111
−→v4 = 0000000011111111
−→v3 = 0000111100001111
−→v2 = 0011001100110011
−→v1 = 0101010101010101
−→v4−→v3 = 0000000000001111
−→v4−→v2 = 0000000000110011
−→v4−→v1 = 0000000001010101
−→v3−→v2 = 0000001100000011
−→v3−→v1 = 0000010100000101
−→v2−→v1 = 0001000100010001
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Reed-Muller codes

Decoding of Reed-Muller codes
The next set of coefficients can be determined in a similar way

There are eight equations that a1 should satisfy:

a1 = b′1 + b′2 = b′3 + b′4 = b′5 + b′6 = b′7 + b′8

= b′9 + b′10 = b′11 + b′12 = b′13 + b′14 = b′15 + b′16

Similar equations hold for a2, a3, a4

Finally, in the absence of errors,

r ′ − a4
−→v4 − a3

−→v3 − a2
−→v2 − a1

−→v1 = a0
−→v0
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BCH codes

BCH-codes
BHC-codes as a class are the best known nonrandom codes for channels
in which errors affect successive symbols independently.

Let α be an element of GF (qm)

For any specified m0 and d0 the code generated by g(X ) is a BCH code
iff g(X ) is the polynomial of lowest degree over GF (q) for which
αm0 , αm0+1, . . . , αm0+d0−2 are roots

The length n of the code is the order e of α.
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BCH codes

BCH-codes
The minimum distance of the codes is at least d0

Reed-Solomon codes are a subclass of BCH-codes with m = m0 = 1
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Stephan Sigg
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