Institute of Operating Systems and Computer Networks

Secure communication based on noisy input data

Feature extraction from audio contexts

Stephan Sigg

May 17, 2011

Overview and Structure

- Classification methods
- Feature extraction
 - Features from audio
 - Features from RF
- Fuzzy Commitment
- Fuzzy Extractors
- Authentication with noisy data
- Error correcting codes
- Entropy
- Physically unclonable functions

Outline

Introduction

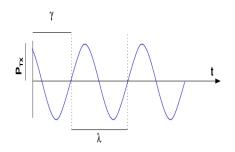
Features of the RF channel

Secure communication based on RF-channel information

Conclusion

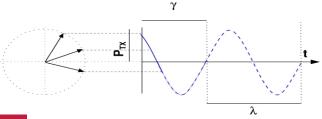
RF transmission

- Electromagnetic signals
- Transmitted in wave-Form
- Omnidirectional transmission
- Speed of light


•
$$c = 3 \cdot 10^8 \frac{m}{s}$$

RF signal

- Transmission power:
 - $P_{TX}[W]$
- Frequency:
 - $f[\frac{1}{sec}]$
- Phase offset:
 - $\gamma[\pi]$
- Wavelength:
 - $\lambda = \frac{c}{f}[m]$



Conclusion

RF signal

- Real part of rotating vector
 - $\zeta = \Re \left(e^{j(ft+\gamma)} \right)$
- Instantaneous signal strength:
 - $\cos(\zeta)$
- Rotation Speed: Frequency f

Stephan Sigg | Secure communication based on noisy input data | 6

Noise

- In every realistic setting, noise can be observed on the wireless channel
- Typical noise power:¹

$$P_N = -103 dBm$$

• Value observed by measurements

¹ 3GPP: 3rd generation partnership project; technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group radio access networks; 3g home nodeb study technical specification group

Noise

Thermal noise can also be estimated analytically as

$$P_N = \kappa \cdot T \cdot B$$

- $\kappa = 1.3807 \cdot 10^{-23} \frac{J}{\kappa}$: Boltzmann constant
- T: Temperature in Calvin
- B: Bandwidth of the signal.

Example

- GSM system with 200kHz bands
- Average temperature: 300K
- Estimated noise power:

$$P_N = \kappa \cdot T \cdot B$$

= 1.3807 \cdot 10^{-23} \frac{J}{K} \cdot 300 K \cdot 200 kHz
$$P_N = -120.82 dBm$$

Path-loss

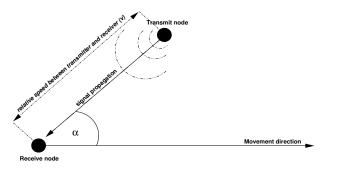
- Signal strength decreases while propagating over a wireless channel
- Order of decay varies in different environments
- Impact higher for higher frequencies
- Can be reduced by antenna gain (e.g. directed)

Location	Mean Path loss exponent	Shadowing variance σ^2 (dB)
Apartment Hallway	2.0	8.0
Parking structure	3.0	7.9
One-sided corridor	1.9	8.0
One-sided patio	3.2	3.7
Concrete Canyon	2.7	10.2
Plant fence	4.9	9.4
Small boulders	3.5	12.8
Sandy flat beach	4.2	4.0
Dense bamboo	5.0	11.6
Dry tall underbrush	3.6	8.4

Path-loss

- For analytic consideration: Path-loss approximated
- Friis free-space equation:

$$P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$


Path-loss

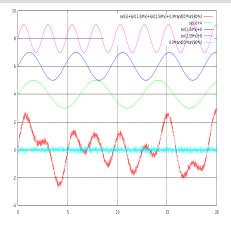
$$P_{RX} = P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$

- Utilised in outdoor scenarios
 - Direct line of sight
 - No multipath propagation
- d impacts the RSS quadratically
- Other values for the path-loss exponent α possible.
- Path-loss:

$$PL^{FS}(\zeta_i) = \frac{P_{TX}(\zeta_i)}{P_{RX}(\zeta_i)}$$

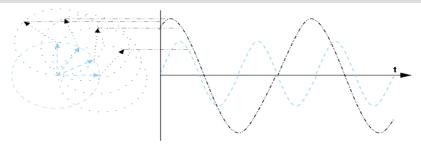
Doppler Shift

Technische

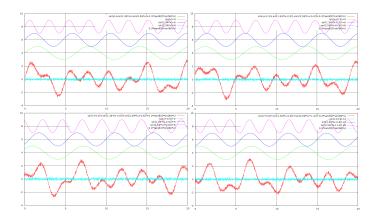

Braunschweig

- Frequency of a received signal may differ to the frequency of the transmitted signal
- Dependent on relative speed between transmitter and receiver
- $f_d = \frac{v}{\lambda} \cdot \cos(\alpha)$

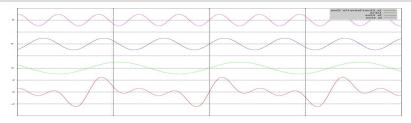
Superimposition of RF signals


- The wireless medium is a broadcast channel
- Multipath transmission
 - Reflection
 - Diffraction
 - Different path lengths
 - Signal components arrive at different times
- Interference

$$\zeta_{\mathsf{sum}} = \sum_{i=1}^{\iota} \Re \left(e^{j(f_i t + \gamma_i)} \right)$$


Stephan Sigg | Secure communication based on noisy input data | 14

Superimposition of RF signals


- At a receiver, all incoming signals add up to one superimposed sum signal
- Constructive and destructive interference
- Normally: Heavily distorted sum signal

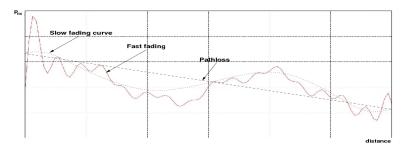
- Channel conditions are dependent on time and location
- Independent channel conditions typically expected in a distance of $\frac{\lambda}{2}$

Technische Universität Braunschweig

Interference

- Signal components arrive from more than one transmitter
- Neighbouring nodes generate interference:

$$\zeta_{\mathsf{sum}} = \sum_{i=1}^{\iota} \Re \left(e^{j(f_i t + \gamma_i)} \right)$$


Interference

• A radio system typically requires a specific minimum signal power over interference and noise level:

$$SINR = rac{P_{signal}}{P_{noise} + P_{interference}}$$

- Concepts to reduce interference:
 - Clustering (cellular networks)
 - Spread spectrum techniques (Code divisioning)

Fading

- Signal quality fluctuating with location and time
- Slow fading
- Fast fading

Slow fading

- Result of environmental changes
- Temporary blocking of signal paths
- Changing reflection angles
- Movement in the environment
 - Trees
 - Cars
 - Opening/closing doors
- Amplitude changes can be modelled by log-normal distribution

Fast fading

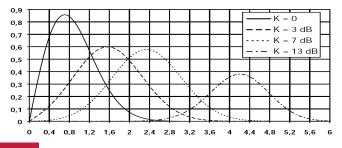
- Signal components of multiple paths
- Cancellation of signal components
- Fading incursions expected in the distance of $\frac{\lambda}{2}$
- Channel quality changes drastically over short distances
- Example: Low radio reception of a car standing in front of a headlight is corrected by small movement
- Stochastic models are utilised to model the probability of fading incursions
 - Rice
 - Rayleigh

Fast fading

- Fast fading weakened when direct signal component observed
- Density of amplitude distribution modelled by Rice distribution:

$$f(A) = \frac{A}{\sigma^2} e^{-\frac{A^2 + s^2}{2\sigma^2}} I_0\left(\frac{As}{\sigma^2}\right)$$

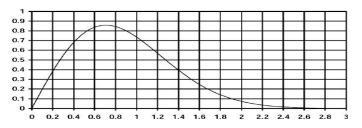
- s: Dominant component of received signal
- σ : Standard deviation
- Modified Bessel function with order 0:


$$I_0(x) = \frac{1}{2\pi} \int_0^{2\pi} e^{x \cos(\Psi)} d\Psi$$

• Ricean factor:

$$K = \frac{s^2}{2\sigma^2}$$

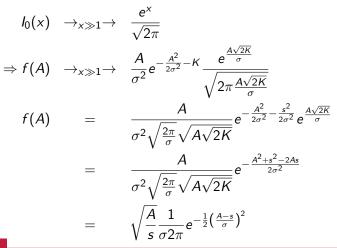
- Impacts probability density function of Rice distribution
- Most probable outcome impacted



Stephan Sigg | Secure communication based on noisy input data | 23 Institute of Operating

• For K = 0, Rice distribution migrates to Rayleigh distribution:

$$\lim_{K \to 0} f(A) = \lim_{K \to 0} \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2} - K} I_0\left(\frac{A\sqrt{2K}}{\sigma}\right)$$
$$= \lim_{K \to 0} \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2} - K} \frac{1}{2\pi} \int_0^{2\pi} e^{\frac{A\sqrt{2K}}{\sigma} \cos(\Psi)} d\Psi$$
$$= \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2} - 0} \frac{1}{2\pi} \int_0^{2\pi} e^{\frac{A\sqrt{20}}{\sigma} \cos(\Psi)} d\Psi$$
$$= \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2}}$$


Rayleigh distribution

- Probability density function of received sum signal for $n \gg 1$
- Assumption:
 - No direct signal component exists
 - Received signal components of approximately equal strength
- Example: Urban scenarios with dense house blocks

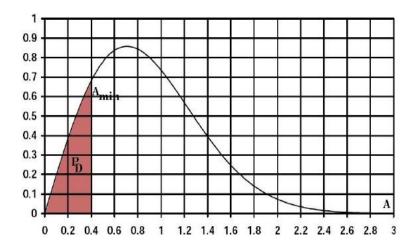
Conclusion

Aspects of the mobile radio channel

• With large K, Rice distribution evolves to Gauss distr.:

Stephan Sigg | Secure communication based on noisy input data | 26

• The term


$$\sqrt{\frac{A}{s}}\frac{1}{\sigma 2\pi}e^{-\frac{1}{2}\left(\frac{A-s}{\sigma}\right)^2}$$

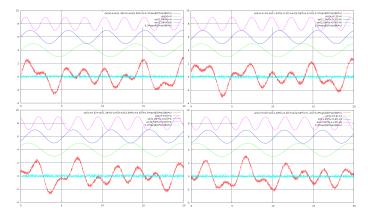
• differs from the Gauss distribution in $\sqrt{\frac{A}{s}}$:

$$f_{Gauss}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{A-s}{\sigma}\right)^2}$$

• With $\sqrt{\frac{A}{s}}\approx$ 1, Rice distribution can be approximated by Gauss distribution

Stephan Sigg | Secure communication based on noisy input data | 28 In

Simulation of frequency selective channels


- After signal transmission, the signal contour can be heavily distorted
 - Intersymbol interference
 - Fading
 - Interference
 - Noise
- In order to improve the signal reception, further signal processing is required

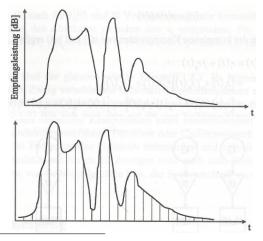
Conclusion

Aspects of the mobile radio channel

Simulation of frequency selective channels

Stephan Sigg | Secure communication based on noisy input data | 30

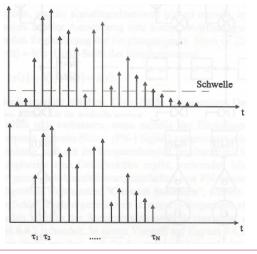
Simulation of frequency selective channels


- A common approach is to estimate he channel impulse response during a known training bit-sequence
- When the channel impulse response is known, signal distortions can be corrected
 - When the time axis is divided in discrete parts
 - We can derive discrete impulses for the energy in each of these parts

Conclusion

Aspects of the mobile radio channel

Simulation of frequency selective channels²


Technische Universität Braunschweig er, Digitale Mobilfunksysteme, Teubner, 1996

Stephan Sigg | Secure communication based on noisy input data | 32

Conclusion

Aspects of the mobile radio channel

Simulation of frequency selective channels

Stephan Sigg | Secure communication based on noisy input data | 33 In

Simulation of frequency selective channels

- Each component of the impulse response possesses a phase ϕ_i and a value a_i
- The impulse response in the complex basis band is defined as

$$h(t) = \sum_{i=1}^{N} a_i e^{j\phi_i} \delta(t - \tau_i) = h_i(t) + jh_q(t)$$

• The complex components are

$$egin{aligned} h_i(t) &= \sum_{i=1}^N a_i \cos \phi_i \delta(t- au_i) \ h_q(t) &= \sum_{i=1}^N a_i \sin \phi_i \delta(t- au_i) \end{aligned}$$

Simulation of frequency selective channels

• The received signal r(t) is described as

$$r(t) = s(t) \cdot h(t)$$

• By considering the complex components also, we obtain

$$\begin{aligned} r(t) &= r_i(t) + jr_q(t) \\ &= [s_i(t) + js_q(t)] \cdot [h_i(t) + jh_q(t)] \\ &= [s_i(t) \cdot h_i(t) - s_q(t) \cdot h_q(t)] + j [s_i(t) \cdot h_q(t) + s_q(t) \cdot h_i(t)] \end{aligned}$$

Channel estimation

- The easiest approach to estimate h(t) works in the time domain
- Based on sending very short impulses
- And registering the received signals
- The approach can be improved by utilising a pseudo-noise sequence instead of single identical impulses
- The inverse of the estimated impulse response is correlated $\overline{h(t)^{-1}}$ with the received signal:

$$r(t) \cdot \overline{h(t)^{-1}} = s(t) \cdot h(t) \cdot \overline{h(t)^{-1}} \approx s(t)$$

Conclusion

Outline

Introduction

Features of the RF channel

Secure communication based on RF-channel information

Conclusion

Features specific for the RF-channel

- Wlan Access points
- Signal Strength
- Signal to noise ratio
- Fluctuation in signal strength
- Energy on several frequency bands
- Active Bluetooth devices
- GSM base stations/GSM active set

Outline

Introduction

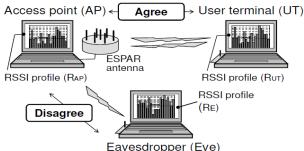
Features of the RF channel

Secure communication based on RF-channel information

Conclusion

Properties of the RF channel

Secure communication based on RF-channel information


- The communication channel for a communication among two nodes is spatially sharp concentrated³
- This channel symmetry can be exploited to derive secure keys among two devices

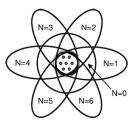
³Smith, A direct derivation of a single-antenna reciprocity relation for the time domain, IEEE Transactions on gation, Vol. 52, no. 6, 2004.

Secure communication based on RSSI measurements $^{\rm 4}$ $^{\rm 5}$

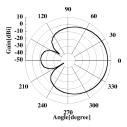
- Utilisation of a variable directional antenna (ESPAR)
 - Increases the fluctuation of channel characteristics based on relative location

⁴Yasukawa, Iwai, Sasaoka, A secret key agreement scheme with multi-level quantisation and parity check using fluctuation of radio channel property, ISIT, 2008

⁵ Aono, Higuchi, Ohira, Komiyama, Sasaoka, Wireless secret key generation exploiting reactance-domain scalar for thirty h fading channels, IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 2005.

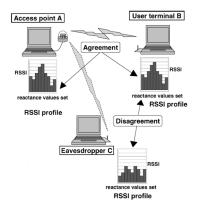


Technische Universität Braunschweig


Stephan Sigg | Secure communication based on noisy input data | 41 Institute of Operating Systems and Computer Networks

Secure communication based on RSSI measurements

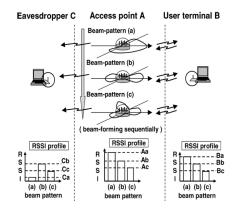
- Utilisation of a variable directional antenna (ESPAR)
 - Variable-directional array antenna
 - Single central active radiator
 - parasitic elements loaded with variable reactors
 - By altering the dc voltage to varactor diodes in the parasitic elements, antenna beam can be formed


Stephan Sigg | Secure communication based on noisy input data | 42

Conclusion

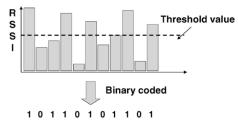
Features of the RF channel

Secure communication based on RSSI measurements


- Secret-key generation and agreement principle
 - Repeated transmission of beam patterns
 - Due to the ESPAR antenna, channel characteristics to spatially separated nodes differ
 - Binary keys are created from the RSSI-sequence according to a threshold value

Secure communication based on RSSI measurements

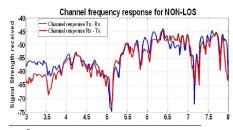
- Secret-key generation and agreement principle
 - Repeated transmission of beam patterns
 - Due to the ESPAR antenna, channel characteristics to spatially separated nodes differ
 - Binary keys are created from the RSSI-sequence according to a threshold value

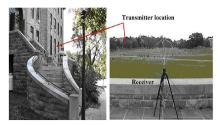


Stephan Sigg | Secure communication based on noisy input data | 44

Secure communication based on RSSI measurements

- Secret-key generation and agreement principle
 - Repeated transmission of beam patterns
 - Due to the ESPAR antenna, channel characteristics to spatially separated nodes differ
 - Binary keys are created from the RSSI-sequence according to a threshold value

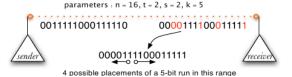

Secure communication based on RSSI measurements


- Discussion
 - Special antenna required to increase spatial fluctuation of channel characteristics
 - Security measure dependent on channel fluctuations

Secure communication based on deep fades in the SNR⁶

- Communication partners agree on a threshold value
- Bot nodes transmit repeatedly and alternately
- Channel characteristics are transformed to bit sequence
 - Signal envelope below threshold in timeslot: 1, else 0
- No specialised hardware required
 - Only threshold detectors which are already present in transceivers

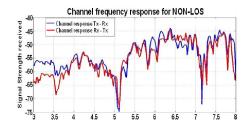
Azimi-Sadjadi, Kiayias, Mercado, Yener, Robust Key Generation from Signal Envelopes in Wireless Networks, CCS,



Technische Universität Braunschweig

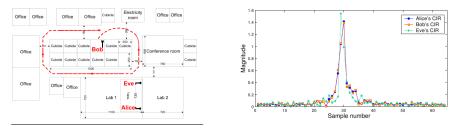
Stephan Sigg | Secure communication based on noisy input data | 47

Secure communication based on deep fades in the $\ensuremath{\mathsf{SNR}}$


- Key generation
 - Sender and receiver sample bit sequences
 - Sender transmits key verification information to receiver
 - Receiver decides on correct key by scanning through all possible error vectors

Secure communication based on deep fades in the SNR

- Discussion
 - Computationally cheap approach
 - Ø No special hardware required
 - Probably uneven distribution of 0 and 1 (Dependent on Channel characteristics and time slot)
 - 6 Key generation in the presence of noise not optimal



Stephan Sigg | Secure communication based on noisy input data | 49

Secure communication based on the CIR7 8

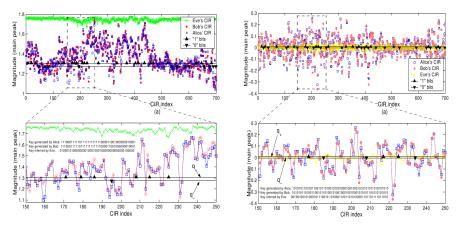
• Utilise Channel impulse response as secure secret

- Utilise magnitude of CIR pain peak
- Transformed to binary sequence via Threshold
- Error correction method required in order to account for noise in the binary sequences

⁷Mathur, Trappe, Mandayam, Ye, Reznik, Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel, MobiCom, 2008

⁸ Tmar. Hamida, Pierrot, Castelluccia, An adaptive quantisation algorithm for secret key generation using radio

Technische Universität Braunschweig


Stephan Sigg | Secure communication based on noisy input data | 50 Institute of Operating Systems

and Computer Networks

Conclusion

Features of the RF channel

Secure communication based on the CIR

Stephan Sigg | Secure communication based on noisy input data | 51

Outline

Introduction

Features of the RF channel

Secure communication based on RF-channel information

Conclusion

Questions?

Stephan Sigg sigg@ibr.cs.tu-bs.de

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- P. Tulys, B. Skoric, T. Kevenaar: Security with Noisy Data On private biometrics, secure key storage and anti-counterfeiting, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001

Stephan Sigg | Secure communication based on noisy input data | 54