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Introduction

To classify situations from audio samples, sufficient features have to
be derived

Origin of audio feature extraction lies in the representation and
processing of speech signals

Later, also features for non-speech audio signals have been proposed

Especially for processing of music samples, special features have
been proposed

E.g. to derive the rhythmic structure, chord change or beat
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Introduction

Features from audio
Speech recognition

Linear prediction Coefficients (LPC)
Mel Frequency Cepstral Coefficients (MFCC)

Non-speech audio signals

Isolated instrument tones – Instrument classification (Statistical
moments of the magnitude spectrum)
Sound effects (Spectral shape features (Centroid, Rolloff, Flux)
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Introduction

Features from audio
Methods for feature extraction

Fast Fourier Transform
Cochlear Models (Pitch detection)
Wavelets (Statistical characteristics of Wavelet sub-bands such as
absolute mean and variance to model sound texture)
MPEG audio compression filterbank
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Features – Spectral shape features

In time-frequency analysis techniques, signal is typically divided into
segments in time and frequency

Then, the frequency content of each segment is calculated

E.g. Magnitude spectrum (energy distribution over frequency bands
– c.f. figure)
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Features – Spectral shape features

In principle, the frequency spectrum can be utilised to represent and
even reconstruct audio
However, the information content is too high for classification

A lot of the information contained in the spectrum is not important
Machine learning algorithms typically work better with feature vectors
of smaller dimensionality

after spectrum calculation a small set of characteristic features is
extracted
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Features – Spectral shape features – STFT-based

The Short Time Fourier Transform of a signal x(n) is defined as

STFT (n, k) =
∞∑

m=−∞
x(m)h(n −m)e−j( 2π

N )km

h(n) is a sliding window at time n

N is the size of the transformation
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Features – Spectral shape features – STFT-based

STFT (n, k) =
∞∑

m=−∞
x(m)h(n −m)e−j( 2π

N )km

Can be viewed as a filter bank where the k-th filter channel is
obtained by multiplying the input x(m) by a complex sinusoid at
frequency k/N times the sample rate

The output is for any value of k a frequency shifted, band-pass
filtered version of the input

For any particular value of n the STFT is the DFT of the windowed
input at time n

It can be seen as a partially overlapping Fourier Transform
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Features – Spectral shape features – STFT-based

STFT (n, k) =
∞∑

m=−∞
x(m)h(n −m)e−j( 2π

N )km

The output is a complex number

For feature generation, typically only the magnitude of this number
is considered
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Features – Spectral shape features – STFT-based

Spectral Centroid

The spectral centroid is defined as the center of gravity of the
magnitude spectrum of the STFT:

SCt =

∑N
n=1 Mt [n] · n∑N

n=1 Mt [n]

Mt [n] is the magnitude of the Fourier Transform at frame t and
frequency bin n
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Features – Spectral shape features – STFT-based

Spectral Centroid

SCt =

∑N
n=1 Mt [n] · n∑N

n=1 Mt [n]

The centroid is a measure of spectral shape

higher values correspond to brighter textures with more high
frequencies

It was shown that this feature is an important attribute in the
characterisation of musical instrument timbre (Klangfarbe)1

1
J. M. Gray, An Exploration of Musical Timbre, 1975
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Features – Spectral shape features – STFT-based

Spectral Rolloff

The Spectral Rolloff is defined as the frequency Ft below which
85% of the magnitude is concentrated:

SRt =
Ft∑

n=1

Mt [n] = 0.85 ·
N∑

n=1

Mt [n]

Shows how much of the signal’s energy is concentrated in lower
frequencies
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Features – Spectral shape features – STFT-based

Spectral Flux

The Spectral Flux is defined as the squared difference between the
normalised magnitudes of successive spectral distributions:

SFt =
N∑

n=1

(Nt [n]− Nt−1[n])2

the Nt [n] are normalised magnitudes of the Fourier Transform at
frame t and t − 1

Measure of the amount of local spectral change

It was shown that this feature is an important attribute in the
characterisation of musical instrument timbre (Klangfarbe)2

2
J. M. Gray, An Exploration of Musical Timbre, 1975
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Features – Spectral shape features – STFT-based

Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) are perceptually
motivated features that are also based on the STFT

After taking the log-amplitude of the magnitude spectrum, FFT
bins are grouped and smoothed according to the perceptually
motivated Mel-frequency scaling

In order to decorrelate the resulting feature vectors, a Discrete
Cosine Transform (DCT) is performed

Common approach used in many speech recognition systems

The resulting representation has roughly properties ties similar to
the human auditory systems
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Features – Spectral shape features – STFT-based

Mel-Frequency Cepstral Coefficients
1 Audio data is windowed by a hamming window
2 Magnitude of the DFT is computed
3 FFT bins are applied to log-spaced filters approximating properties

of the human ear
4 These bins are summed using a triangular weighting function that

starts at the center point of the previous filter.
5 DCT of the output is used to reduce dimensionality
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Features – Representing sound texture

Sound texture

The term Sound texture describes spectral characteristics of audio

For instance, energy in distinct frequency bands or frequency of
changes in energy over time
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Features – Representing sound texture

Sound texture

To compute a sound texture, the signal is broken into small,
possibly overlapping segments in time

Segments have to be small enough so that the frequency
characteristics of the magnitude spectrum are relatively stable

For instance, speech contains vowel and consonant sections each of
which have different spectral characteristics

A texture is a pattern composed of multiple short-time spectrums
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Features – Representing sound texture

Sound texture

Texture patterns can be combined with the mean or variance of the
extracted features

It was shown that the use of texture windows improves the result of
automatic musical genre classification 3

3
George Tzanetakis, Manipulation, Analysis and Retrieval systems for audio signals, 2002
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Features – Wavelet transform features

Wavelet transform

Wavelet transform developed as an alternative to the STFT

STFT: Uniform resolution for all frequencies

WT: High time resolution and low frequency resolution for high
frequencies, Low time and high frequency resolution for low
frequencies

Time-frequency resolution characteristic similar to human ear
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Features – Wavelet transform features

Discrete Wavelet Transform (DWT)

Fast, pyramidal algorithm4

4
S. G. Mallat, A wavelet Tour of Signal Processing. 1999
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Features – Wavelet transform features

Discrete Wavelet Transform (DWT)

Signal analysed at different frequency bands with different
resolutions for each band
Successive highpass and lowpass filtering of the time domain signal:

yhigh(k) =
∑

n

x(n)highpass(2k − n)

ylow (k) =
∑

n

x(n)lowpass(2k − n)
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Features – Wavelet transform features

Discrete Wavelet Transform (DWT)

Each level of the pyramid corresponds roughly to frequency bands
spaced in octaves

DWT can be performed in O(N) for N input data points
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Features – Wavelet transform features

Wavelet transform

The extracted wavelet coefficients provide compact representation
for the energy of the signal in time and frequency

For instance: Distribution of energy in time and frequency is
different between music and speech

Features to represent sound texture:

Mean of the absolute value of the coefficients in each subband
(information on the frequency distribution of the audio signal)
Standard deviation of the coefficients in each subband (information on
the amount of change of the frequency distribution over time)
Ratio of the mean absolute values between adjacent subbands
(Information about frequency distribution)
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Features – Zero crossing

Time domain zero crossings

Time domain zero crossings provide a measure of the noisiness of
the signal

TDZCt =
1

2

N∑
n=1

|sign(x(n))− sign(x(n − 1))|

LPC coefficients are used as an estimate of the vocal tract filter 5

5
J. Makhoul. Linear prediction: A tutorial overview, Proceedings of the IEEE, 63,561-580 1975
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Features – Other features

RMS

RMS is a measure of the loudness of a window:

RMS =

√∑N
i=1(M(i)2)

N

Important to detect new sound events which are often accompanied
by loudness changes

Not well suited for classification which is often required to be
loudness invariant
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Features – Other features

Pitch

Three general approaches to detect Pitch (Tonlage)6

Utilise time-domain properties

Peak measurements, Zero crossings

Utilise frequency-domain properties

Analyse impulses on the frequency spectrum

Hybrid approaches

6
L. Rabiner, M. Cheng, A. Rosenberg, C. McGonegal, A comparative performance study of several pitch detection

algorithms, 1976
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Features – Other features

Pitch

Autocorrelation 7

Maximum Likelihood 8

Cepstrum analysis 9

7
Rabiner, Dubnowdki, Schafer, Real-time digital hardware pitch detector, In IEEE Transactions on Acoustics, Speech

and Signal Processing, ASSP-24(1), 1976
8

Wise, Caprio, Parks, Maximum likelihood pith estimation, In Ieee Transactions on Acoustic, Speech, Signal
processing, 24(5), 1976

9
Oppenheim, A speech analysis-sythesis system based on hormomorphic filtering, In Journal of the acoustical society

of America, 1968
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Features – Other features

Pitch detection by Autocorrelation

Isolates and tracks the peak energy levels of the signal

Tracking the frequency of the peaks can provide the pitch

With autocorrelation it can be obtained as

R(l) =
∞∑

k=−∞
h(k)h(l + k)
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Features – Other features

Pitch detection by Autocorrelation

R(l) =
∞∑

k=−∞
h(k)h(l + k)

A problem with autocorrelation is that is is subject to picking an
integer multiple of the actual pitch
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Features – LPC

Linear prediction reflection coefficients (LPC)

LPC coefficients are used as an estimate of the vocal tract filter 10

Linear prediction: Derive a linear model of a time series description for
a time series of observed samples
Utilise parameters of the time series description as characteristic
feature

10
J. Makhoul. Linear prediction: A tutorial overview, Proceedings of the IEEE, 63,561-580 1975
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Features – LPC

Despite recent developments with nonlinear models, some of the
most common stochastic models in time series prediction are
parametric linear models as autoregressive (AR), moving average
(MA) or autoregressive moving average (ARMA) processes11

Examples for application scenarios:

Financial time series prediction
Wind power prediction.

11
Jens-Peter KreiÃ and Georg Neuhaus, EinfÃ 1

4
hrung in die Zeitreihenanalyse, Springer, 2006.
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Features – LPC

Assume a stochastic process π(t) that generates outputs χ(t) at
each point t in time

Random values χ(t) can be univariate or multivariate and can take
discrete or continuous values
Time can also be either discrete or continuous.

Task: Find parameters Θ = {θ1, . . . , θn} that describe the
stochastic mechanism12

Prediction accomplished by calculating conditional probability
density P(χ(t)|{Θ, {χ(t − 1), . . . , χ(t −m)}}).

12
R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, Wiley Interscience, 2001.
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Features – LPC

Moving average (MA) models

Let Z (t) be some fixed zero-mean, unit-variance random process.

χ(t) is a MA(k) process (MA-process of order k), if

χ(t) =
k∑
τ=0

βτZ (t − τ)

where the βτ are constants.

Moving average processes are utilised to describe stochastic
processes with finite, short-term linear memory 13

13
C. Chatfild, The Analysis of Time Series: An Introduction, Chapman and Hall, 1996.
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Features – LPC
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Features – LPC

Autoregressive (AR) models

AR processes, the values at time t depend linearly on previous
values

χ(t) is an AR(k) process of order k, if

k∑
ν=0

ανχ(t − ν) = χ(t)

where αν are constants.

Autoregressive processes are used to capture exponential traces 14

14
C. Chatfild, The Analysis of Time Series: An Introduction, Chapman and Hall, 1996.
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Features – LPC
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Features – LPC

ARMA models

ARMA processes are a combination of AR and MA processes.

An ARMA(p, q) process is a stochastic process χ(t) in which

p∑
ν=0

ανχ(t − ν) =

q∑
τ=0

βτZ (t − τ)

, where {αν , βτ} are constants 15

15
C. Chatfild, The Analysis of Time Series: An Introduction, Chapman and Hall, 1996.
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Features – LPC

ARMA methods provide a powerful tool to approximate stochastic
processes

Computational complexity can be estimated as O(k log(k)) 16

No prior pre-processing or separate learning tool required.

16
J. Cadzow and K. Ogino, Adaptive ARMA spectral estimation Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, 1981.
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Audio-fingerprinting

Some approaches to Query by humming

Detect coarse melodic
contour a

Add rhythm information b

Detect beat c

a
Ghias, Logan, Chamberlin, Smith, Query by

humming - musical information retrieval in an audio
database. In ACM Multimedia, 1995

b
McNab, Smith, Witten, Henderson,

Cunningham, Toward the digital music library: tune
retrieval from acoustic input. Proceedings of the
ACM Digital Libraries, 1996

c
Chai, Vercoe, Melody Retrieval On the Web.

In Proceedings of ACM/SPIE Conference on
multimedia computing and networking, 2002

Designed for music description – not for general audio files
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Audio-fingerprinting

Audio-fingerprinting

An Audio-fingerprint is a characteristic representation for an audio
sequence

Comparison to watermarking

Original audio need not be modified
Robust to encoding of the audio (MP3,Ogg,...)

Applications

Search in an audio database (Identify Title and author) 17

Duplicate detection 18

17
Bellettini, Mazzini, A Framework for Robust Audio Fingerprinting. In Journal of Communications, vol. 5, No. 5, May

2010
18

Burges, Plastina, Platt, Renshaw, Malvar, Using Audio Fingerprinting for Duplicate Detection and Thumbnail
Generation. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2005
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Audio-fingerprinting

Audio-fingerprinting

Most approaches based on similar scheme:
1 Audio signal is segmented into frames
2 Features are computed for every frame
3 Features should be invariant to some degree of signal degradation
4 Popular features:19

Fourier coefficients
Mel Frequency Cepstral Coefficients (MFCC)
Spectral Flatness
Sharpness
Linear Predictive Coding (LPC) coefficients

19
Haitsma, Kalker, A highly robust audio fingerprinting system. In Proceedings of the IRCAM, 2002
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Audio-fingerprinting

Audio fingerprinting based on energy differences in frequency bands

20

20
Haitsma, Kalker, Oostveen, Robust Audio Hashing for Content Identification, Content-based multimedia indexing,

2001
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Audio-fingerprinting

Audio fingerprinting based on energy differences in frequency bands

Audio sequence is divided into frames

Weighted by a Hanning window

w(n) = 0.5 ·
(

1− cos

(
2πn

N − 1

))
Possible overlap between windows

Might impair the entropy of the resulting
fingerprint!a

a
Ibarrola, Chavez, A robust entropy-based audio-fingerprint. Proceedings of the

2006 International Conference on Multimedia and Expo, 2006
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Audio-fingerprinting

Audio fingerprinting based on energy differences in frequency bands

. . .
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Audio-fingerprinting

Audio fingerprinting based on energy differences in frequency bands

Transformation of frames into spectral
representation

Fourier Transform
Cosine transform

Typically, absolute value is utilised
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Audio-fingerprinting

Audio fingerprinting based on energy differences in frequency bands

Each frame is divided into
separate non-overlapping
frequency bands

For each frequency band, the
energy is created

Stored to an energy matrix

Energy of frame i in band j :

E (i , j)
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Audio-fingerprinting

Audio fingerprinting based on energy differences in frequency bands

Fingerprint created from the energy
difference in concurrent frames of each
frequency bands

F (i , j) =


1 E (i , j)− E (i , j + 1)−

(E (i − 1, j)− E (i − 1, j + 1)) > 0

0 otherwise.
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Audio-fingerprinting

Audio fingerprinting based on energy differences in frequency bands

Discussion

Not sensitive to loudness
changes
Applicable to general
audio
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks21

1 Convert signal into Spectrogram and split it into possibly
overlapping frames with a Hanning window

2 Perform FFT on windowed segments and take absolute values

3 Plot the instantaneous power as a function of time

4 Identify peaks in the power plot

5 Extract frequency components near each peak

6 Pass vectors through a set of comb filters representing different
pitch levels

7 Construct characteristic sequence

21
Cheng Yang, MACS: music audio characteristic sequence indexing for similarity retrieval, IEEE Workshop on the

Applications of Signal Processing, 2001
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks

1 Convert signal into Spectrogram and split it into possibly
overlapping frames with a Hanning window

2 Perform a zero-padded FFT on each windowed segment and take
the absolute values

3 Plot the instantaneous power as a function of time
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks

4 Identify peaks in the power plot

Typically, 100-200 power peaks in 60 seconds audio file
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks
5 Extract frequency components near each peak

k samples of frequency components are taken
Average values over a short time period following the peak are used
This step generates a list of n (count of peaks) k-dimensional vectors
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks
6 Pass vectors through a set of comb filters representing different

pitch levels
Comb filter adds a delayed version of a signal to itself
Causing constructive and destructive interference
Frequency response of a comb filter consists of a series of regularly
spaced spikes

7 Normalise all vectors to have a mean 0 and variance 1
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks
8 Construct characteristic sequences

For any two nearby peaks separated by fewer than D other peaks
Identify sequence of follow-up peaks which maintain roughly equal
distance as the first two peaks

{vs , vs+d ,Vts +2(ts+d−ts ), ...,Vts +(M−1)(ts+d−ts )}
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks

Matching distinct sequences

For two sequences s1, s2, . . . , sn and r1, r2, . . . , rm, eij is the RMS
between si and rj

Smaller eij correspond to larger correlation coefficient
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks

Given: 2 subsets sa = s1, s2, . . . , sa and rb = r1, r2, . . . , rb of s and r
and a matching sequence Mk = {(x1, y1), . . . , (xk , yk )}
The distance of sa and rb with respect to Mk is defined as

Da,b,Mk
=

(
k∑

i=1

exi yi

)
+ β(a + b − 2k)

Minimum distance:
Da,b = min

M
Da,b,M
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks

Even when the sum of the RMS is small for two pieces of audio,
there is a probability that they do not match

The reason is that the points at which the vectors match are
differently distributed

The matching set Mk = {(x1, y1), . . . , (xk , yk )} can be plotted on a
2D graph to test for similar distribution of peak vectors
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Audio-fingerprinting

Audio fingerprinting based on spectrogram peaks

The matching set Mk = {(x1, y1), . . . , (xk , yk )} can be plotted on a
2D graph to test for similar distribution of peak vectors
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Audio-fingerprinting

Similar approaches also implemented by other authors22

22
Wang, An industrial-strength audio search algorithm, proceedings of the 4th Symposium Conference on Music

Information Retrieval, 2003
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Audio-fingerprinting

Audio fingerprinting based on spectral flatness23

1 Spectral flatness defines the energy of a signal in an infinitesimal
small band

2 Sketched over the whole frequency spectrum, we obtain the Power
spectrum density (PSD(k))

3 The spectral flatness measure is defined as

SFM =

[∏N−1
k=0 PSD(k)

] 1
N

1
N

∑N−1
k=0 PSD(k)

23
Herre, Allamanche, Hellmuth, Robust matching of audio signals using spectral flatness features, Proceedings of the

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2001
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Questions?

Stephan Sigg
sigg@ibr.cs.tu-bs.de
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