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Pattern recognition and classification

Classical pattern recognition

Mapping of features onto classes by utilisation of prior knowledge
What are characteristic features?
Which approaches are suitable to obtain these features?
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Pattern recognition and classification

From features to context
Measure available data on features
Context reasoning by appropriate method

Syntactical (rule based – e.g. RuleML)
Bayesian classifier
Non-parametric
Linear discriminant
Neural networks
Sequential
Stochastic
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Pattern recognition and classification

Allocation of sensor value by defined
function

Correlation of various data sources
Several methods possible – simple
approaches
Template matching
Minimum distance methods
’Integrated’ feature extraction

Nearest Neighbour
Neural Networks

Problem

Measured raw data might not allow to
derive all features required
Therefore often combination of sensors
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Pattern recognition and classification

Methods – Syntactical (Rule based)

Idea: Description of Situation by formal Symbols and Rules
Description of a (agreed on?) world view
Example: RuleML

Comment
Pro:

Combination of rules and identification of loops and impossible
conditions feasible

Contra:

Very complex with more elaborate situations
Extension or merge of rule sets typically not possible without
contradictions
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Pattern recognition and classification

Rule Markup Language: Language for
publishing and sharing rules

Hierarchy of rule-sub-languages (XML,
RDF, XSLT, OWL)

Example:

A meeting room was occupied by min 5
people for the last 10 minutes.

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes
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Pattern recognition and classification

Also conditions can be modelled

A Meeting is taking place in a meeting room when it was occupied by
min 5 people for the last 10 minutes.

Atom

Rel Var
meeting roommeeting

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes

Implies

head body
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Pattern recognition and classification

Logical combination of conditions

A Meeting is taking place in a meeting room when it was occupied by
min 5 people for the last 10 minutes and the light is on.

Atom

Rel Var
meeting roommeeting

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes

Implies

head body

Atom

Rel Var
lighton

And
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Recognition of patterns

Patterns can be recognised by stating a sufficient number of rules

Sensor readings are inaccurate

Very high count of rules to accurately model all variations of sensor
readings that belong to one class

Therefore: Consider machine learning approaches
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Recognition of patterns

A training set x1 . . . xN of a large number of N samples is utilised

Classes t1 . . . tN of all samples in this set known in advance

A machine learning algorithm computes a function y(x) and
generates a new target t‘
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Polynomial curve fitting

As an example we assume that a curve shall be approximated by a
machine learning approach

Sample points are created for the function sin(2πx) +N where N
is a random noise value
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Polynomial curve fitting

We will try to fit the data points into a polynomial function of the
form

y(x ,−→w ) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j
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Polynomial curve fitting

We will try to fit the data points into a polynomial function of the
form

y(x ,−→w ) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j

This can be obtained by minimising an error function that measures
the misfit between y(x ,−→w ) and the training data set:

E (−→w ) =
1

2

N∑
i=1

[
y(xi ,

−→w )− ti

]2
E (
−→
( w)) is non-negative and zero if and only if all points are

covered by the function
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Polynomial curve fitting

One problem is the right choice of the dimension M of the
polynomial

When M is too small, the accuracy of the approximation might be
bad
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Polynomial curve fitting

One problem is the right choice of the dimension M of the
polynomial

In particular, when M becomes too big, the resulting polynomial
will cross all points exactly

When M reaches the count of samples in the training data set, it is
always possible to create a polynomial of order M that contains all
values in the data set exactly.
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Polynomial curve fitting

This event is called overfitting
The polynomial now trained too well to the training data
It will therefore perform badly on another sample of test data for
the same phenomenon
We can visualise this by the Root of the Mean Square (RMS) of
E (−→w )

ERMS =

√
2E (−→w )

N
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Polynomial curve fitting

With increasing number of data points, the problem of overfitting
becomes less severe for a given value of M
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Polynomial curve fitting

One solution to cope with overfitting is regularisation

A penalty term is added to the error function

This term discourages the coefficients of −→w from reaching large
values

E (−→w ) =
1

2

N∑
i=1

[
y(xi ,

−→w )− ti

]2
+
λ

2
||−→w ||2

with
||−→w ||2 = −→w T−→w = w2

0 + w2
1 + · · ·+ w2

M
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Polynomial curve fitting

Depending on the value of λ, overfitting is controlled

E (−→w ) =
1

2

N∑
i=1

[
y(xi ,

−→w )− ti

]2
+
λ

2
||−→w ||2
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Bayesian decision theory

With probability theory, the probability of events can be estimated
by repeatedly generating events and counting their occurrences

When, however, an event only very seldom occurs or is hard to
generate, other methods are required

Example: Probability that the Arctic ice cap will have disappeared
by the end of this century

In such cases, we have to find a way to model uncertainty.

In fact, it is possible to represent uncertainty by probability
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Conditional probability

Conditional probability

The conditional probability of two events χ1 and χ2 with P(χ2) > 0 is
denoted by P(χ1|χ2) and is calculated by

P(χ1|χ2) =
P(χ1 ∩ χ2)

P(χ2)

P(χ1|χ2) describes the probability that event χ2 occurs in the presence
of event χ2.
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Bayesian decision theory

With the notion of conditional probability we can express the effect
of observed data

−→
t = t1, . . . , tN on a probability distribution of −→w :

P(−→w ):

P(−→w |−→t ) =
P(
−→
t |−→w )P(−→w )

P(
−→
t )

Thomas Bayes described a way to evaluate the uncertainty of −→w
after observing

−→
t

P(
−→
t |−→w ) expresses how probable a value for

−→
t is given a fixed

choice of −→w
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Bayesian decision theory

A principle difference between the Bayesian viewpoint and a
frequentist viewpoint is that prior assumptions are provided for a
model

Example:

Consider a fair-looking coin that scores heads in three consecutive coin
tosses.
A classical maximum likelihood estimate will result in predict head for
future coin tosses with probability 1
A Bayesian approach will include prior assumptions on the probability
of events and would result in a less extreme conclusion
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Bayesian curve fitting

In the curve fitting problem, we are given −→x and
−→
t together with a

new sample xM+1

The task is to find a good estimation of the value tM+1

This means that we want to evaluate the predictive distribution

p(tM+1|xM+1,
−→x ,−→t )

To account for measurement inaccuracies, typically also a
probability distribution (e.g. Gauss) is underlying the sample vector
−→x
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Bayesian curve fitting

This means that we want to evaluate the predictive distribution

p(tM+1|xM+1,
−→x ,−→t )

After consistent application of the sum and product rules of
probability we can rewrite this as

p(tM+1|xM+1,
−→x ,−→t ) =

∫
p(tM+1|xM+1,

−→w )p(−→w |−→x ,−→t )d−→w
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Bayesian curve fitting

M=9

Mean of the predictive distribution

+/- 1 standard deviation
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Example
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Example
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Histogram methods

An alternative approach to function estimation are histogram
methods
In general, the probability density of an event is estimated by
dividing the range of N values into bins of size ∆i

Then, count the number of observations that fall inside bin ∆i

This is expressed as a normalised probability density

pi =
ni

N∆i
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Histogram methods

The accuracy of the estimation is dependent on the width of the
bins

The approach is well suited also for huge amounts of data since the
data items can be discarded once the histogram is created
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Histogram methods

Issues:

Due to the edges of the bins, the modelled distribution is characterised
by discontinuities not present in the underlying distribution observed
The method does not scale well with increasing dimension (Curse of
dimensionality)
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Parzen estimator methods

Assume an unknown probability density p(·)
We want to estimate the probability density p(−→x ) of −→x in a
D-dimensional Euclidean space

We consider a small region R around −→x :

P =

∫
R
p(−→x )d−→x
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Parzen estimator methods

We utilise a data set of N observations

Each observation has a probability of P to fall inside R
With the binomial distribution we can calculate the count K of
points falling into R:

Bin(K |N,P) =
N!

K !(N − K )!
PK (1− P)N−K
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Parzen estimator methods

We utilise a data set of N observations
Each observation has a probability of P to fall inside R
With the binomial distribution we can calculate the count K of
points falling into R:

Bin(K |N,P) =
N!

K !(N − K )!
PK (1− P)N−K

For large N we can show
K ≈ NP

With sufficiently small R we can also show for the volume V of R
P ≈ p(−→x )V

Therefore, we can estimate the density as

p(−→x ) =
K

NV
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Parzen estimator methods

We assume that R is a small hypercube

In order to count the number K of points that fall inside R we
define

k(−→u ) =

{
1, |ui | ≤ 1

2 , i = 1, . . . ,D,
0, otherwise

This represents a unit cube centred around the origin

This function is an example of a kernel-function or Parzen window
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Parzen estimator methods

k(−→u ) =

{
1, |ui | ≤ 1

2 , i = 1, . . . ,D,
0, otherwise

When the measured data point −→xn lies inside a cube of side h
centred around −→x , we have

k

(−→x −−→xn

h

)
= 1

The total count K of points that fall inside this cube is

K =
N∑

n=1

k

(−→x −−→xn

h

)
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Parzen estimator methods

The total count K of points that fall inside this cube is

K =
N∑

n=1

k

(−→x −−→xn

h

)
When we substitute this in the density estimate derived above

p(−→x ) =
K

NV

with volume V = hD we obtain the overall density estimate as

p(−→x ) =
1

N

N∑
n=1

1

hD

(−→x −−→xn

h

)
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Parzen estimator methods

p(−→x ) =
1

N

N∑
n=1

1

hD

(−→x −−→xn

h

)

Again, this density estimator suffers from artificial discontinuities

Due to the fixed boundaries of the cubes

This problem can be overcome by choosing a smoother kernel
function

A common choice is a Gaussian kernel with a standard deviation σ

p(−→x ) =
1

N

N∑
n=1

1

(2πσ2)
D
2

e−
||−→x −−→xn ||2

2σ2
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Parzen estimator methods

Density estimation for various values of σ
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Nearest neighbour methods

A problem with Parzen estimator methods is that the parameter
governing the kernel width (h or σ) is fixed for all values −→x

In regions with high data density, a high kernel width might lead to
over-smoothing
In regions with low data density, the same width may lead to noisy
estimates
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Nearest neighbour methods

Nearest neighbour methods address this problem by adapting the
width to the data density

Parzen estimator methods fix V and determine K from the data
Nearest neighbour methods fix K and choose V accordingly

Again, we consider a point −→x and estimate the density p(−→x )

The radius of the sphere is increased until K data points (the
nearest neighbours) are covered
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Nearest neighbour methods

The value K then controls the amount of smoothing

Again, an optimum value for K exists
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Nearest neighbour methods

For classification we apply the KNN-density estimation for each
class

Then, we utilise the Bayes theorem

Assume a data set of N points with Nk points in class Ck

In order to classify a sample −→x , we draw a sphere containing K
points around −→x
The sphere can contain other points regardless of their class

Assume that the sphere has volume V and contains Kk points from
class Ck
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Nearest neighbour methods

Assume: Sphere of volume V contains Kk points from class Ck

We estimate the density of class Ck as

p(−→x |Ck ) =
Kk

NkV

The unconditional density is given as

p(−→x ) =
K

NV
The probability to experience a class Ck is given as

p(Ck ) =
Nk

N
With the Bayes theorem we can combine this to achieve

p(Ck |−→x ) =
p(−→x |Ck )p(Ck )

p(−→x )
=

Kk

K
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Nearest neighbour methods

p(Ck |−→x ) =
p(−→x |Ck )p(Ck )

p(−→x )
=

Kk

K

To minimise the probability of misclassification, assign −→x to class
with the largest probability

This corresponds to the largest value of

Kk

K
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Nearest neighbour methods

To classify a point, we identify the K nearest points

And assign the point to the class having most representatives in
this set

The choice K = 1 is called the nearest neighbour rule

For this choice, the error rate is never more than twice the minimum
achievable error rate of an optimum classifier1

1
T. Cover and P. Hart: Nearest neighbour pattern classification. IEEE Transactions on Information Theory, IT-11,

21-27, 1967

Stephan Sigg | Secure communication based on noisy input data | 51



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Nearest neighbour methods

Classification of points by the K-nearest neighbour classifier
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Nearest neighbour methods

Classification of points by the K-nearest neighbour classifier
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Nearest neighbour methods

The KNN-method and the Parzen-method are not well suited for
large data sets since they require the entire data set to be stored
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Support vector machines

In classification problems we want to take an input −→x and assign it
to one of K discrete classes Ck

The input is divided by decision boundaries

Here we assume that the decision boundaries are linear functions of
−→x
Data sets that can be separated exactly by linear decision surfaces
are linear separable

With sufficiently high dimension, a data set of two classes is always
linearly separable
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Support vector machines

Stephan Sigg | Secure communication based on noisy input data | 57



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Support vector machines

A support vector machine pre-processes data to represent patterns
in a high dimension

Dimension often much higher than original feature space

Then, insert hyperplane in order to separate the data
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Support vector machines

A pattern −→xk is transformed to −→yk = ϕ(−→xk )

Also, each −→xk is associated with zk ∈ {−1, 1}
A linear discriminant in an augmented −→y space is g(−→y ) = −→a t−→y
A separating hyperplane ensures for y0 = 1, a0 ≥ 1

zkg(yk ) ≥ 1
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Support vector machines

The goal for support vector machines is to find a separating
hyperplane with the largest margin b to the outer points in all sets

zkg(yk )

||−→a ||
≥ b, k = 1, . . . , n

If no such hyperplane exists, map all points into a higher
dimensional space until such a plane exists
Support vectors satisfy ‘· = b‘
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Support vector machines

Simple application to several classes by iterative approach:

belongs to class 1 or not?
belongs to class 2 or not?
...

Search for optimum mapping between input space and feature
space complicated (no optimum approach known)
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Support vector machines

Simple learning approach to find the correct hyperplane:

Starting from an initial separating hyperplane
Find worst classified pattern (on the wrong side of the hyperplane)
Design a new hyperplane with this pattern as one of the support
vectors
Iterate until all patterns are correctly classified
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Support vector machines
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Neural networks

Neural networks

Learn the correct mapping from an input vector to an output vector
Representation of the mapping function by an edge-weighted graph
Distinction between

Input neurons
Output neurons
Hidden nodes
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Neural networks
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Neural networks

Neural networks

Input neurons are only equipped
with outgoing edges
Hidden nodes ‘fire‘ (assign the
value 1 to their outgoing edges)
with respect to the configuration
of the weighted ingoing edges
and a threshold function Θ

yi =

{
1, if

∑n
i=1 xiwi ≥ Θ

0, else.
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Neural networks

Learning with back-propagation (schematic):

Iterate until the error is sufficiently small
1 Choose a training-pair and copy it to the input layer
2 Propagate it through the network
3 Calculate error between computed and expected output
4 Propagate the sum product of the weights back into the network in

order to calculate the error in internal layers
5 Adapt weights to the error
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Neural networks

Discussion

With only one layer of hidden nodes it is possible to represent
arbitrary multi-dimensional functions

Is well suited to work on noisy input data

Implicit clustering of input data possible

Issues:

Complicated to extend existing network (e.g. when new features are
added)
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Neural networks

A Neural network consists of a series of functional transformations

For the input layer, we construct M linear combinations of the
input variables x1, . . . , xD and weights w1, . . . ,wD

aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0

Each aj is transformed using a differentiable, non-linear activation
function

zj = h(aj )
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Neural networks

Input layer: M linear combinations of x1, . . . , xD and w1, . . . ,wD

aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0

Differentiable, non-linear activation function:

zj = h(aj )

The h(·) function is usually a sigmoidal function or tanh
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Neural networks

The values zj are then again linearly combined in the hidden layers:

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0

with k = 1, . . . ,K describing the total number of outputs

Again, these values are transformed using a sufficient
transformation function σ to obtain the network outputs yk

yk = σ(ak )

For multi-class problems, we use a function such as

σ(a) =
1

1 + e−a
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Neural networks

We can combine these various stages to give the overall network
function in the form

yk (−→x ,−→w ) = σ

 M∑
j=1

w
(2)
kj h

(
D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0


When the network contains multiple hidden layers, these are added
analogously
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Neural networks

When the activation functions of all hidden units in a network are
linear, we can always find an equivalent network without hidden
units

Since the composition of successive linear transformations is itself a
linear transformation
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Neural networks

When the number of hidden units is smaller than the number of
input or output units, not all linear functions can be generated

Since Information is lost in the dimensionality reduction at the hidden
units
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Neural networks

Sometimes, skip-layer connections are utilised

In principle, a network with sigmoidal hidden units can always mimic
skip layer connections
By using sufficiently small first-layer weight
and then compensating with a large weight from the hidden unit to
the output
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Neural networks

Neural networks are Universal approximators2 3 4 5 6 7 8 9

A two-layer network with only linear outputs can uniformly
approximate any continuous function on a compact input domain to
arbitrary accuracy

2
K. Funahashi: On the approximate realisation of continuous mappings by neural networks, Neural Networks, 2(3),

183-192, 1989
3

G. Cybenko: Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems,
2, 304-314, 1989

4
K. Hornik, M. Sinchcombe, H. White: Multilayer feed-forward networks are universal approximators. Neural

Networks, 2(5), 359-366, 1989
5

N.E. Cotter: The stone-Weierstrass theorem and its application to neural networks. IEEE Transactions on Neural
Networks 1(4), 290-295, 1990

6
Y. Ito: Representation of functions by superpositions of a step or sigmoid function and their applications to neural

network theory. Neural Networks 4(3), 385-394, 1991
7

K. Hornik: Approximation capabilities of multilayer feed forward networks: Neural Networks, 4(2), 251-257, 1991
8

Y.V. Kreinovich: Arbitrary non-linearity is sufficient to represent all functions by neural networks: a theorem. Neural
Networks 4(3), 381-383, 1991

9
B.D. Ripley: Pattern Recognition and Neural Networks. Cambridge University Press, 1996
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Neural networks

Remaining issue in neural networks

How to find suitable parameter values given a set of training data
Several learning approaches have been proposed
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Neural networks

A simple approach to the problem of determining the network
parameters is to minimise a sum-of-squared error function

Given a training set −→xn with n ∈ {1, . . . ,N}
And a corresponding set of target vectors

−→
tn

We minimise the error function

E (−→w ) =
1

2

N∑
n=1

(y(−→xn ,
−→w )−−→tn )2
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Neural networks

Classification with neural networks

Classification of two classes C1 and C2

We consider a network with a single output

y = σ(a) ≡ 1

1 + e−a

The output is interpreted as the conditional probability p(C1|−→x )
Analogously, we have p(C2|−→x ) = 1− p(C1|−→x )
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Neural networks

Classification with neural networks

Classification of K classes C1, · · · , CK

Binary target variables tk ∈ {0, 1}
Network outputs are interpreted as yk (−→x ,−→w ) = p(tk = 1|−→x )
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Introduction to self organising maps

Self organising map (SOM) algorithm proposed by Teuvo
Kohonen10

Presented it as a model of the self-organisation of neural
connections.

Map high dimensional input data to low dimensional representation

Based on neural network learning of the underlying mapping

10
Teuvo Kohonen, Self-Organizing Maps, Springer, 2001.
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Introduction to self organising maps

Idea:
Present all points in a source space by points in a target space
Given a sequence of points in a sample space,
Create a mapping of these points into a target space that respects the
neighbourhood relation in the sample space
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Introduction to self organising maps

SOM is a topology preserving lattice of a predefined number of
nodes that represents a topology of elements in the input space.
Algorithm inherits self-organisation property

Able to produce organisation starting from possibly total disorder.
SOM algorithm defines and preserves neighbourhood structure
between all nodes of the map.

Learning by two layer neural network
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Introduction to self organising maps
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Introduction to self organising maps

When a pattern
−→
φi is presented, each node (represented by outer

neurons) in the target space computes its activation
−→
φ t

i
−→w .

The most activated node y∗ and the weights to its neighbours are
updated according to a learning rate ρ(t)

wki (t + 1) = wki (t) + ρ(t)Λ(|y − y∗|)(
−→
φi − wki (t))

Λ(·) defines a non-increasing neighbourhood function and |y − y∗|
describes the distance of nodes in the neighbourhood
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SOM – Self organisation
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SOM – Definition

We recapitulate a condensed definition of the SOM algorithm that
can be found in11

Self organising maps

Let I = {−→η1, . . . ,
−→η|S |} be a set of km-dimensional vectors that are

associated with nodes in a lattice.

Neighbourhood structure provided by symmetrical, non-increasing
neighbourhood function d : I × I → R which depends on the
distance between two nodes −→ηi and −→ηj ∈ I .

The state of the map at time t is given by

η(t) =
(−−−→
η1(t),

−−−→
η2(t), . . . ,

−−−−→
η|S |(t)

)
,

11
M. Cottrell, J.C. Fort and G. Pages, Theoretical aspects of the SOM algorithm, Neurocomputing, pp. 119-138, vol

21, 1998.
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SOM – Definition

Self organising map algorithm

The SOM algorithm is recursively defined by

ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
= argmin

{∥∥∥−−−−−→v(t + 1)−
−−→
ηi (t)

∥∥∥ ,−−→ηi (t) ∈ η(t)
}
,

−−−−−→
ηi (t + 1) =

−−→
ηi (t)− εtd

[
ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
,−→ηi

]
·
(−−→
ηi (t)−

−−−−−→
v(t + 1)

)
,∀−→ηi ∈ I .

In this formula, ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
corresponds to the node in the

network that is closest to the input vector.

Parameter εt controls the adaptability of the self organising map.
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SOM – Operational principle

Input values vi (t) are to be mapped onto the target space
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SOM – Operational principle

The node with the lowest distance is associated with the input
value:

ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
= argmin

{∥∥∥−−−−−→v(t + 1)−
−−→
ηi (t)

∥∥∥ ,−−→ηi (t) ∈ η(t)
}
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SOM – Operational principle

Nodes in the neighbourhood of the associated node are moved
closer to the input value
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SOM – Operational principle

Nodes in the neighbourhood of the associated node are moved to
the input value

−−−−−→
ηi (t + 1) =

−−→
ηi (t)− εtd

[
ic
(−−−−−→
v(t + 1),

−−→
η(t)

)
,−→ηi

]
·
(−−→
ηi (t)−

−−−−−→
v(t + 1)

)
, ∀−→ηi ∈ I .

Stephan Sigg | Secure communication based on noisy input data | 93



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

SOM – Example application: TEA
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SOM – Example application: TEA
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SOM – Remarks

It has been proven that the SOM algorithm always converges12

Normalisation of input vectors might improve numerical accuracy

Not guaranteed that self-optimisation will always occur (Dependent
on choice of parameters)

The SOM is not optimising any well-defined function, so that it is
difficult to set the parameters of the model 13

12
Y. Cheng, Neural Computation, 9(8), 1997.

13
E. Erwin, K. Obermayer, K. Schulten: Self-organising maps: Ordering, convergence properties and energy functions.

Biological Cybernetics, 67, 47-55, 1992
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Problems of SOMs

If the neighbourhood is chosen to be too small, the map will not be
ordered globally.
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Problems of SOMs

The map created as target space might have several orientations

It is possible that one part of the map is created following one
orientation, while other parts are created following other
orientations.
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Software tools for SOMs – The SOM PAK

SOM PAK First public-domain software package (1990)14

Released by Laboratory of Computer and Information
Science of Helsinki University of Technology
Source code (ANSI C) and documentation completely
available
Available for UNIX or MS DOS
Features:

Standard incremental-learning SOM
(simple) graphics programs included
Map size and vector dimension not restricted
Several neighbourhood functions available
Able to handle largest scale problems

14
http://www.cis.hut.fi/research/software.shtml
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Software tools for SOMs – The SOM Toolbox

SOM Toolbox Toolbox for MatLab (1996)15

Released by Laboratory of Computer and Information
Science of Helsinki University of Technology
MatLab version 5 or higher required
Slower than SOM PAK
Features:

Standard incremental-learning SOM and Batch Map
SOM
Map size and vector dimension not restricted
Neighbourhood and training sequences identical to
SOM PAK
Improved visualisation and analysis capabilities

15
http://www.cis.hut.fi/software.shtml
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Software tools for SOMs – The Neural Networks Tool

Nenet User friendly ANN Toolbox (1997)16

Released by the Neural network team of Helsinki
University of Technology
32-bit Windows 95/NT recommended
Suited for small scale problems only
Features:

Standard incremental SOM
Several visualisation options:

Component planes with trajectories
U-matrix
3D hit histograms
Display of active neuron coordinates

Easy to use; Good graphics programs

16
http://www.mbnet.fi/∼phodju/nenet/Nenet/Gneral.html
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Software tools for SOMs – Viscovery SOMine

Viscovery SOMine Commercial SOM software package 17

Released by Eudaptics GmbH in Austria
Windows NT and Windows NT 4.0
Features:

User-friendly, flexible and powerful package
Interfaces for GUI, OLE, SQL and DB2
Batch Map algorithm
High computing speed
Unlimited map size and vector dimension
Several visualisation options:

Component planes with trajectories
U-matrix
Cluster windows
Iso-contours of hit density

17
http://www.eudaptics.co.at
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Outline

Introduction

Recognition of patterns

Bayesian decision theory

Non-parametric techniques

Linear discriminant functions

Neural networks

Sequential data

Stochastic methods

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 103



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Markov chains

Markov processes

Intensively studied
Major branch in the theory of stochastic processes

A. A. Markov (1856 – 1922)

Extended by A. Kolmogorov by chains of infinitely many states

’Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich
vielen möglichen Zuständen’ (1936) 18

18
A. Kolmogorov,Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen Zuständen, 1936.
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Markov chains

Markov chains

Theory of Markov chains applied to a variety of algorithmic problems
Standard tool in many probabilistic applications

Intuitive graphical representation

Possible to illustrate properties of stochastic processes graphically

Popular for their simplicity and easy applicability to huge set of
problems19

19
William Feller, An introduction to probability theory and its applications, Wiley, 1968.
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Markov chains

Independent trials of events

Set of possible outcomes of a measurement Ei associated with
occurrence probability pi

Probability to observe sample sequence:

P{(E1,E2, . . . ,Ei )} = p1p2 · · · pi

Dependent trials of events

Probability to observe specific sequence E1,E2, . . . ,Ei obtained by
conditional probability:

P(Ei |E1,E2, . . . ,Ei−1)

In general:

P(Ei |E1,E2, . . . ,Ei−1) 6= P(Ei |E2,E1,E3,E4, . . . ,Ei−1)
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Markov chains

Independent random variables

Number of coin tosses until ’head’ is observed
Radioactive atoms always have the same probability of decaying at the
next trial

Dependent random variables

The knowledge that no car has passed for five minutes increases our
expectation that it will come soon.
Coin tossing:

Probability that the cumulative numbers of heads and tails will equalize
at the second trial is 1

2

Given that they did not, the probability that they equalize after two
additional trials is only 1

4
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Markov chains

Markov property

In the theory of stochastic processes the described lack of memory is
connected with the Markov property.

Theory of Markov chains:

Outcome of any trial depends exclusively on the outcome of the
directly preceding trial
Outcome of Ek is no longer associated with fixed probability pk

Instead: With every pair (Ei ,Ej ) a conditional probability pij

Probability that Ej is observed after Ei

Additionally: Probability ai of the event Ei
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Markov chains

Markov chain
A sequence of observations E1,E2, . . . is called a Markov chain if the
probabilities of sample sequences are defined by

P(E1,E2, . . . ,Ei ) = a1 · p12 · p23 · · · · · p(i−1)i .

and fixed conditional probabilities pij that the event Ei is observed
directly in advance of Ej .
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Markov chains

Theory of Markov chains:

P{(Ei ,Ej )} = aipij

P{(Ei ,Ej ,Ek )} = aipijpjk

P{(Ei ,Ej ,Ek ,El )} = aipijpjkpkl

P{(Ei ,Ej , . . . ,Em,En)} = aipij . . . pmn
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Markov chains

Markov chain sometimes modelled as directed graph G = (V ,E )

Labelled edges in E

states (or vertices) in V .

Transition probabilities pij between Ei ,Ej ∈ V
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Markov chains

Markov chain described by probability a for initial distribution and
matrix P of transition probabilities.

P =

 p11 p12 p13 · · ·
p21 p22 p23 · · ·

...
...

...
. . .


P is a square matrix with non-negative entries that sum to 1 in
each row.

P is called a stochastic matrix
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Markov chains

pk
ij denotes probability that Ej is observed exactly k observations

after Ei was observed.

Calculated as the sum of the probabilities for all possible paths
EiEi1 · · ·Eik−1

Ej of length k

We already know
p1

ij = pij

Consequently:

P2
ij =

∑
ν

piν · pνj

P3
ij =

∑
ν

piν · p2
νj
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Markov chains

By mathematical induction:

pn+1
ij =

∑
ν

piν · pn
νj

and
pn+m

ij =
∑
ν

pm
iν · pn

νj =
∑
ν

pn
iν · pm

νj

Stephan Sigg | Secure communication based on noisy input data | 114



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Markov chains

Similar to matrix P we can create a matrix Pn that contains all pn
ij

We obtain Pn+1
ij from Pn+1 by multiplying all elements of the i-th

row of P with the corresponding elements of the j-th column of Pn

and add all products.

Symbolically: Pn+m = PnPm.
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Markov chains

Closed set of states

A set C of states is closed if no state outside C can be reached
from any state Ei in C .

For an arbitrary set C of states the smallest closest set containing
C is called the closure of C

A single state Ek forming a closed set is called absorbing
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Markov chains

Closed sets in stochastic matrices
If in a matrix Pn all rows and all columns corresponding to states
outside a closed set C are deleted, the remaining matrices are again
stochastic matrices.

Stephan Sigg | Secure communication based on noisy input data | 117



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Markov chains

Irreducible Markov chain
A Markov chain is irreducible if there exists no closed set other than the
set of all states.

Criterion for irreducible chains
A chain is irreducible if, and only if, every state can be reached from
every other state.

Stephan Sigg | Secure communication based on noisy input data | 118



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Markov chains

Periodicity of states

The state Ej has period t > 1 if pn
jj = 0 unless n = vt is a multiple

of t and t is the largest integer with this property.

The state Ej is aperiodic if no such t > 1 exists

A state Ej to which no return is possible is considered aperiodic
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Markov chains

To deal with a periodic Ej it suffices to consider the chain at the
trials t, 2t, 3t

In this way we obtain a new Markov chain with transition
probabilities pt

ik

In this new chain Ej is aperiodic

Results concerning aperiodic states can thus be transferred to
periodic states
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Markov chains

Persistent and transient states

The state Ej is persistent if
∑∞

n=1 p
n
jj = 1 and transient if∑∞

n=1 p
n
jj < 1

A persistent state Ej is called null state if its mean recurrence time
µj =∞

Ergodic states

An aperiodic persistent state Ej with µj <∞ is called ergodic
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Hidden Markov Models

Make a sequence of decisions for a process that is not directly
observable20

Current states of the process might be impacted by prior states

HMM often utilised in speech recognition or gesture recognition

20
Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classification, Wiley interscience, 2001.
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Hidden Markov Models

Computational biology

Align biological sequences
Find sequences homologous to a known evolutionary family
Analyse RNA secondary structure 21

Computational linguistics22

Topic segmentation of text
Information extraction

21
R. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological sequence analysis: Probabilistic models of proteins and

nucleic acids, Cambridge University Press, 1998.
22

C.D. Manning and H. Schütze, Foundations of statistical natural language processing, MIT Press, 1999.
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Hidden Markov Models
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Hidden Markov Models

At every time step t the system is in an internal state ω(t)

Additionally, we assume that it emits a (visible) symbol v(t)

Only access to visible symbols and not to internal states
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Hidden Markov Models

V T = {v(1), v(2), . . . , v(T )}
In any state ω(t) we have a probability of emitting a particular
visible symbol vk (t)

Probability to be in state ωj (t) and emit symbol vk (t):

P(vk (t)|ωj (t)) = bjk

Transmission probabilities: pij = P(ωj (t + 1)|ωi (t))

Emission probability: bjk = P(vk (t)|ωj (t))
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Hidden Markov Models

Normalisation conditions∑
j

pij = 1for all i

∑
k

bjk = 1for all j

Stephan Sigg | Secure communication based on noisy input data | 127



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Hidden Markov Models

Central issues in hidden Markov models:
Evaluation problem

Determine the probability that a particular sequence of visible symbols
V T was generated by a given hidden Markov model

Decoding problem

Determine the most likely sequence of hidden states ωT that led to a
specific sequence of observations V T

Learning problem

Given a set of training observations of visible symbols, determine the
parameters pij and bjk for a given HMM
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Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

P(V T |ωT )P(ωT )

Also:

P(ωT ) =
T∏

t=1

P(ω(t)|ω(t − 1))

P(V T |ωT ) =
T∏

t=1

P(v(t)|ω(t))

Together:

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))
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Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Formally complex but straightforward

Naive computational complexity

O(cTT )
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Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Computationally less complex algorithm:

Calculate P(V T ) recursively
P(v(t)|ω(t))P(ω(t)|ω(t − 1)) involves only v(t), ω(t) and ω(t − 1)

αj (t) =

 0 t = 0 and j 6= initial state
1 t = 0 and j = initial state
[
∑

i αi (t − 1)pij ] bjk otherwise (bjk leads to observed v(t))
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Hidden Markov Models – Evaluation problem

Forward Algorithm

Computational complexity: O(c2T )

Forward algorithm

1 initialise t ← 0, pij , bjk ,V
T , αj (0)

2 for t ← t + 1
3 j ← 0
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 until t = T
8 return P(V T )← αj (T ) for the final state

9 end
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Hidden Markov Models – Decoding problem

Given a sequence V T , find most probable sequence of hidden states

Enumeration of every possible path will cost O(cT )

Not feasible
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Hidden Markov Models – Decoding problem

Given a sequence V T , find most probable sequence of hidden states

Decoding algorithm

1 initialise: path ← {}, t ← 0
2 for t ← t + 1
3 j ← 0;
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 j ′ ← arg maxj αj (t)
8 append ωj ′ to path

9 until t = T
10 return path

11 end
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Hidden Markov Models – Decoding problem

Computational time of the decoding algorithm
O(c2T )
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Hidden Markov Models – Learning problem

Determine the model parameters pij and bjk

Given: Training sample of observed values V T

No method known to obtain the optimal or most likely set of
parameters from the data

However, we can nearly always determine a good solution by the
forward-backward algorithm
General expectation maximisation algorithm
Iteratively update weights in order to better explain the observed
training sequences
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Hidden Markov Models – Learning problem

Probability that the model is in state ωi (t) and will generate the
remainder of the given target sequence:

βi (t) =


0 t = T and ωi (t) not final hidden state
1 t = T and ωi (t) final hidden state∑

j βj (t + 1)pijbjk otherwise (bjk leads to v(t + 1))
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Hidden Markov Models – Learning problem

αi (t) and βi (t) only estimates of their true values since transition
probabilities pij , bjk unknown

Probability of transition between ωi (t − 1) and ωj (t) can be
estimated

Provided that the model generated the entire training sequence V T by
any path

γij (t) =
α(t − 1)pijbjkβj (t)

P(V T |Ω)

Probability that model generated sequence V T :

P(V T |Ω)
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Hidden Markov Models – Learning problem

Calculate improved estimate for pij and bjk

pij =

∑T
t=1 γij (t)∑T

t=1

∑
k γik (t)

bjk =

∑T
t=1,v(t)=vk

∑
l γjl (t)∑T

t=1

∑
l γjl (t)

Start with rough estimates of pij and bjk

Calculate improved estimates

Repeat until some convergence is reached

Stephan Sigg | Secure communication based on noisy input data | 139



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Hidden Markov Models – Learning problem

Forward-Backward algorithm

1 initialise pij , bjk ,V
T , convergence criterion ∆, t ← 0

2 do t ← t + 1
3 compute pij (t)

4 compute bjk (t)

5 pij (t)← pij (t)

6 bjk (t)← bjk (t)
7 until maxi ,j ,k [pij (z)− pij (z − 1), bjk (t)− bjk(t − 1)] < ∆

(convergence achieved)

8 return pij ← pij (t), bjk ← bjk (t)
9 end
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Outline

Introduction

Recognition of patterns

Bayesian decision theory

Non-parametric techniques

Linear discriminant functions

Neural networks

Sequential data

Stochastic methods

Conclusion
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Stochastic methods

When problem structure is not well known, it might be hard to
configure classification methods correctly

Then, randomised search approaches are an option to find optimum
parameters for a classifier

The search process then virtually becomes a problem of iterative
learning

Search space is then spanned by possible configurations for all
distinct parameters
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Randomised search approaches

Most frequently applied in engineering design

Assumptions to compute extrema are not fulfilled (e.g.
unfriendly/unknown conditions)
Difficulties to carry out necessary differentiations
Solution to the equations describing all conditions does not always lead
to optimum point in the search space
Equations to describe conditions are not immediately solvable
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Randomised search approaches

Local random search

Metropolis algorithm

Simulated annealing

Evolutionary algorithms
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Local random search heuristics

Local random search

Intuitive way to climb a mountain (by a sightless climber)

Local random search
For every point x in a search space S , a non-empty neighbourhood
N(x) ⊆ S is defined. The local random search approach iteratively
draws one sample x ′ ∈ N(x). When the fitness of the new value is
better than the old one (F (x) < F (x ′)), the new value is utilised as the
new best search point. Otherwise it is discarded.
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Local random search heuristics

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

N

In principle, N(x) = x or N(x) = S is valid, but the original idea is
that N(x) is a relatively small set of search points.
The points x ′ ∈ N(x) are expected to be nearer to x than those
points x ′′ 6∈ N(x)
Typically, x ∈ N(x)

Stephan Sigg | Secure communication based on noisy input data | 146



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Local random search heuristics

Complexity reduction by restriction of the search space size

Example: S = {0, 1}n and Nd (x) are
all points y with Hamming distance
smaller than d (H(x , y) ≤ d)

For constant d we obtain:
|Nd (x)| = Θ(nd )� |S | = 2n

d ≤ 1 d ≤ 2 d ≤ 3
1 0 1 0 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 1 1 1 0
1 1 1 0 1 1 1 0 1 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 1 0 1 1 1 0 1 1

0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 1

0 1 0 0
0 1 1 1
1 1 0 1
1 0 0 1

|Nd (x)| =

(
n
d

)
+

(
n

d − 1

)
+ · · ·+

(
n
1

)
+

(
n
0

)
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Local random search heuristics

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

N

Small neighbourhood: Easy conversion to local optima

Huge neighbourhood: Similar to random search
Change neighbourhood radius during optimisation

Initially, big neighbourhood to allow huge steps, then decrease size
Challenging: Not to decrease neighbourhood size too fast
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Local random search heuristics

Alternative to avoid local optima:
Multistart strategies

Local search approach applied t times
on the problem domain
Probability amplification results in
respectable search result also when
single success probability is low.

Assume a success probability of δ > 0
for one iteration of the algorithm
When the algorithm is applied t times,
the overall probability of success is
1− (1− δ)t

Small polynomial success probabilities
are enough for the multistart strategy
to obtain very good overall success
probabilities

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5
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Metropolis algorithms

For local random search, only
multistart strategies can avoid the
termination in local optima.

A Metropolis approach allows to
accept also new search points that
decrease the fitness value

If F (x ′) < F (x) the search point x ′ is
discarded only with probability

1− 1

e(F (x)−F (x ′))/T

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Exceeds

size
Neighbourhood
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Metropolis algorithms

Probability to accept search points with decreasing fitness value
dependent on degree by which fitness decreased

For T → 0 the Metropolis approach becomes a random search

For T →∞ the Metropolis approach becomes an uncontrolled
local search

Choice of T impacts the performance

Knowledge on the problem or the fitness function might impact the
choice of T
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Simulated annealing

Choice of optimal T not easy: Change parameter in the pace of the
optimisation

Initially: T should allow to ’jump’ to other regions of the search
space with increased fitness value

Finally: Process should gradually ’freeze’ until local search
approach propagates the local optimum in the neighbourhood.

Name chosen in analogy to natural cooling processes in the creation
of crystals

In this process, the temperature is gradually decreased so that
Molecules that could move freely at the beginning are slowly put into
their place
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Simulated annealing

Optimal choice of the cooling schedule for T?

Non-Adaptive approaches

Fixed temperature function T (t)
Every few steps the original value is multiplied with a factor α < 1

Adaptive approaches

React on the optimisation process
Probably dependent on the frequency of accepted iterations.
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Simulated annealing

Problem: No natural problem known for which it has been proved
that Simulated Annealing is sufficiently more effective than the
Metropolis algorithm with optimum stationary temperature.

However, artificially constructed problems exist, for which it could
be shown that Simulated Annealing is superior to the Metropolis
algorithm
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Evolutionary algorithms

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Several researchers have studied the use of evolutionary approaches
for optimisation purposes
To-date, evolutionary algorithms combine these different
approaches so that no clear distinction can be made
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Evolutionary algorithms
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Evolutionary algorithms

Genetic algorithms

Proposed by John Holland 23

Binary discrete search spaces: {0, 1}n

Fitnessproportional selection

For m individuals x1, . . . , xm the probability to choose xi is
f (xi )

f (x1)+···+f (xm) .

Main evolution operator is crossover

Originally One-point crossover

The main goal was not optimisation but the adaptation of an
environment

23
J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
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Evolutionary algorithms

Evolution strategies

Proposed by Bienert, Rechenberg and Schwefel24 25

At first only steady search spaces as Rn

No Crossover

Only mutation

First mutation operator: Each component xi is replaced by xi + σZi

(Zi normally distributed, σ2 Variance)

24
I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution,

1973.
25

H.P. Schwefel, Evolution and optimum seeking, 1993
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Evolutionary algorithms

Evolutionary programming

The approach was proposed by Lawrence J. Fogel2627

Various similarities to evolution strategies

Search Space: Space of deterministic finite automata that well
adapt to their environment.

26
L.J. Fogel, Autonomous automata, Industrial Research, Vol. 4, 1962.

27
L.J. Fogel Biotechnology: Concepts and Applications, Prentice-Hall, 1963
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Evolutionary algorithms

Genetic programming

Proposed by John Koza28

Search space: Syntactically correct programs

Crossover more important than mutation

28
John Koza Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press,

1992
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Restrictions of evolutionary approaches

In the early days of evolutionary algorithms it has been argued that

Problem specific algorithms are better than evolutionary algorithms on
a very small subset of problems
Evolutionary algorithms perform better on average over all problems

Therefore, evolutionary algorithms have been proposed as a good
choice for a general purpose optimisation scheme
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Restrictions of evolutionary approaches
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Restrictions of evolutionary approaches

Can an algorithm be suited for ’all’ problems?

Distinct coding of the search space
Various fitness functions

What does ’all problems’ mean?

For all possible representations and sizes of the search space
All possible fitness functions on the feature space
For a given search space and feature space, all possible fitness
functions
Every single point in the search space is the optimum point in several
of these problems

Can one algorithm be better on average than another algorithm on
’all’ problems?
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Restrictions of evolutionary approaches

To understand this scenario, Wolpert and Macready formalised the
assertion29

Assumptions:

The set of all functions f : S →W considered is given by F
S and W are finite (as every computation on physical computers can
only have finite resources)
The fitness function is evaluated only once for each search point
A(f ) is the number of search points requested until the optimum is
found

29
D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for Optimisation, IEEE Transactions on Evolutionary

Computation 1, 67, 1997.
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Restrictions of evolutionary approaches

No free lunch theorem
Assume that the average performance of an algorithm in the No Free
Lunch Scenario for S and W is given by AS,W , the average over all
A(f ), f ∈ F . Given two algorithms A and A′, we obtain AS ,W = A′S ,W

This means that two arbitrary algorithms perform equally well on
average on all problems
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
W.l.o.g.: W = {1, . . . ,N}
We consider sets Fs,i ,N of all functions f on a search space of
non-visited search points of size s with at least one x with f (x) > i
Observe that for every function f and every permutation π also fπ
belongs to Fs,i ,N
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Proof by induction over s := |S |.
Induction start: s = 1
Every algorithm has to choose the single optimum search point with its
first request.
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Induction: s − 1→ s
We define a function a : S → N so that for every x ∈ S the share of
functions with f (x) = j is exactly a(j).
This is independent of x , since all permutations fπ of a function f also
belong to Fs,i ,N ,
a(j) is therefore the probability to choose a search point with fitness
value j – Independent of the concrete algorithm A
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Induction: s − 1→ s
With probability a(j) an algorithm A finds a search point with fitness
value j .
Count of functions f (x) = j is equal to the number of functions
fπ(y) = j , since all permutations of f are also in Fs,i ,N .
The probability to achieve a fitness value j > i is therefore independent
of the algorithm.
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Induction: s − 1→ s
With probability a(j) an algorithm A finds a search point with fitness
value j .
If j ≤ i , x is not optimal in scenario Fs,i ,N and the new scenario is
Fs−1,i ,N
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Restrictions of evolutionary approaches

Proof of the No Free Lunch Theorem
Summary – in other words:
For any two algorithms we can state a suitable permutation of the
Problem-function for one problem (i.e. state another problem), so that
both algorithms in each iteration request identical search points.

Especially, since every search point could be optimal, there are
always algorithms that request the optimal search point right from
the start.
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Restrictions of evolutionary approaches

The NFL is possible, since ALL algorithms and ALL problems are
considered

It is a reasonable question if an NFL is also valid in smaller, more
realistic scenarios.

In 30 is was proved, that a similar theorem can be stated also for
more realistic problem scenarios.

30
S. Droste, T. Jansen and I. Wegener, Perhaps not a free lunch but at least a free appetizer, Proceedings of the 1st

Genetic and Evolutionary Computation Conference, 1999.
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Design aspects of evolutionary algorithms

Selection principles

Uniform selection
Individuals chosen uniformly at random

Deterministic selection
Deterministically choose the highest rated individuals for the selection

Threshold selection
Candidates for offspring population drawn uniformly at random from
the t highest rated individuals
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Design aspects of evolutionary algorithms

Selection principles

Fitnessproportional selection

For population xi , . . . , xn individual xi chosen with

p(xi ) =
f (xi )

f (x1) + · · ·+ f (xn)

Draw random variable u from [0, 1] and consider xi if

p(x1) + · · ·+ p(xi−1) < u ≤ p(x1) + · · ·+ p(xi )

Frequently applied for evolutionary approaches
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Design aspects of evolutionary algorithms

Selection principles

Problems with Fitnessproportional selection

Linear modification of the fitness function (f → f + c) results in
different behaviour
When fitness values sufficiently separated, selection is nearly
deterministic
When deviation in fitness values is small relative to absolute values,
similar to uniform selection
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Design aspects of evolutionary algorithms

Variation – Mutation

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5

Mutation creates one offspring individual from one individual

Operators are designed for specific search spaces

Shall apply only few modifications of individuals on average

Distant individuals have smaller probability
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Evolutionary algorithms

Mutation operators for individuals from Bn (similar operators for other
search spaces):

Standard bit mutation

Offspring individual created bit-wise from parent individual

Every bit ’flipped’ with probability pm

Common choice: pm = 1
n

1 bit mutation

Offspring individual identical in all but one bit.

This bit chosen uniformly at random from all n bits
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Design aspects of evolutionary algorithms

Variation – Crossover

Crossover typically takes two individuals and results in one or two
offspring individuals

Also crossover of more than two individuals possible
Often generalisations of the two-individual case

Distinct crossover methods for various search spaces

Crossover parameter pc specifies the probability with which
crossover (and not mutation) is applied for one selected individual

In some cases (e.g. binary coded numbers) not all positions in the
individual string are allowed to apply crossover on
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Design aspects of evolutionary algorithms

Typical crossover variants

One-point crossover

k-point crossover

Uniform crossover

0    1    1    1    0    0    0    0    1    2

1    1    2    2    1    1    0    1    2    3

1    2    3    3    2    2    1    2    3    4

1    2    3    4    4    3    2    4    5    6

0    1    2    3    3    2    4    5    6    7

0    0    1    2    2    4    5    6    7    8

0    0    0    1    2    3    4    5    6    7

0    0    0    0    1    2    3    4    5    6

0    0    0    0    0    1    2    3    4    5

1    2    3    4    3    3    2    3    4    5
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Evolutionary algorithms

Crossover operators for Bn

(Operators for other search spaced similar)

One-point crossover: Individual x ′′ from two individuals x and x ′

according to uniformly determined crossover position:

x ′′j =

{
xj if j ≤ i
x ′j if j > i
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Evolutionary algorithms

Crossover operators for Bn

k-point crossover: Choose k ≤ n positions uniformly at random:

x1 = x11, x1,2, . . . , x1,k1 |x1k1+1, . . . , x1k2 |x1k2+1, . . . , x1n

x2 = x21, x2,2, . . . , x2,k1 |x2k1+1, . . . , x2k2 |x2k2+1, . . . , x2n

y1 = x11, x1,2, . . . , x1,k1 |x2k1+1, . . . , x2k2 |x1k2+1, . . . , x1n

y2 = x21, x2,2, . . . , x2,k1 |x1k1+1, . . . , x1k2 |x2k2+1, . . . , x2n
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Evolutionary algorithms

Crossover operators for Bn

Uniform crossover: Each bit chosen with uniform probability from one
of the parent individuals

Stephan Sigg | Secure communication based on noisy input data | 182



Introduction Recognition Bayesian Non-parametric Linear discriminant NN Sequential Stochastic Conclusion

Design aspects of evolutionary algorithms

Discussion

Evolutionary algorithms are easy to implement when compared to
some complex specialised approaches

However, Evolutionary algorithms are computationally complex

It is therefore beneficial to implement efficient variants to the
distinct methods
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Design aspects of evolutionary algorithms

Discussion

Generation of pseudo random bits is important for many of the
theoretic results for evolutionary algorithms to hold

It is, however possible to reduce the number of random experiments

It is more efficient to calculate the next flipping bit in a mutation
instead of doing the calculation for every bit independently
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Design aspects of evolutionary algorithms

Discussion

Most of the computational time is typically consumed by the fitness
calculation

One approach to reduce complexity is to prevent re-calculation of
fitness for individuals

Dynamic data structures that support search and insert
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