Collaborative transmission in wireless sensor networks

Distributed Adaptive Beamforming

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

June 21, 2010

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

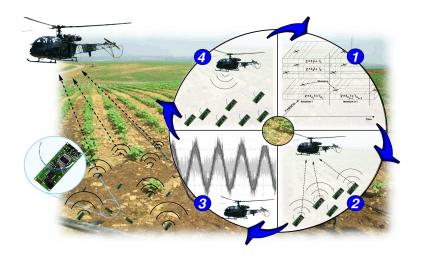
Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Feedback based distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

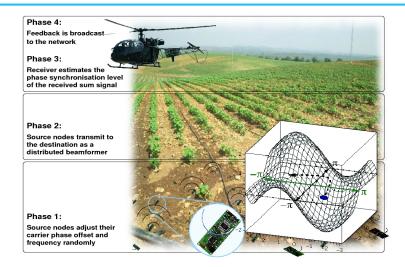
Outline

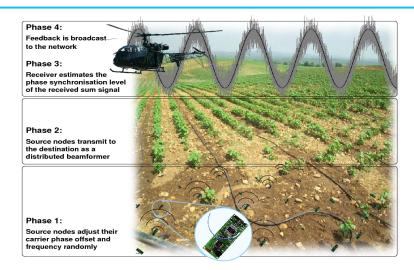
Feedback based distr. adaptive beamforming

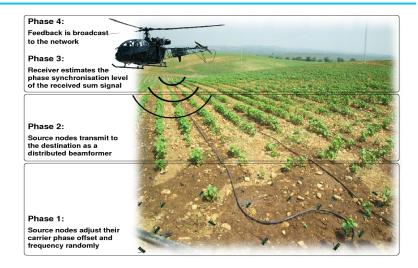
- Analysis of the problem scenario
 - Individual representation
 - Fitness function
 - Search space
 - Variation operators
- Analysis of the convergence time
 - An upper bound on the synchronisation performance
 - A lower bound on the synchronisation performance
- Simulation and experimental results for the basic scenario
 - Impact of distinct parameter configurations
 - Impact of environmental parameters
 - Impact of algorithmic modifications

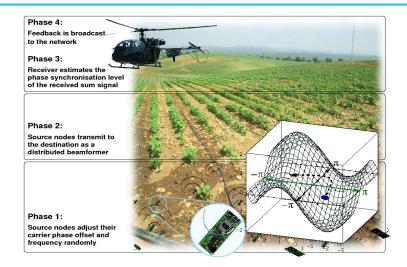


- 1-bit feedback based closed loop carrier synchronisation
 - Slow synchronisation
 - But: Computationally modest demands
 - Only: Adaptation of carrier phase based on binary feedback value
- Therefore: Well suited to be applied for WSNs







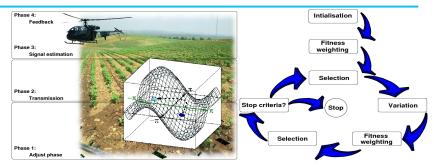


- Analysis of the underlying algorithmic problem
 - Precise mathematical understanding of the problem required
 - Modelling of
 - Search space
 - Optimisation aim
 - Representation of search points
 - Parameters that impact the synchronisation performance

Outline

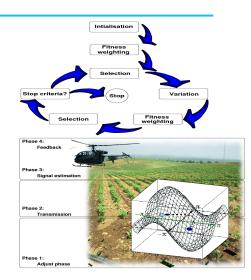
Feedback based distr. adaptive beamforming

- Analysis of the problem scenario
 - Individual representation
 - Fitness function
 - Search space
 - Variation operators
- Analysis of the convergence time
 - An upper bound on the synchronisation performance
 - A lower bound on the synchronisation performance
- Simulation and experimental results for the basic scenario
 - Impact of distinct parameter configurations
 - Impact of environmental parameters
 - Impact of algorithmic modifications



- Observations
 - Iterative approach similar to evolutionary random search
 - New search points are requested by altering the carrier phases
 - Fitness function implemented by receiver feedback
 - Selection of individuals based on feedback values
 - Population size and offspring population size: $\mu=\nu=1$

- Individual representation
 - Ordered set
 - Vector
 - Binary representation
- Fitness function
 - SNR
 - Simple distance
- Search space
 - Identical frequency
 - Distinct frequencies
- Variation operators
 - Mutation
 - Crossover



Analysis of the problem scenario

- Individual representation
 - Ordered set of phase and frequency pairs γ_i, f_i

Advantage: Very near to the actual physical scenario

Disadvantage: Similarity measures between individuals not straightforward

• Vector $V = v_1, \dots, v_{2n}$ of phases and/or frequencies

Advantage: Configurations as points in vector spaces, simple distance measure

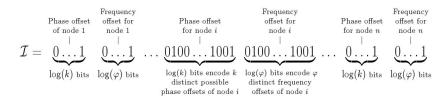
Disadvantage: Representation very problem specific/untypical

Binary representation of phase/frequency offsets

Advantage: Various results on binary search spaces in the

Disadvantage: Hamming distance may not represent

neighbourhood similarities

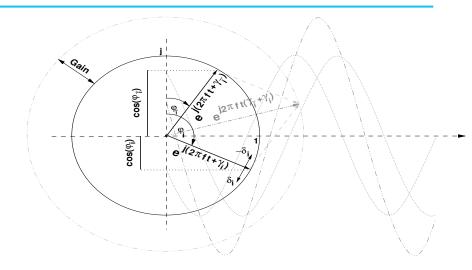


- Individual representation
 - Here: Binary representation of phase/frequency offsets
 - log(k) bits to represent k phase offsets
 - $log(\varphi)$ bits to represent φ frequency offsets
 - Configurations for all nodes concatenated
 - Phase and frequency offsets enumerated in ascending order
 - Neighbourhood: Gray encoded bit sequence to respect neighbourhood similarities

- Fitness function
 - Receiver estimates synchronisation quality of

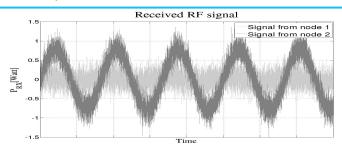
$$\zeta_{\mathsf{sum}} = \Re\left(m(t)e^{j2\pi f_{\mathsf{c}}t}\sum_{i=1}^{n}\mathsf{RSS}_{i}e^{j(\gamma_{i}+\phi_{i}+\psi_{i})}\right)$$

- SNR
- Numeric distance
- One bit feedback?



- Binary feedback
 - Minimum transmission load
 - Can be invested into higher redundancy schemes
 - Reduced information at source nodes
 - No adaptive operation
 - Less advanced optimisation schemes
 - No estimation of optimisation progress

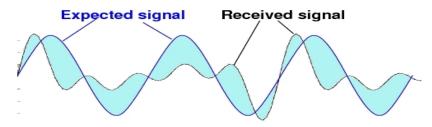
Analysis of the problem scenario



Fitness estimated by SNR:

- Calculate SNR of received sum signal
- Received signal strength above noise power
- Higher SNR interpreted as improved synchronisation quality
- Optimisation aim: Minimum required SNR

Analysis of the problem scenario



Fitness estimated by simple distance:

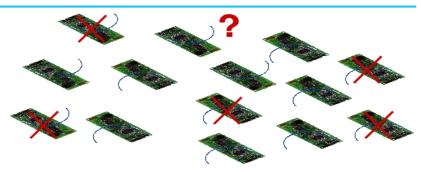
- Calculate surface between ζ_{opt} and ζ_{sum}
- Smaller surface → better synchronisation quality
- Optimum signal:

$$\zeta_{\mathsf{opt}} = \Re\left(m(t)\mathsf{RSS}_{\mathsf{opt}}e^{j(2\pi f_c t + \gamma_{\mathsf{opt}} + \phi_{\mathsf{opt}} + \psi_{\mathsf{opt}})}\right)$$

$$\zeta_{\text{opt}} = \Re\left(m(t)\mathsf{RSS}_{\text{opt}}e^{j(2\pi f_c t + \gamma_{\text{opt}} + \phi_{\text{opt}} + \psi_{\text{opt}})}\right)$$

- Transmit sequence m(t) (preconditioned)
- Transmit frequency f_c (preconditioned)
- Average transmit power P_{avg} (preconditioned)
- Gain G_i, G_{receiver} (preconditioned)
- Distance d to network (Estimated by RTT)
- Number of transmitting nodes $n \rightarrow ???$
- $RSS_{opt} = n \cdot \left(P_{avg} \cdot \left(\frac{\lambda}{2\pi \cdot d} \right)^2 \cdot G_i \cdot G_{receiver} \right)$

Analysis of the problem scenario



Estimate the count of transmitting nodes:

- Possible to estimate count of transmitting nodes
- From superimposed signal of simultaneously transmitting nodes¹

A.Krohn, Superimposed Radio Signals for Wireless Sensor Networks, PhD thesis, 2007

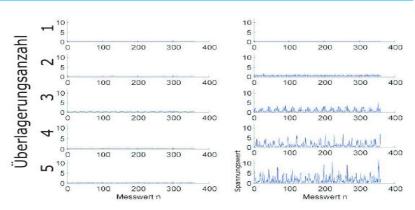
an Sigg Collaborative transmission in wireless sensor networks

Analysis of the problem scenario

Estimate the count of transmitting nodes ²

² A.Krohn, Superimposed Radio Signals for Wireless Sensor Networks, PhD thesis, 2007 Stephan Sigg Collaborative transmission in wireless sensor networks

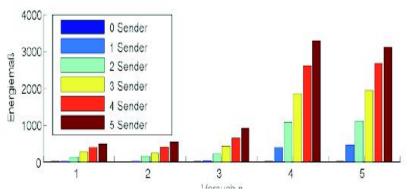
Analysis of the problem scenario



Estimate the count of transmitting nodes ³

³ A.Krohn, Superimposed Radio Signals for Wireless Sensor Networks, PhD thesis, 2007 Stephan Sigr Collaborative transmission in wireless sensor networks

Analysis of the problem scenario



Estimate the count of transmitting nodes ⁴

⁴ A.Krohn, Superimposed Radio Signals for Wireless Sensor Networks, PhD thesis, 2007 Stephan Sigg Collaborative transmission in wireless sensor networks

Analysis of the problem scenario

2	=
1	J
١	1
2	=
<	ζ
0	U
c	Ē
7	5
Ξ	Ė
2	Ξ
-	5
:0	J
U	ñ
+	ر
п	π.

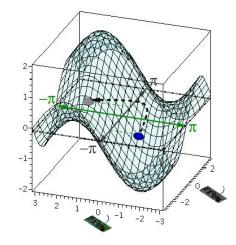
Geschätzte Anzahl

	0	1	2	3	4	5
0	287	0	0	0	0	0
1	0	327	3	0	0	0
2	0	0	330	0	0	0
3	0	0	32	321	14	19
4	0	0	11	69	211	124
5	0	0	0	17	39	220

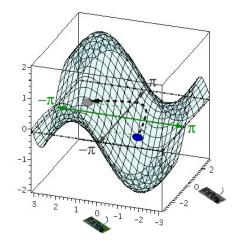
Estimate the count of transmitting nodes ⁵

 $^{^{5}}$ A.Krohn, Superimposed Radio Signals for Wireless Sensor Networks, PhD thesis, 2007 Collaborative transmission in wireless sensor networks

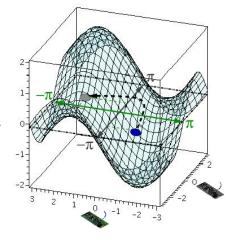
- Search space
 - Optimisation performance dependent on search space
 - Global or local optima?



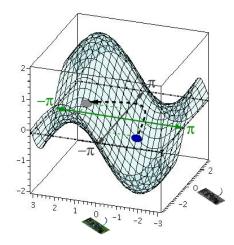
- Search space
 - Feedback function not unimodal
 - In two global optima, carrier signals are shifted by fixed amount
 - Fitness function weak multimodal
 - Many global optima
 - No local optima



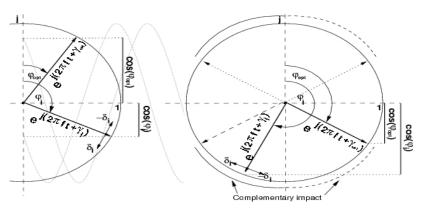
- Search space
 - Identical transmit frequencies
 - Distinct transmit frequencies



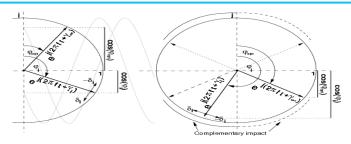
- Identical transmit frequencies: $e^{j(2\pi ft + \gamma_i)}$; $\forall i \in \{1, \dots, n\}$
 - Local optimum: \exists search point $s_{\overline{c}} \neq s_{\text{opt}}$ with
 - All small phase modulations
 decrease fitness value
 - Smallest possible modification: Single carrier signal altered



Analysis of the problem scenario

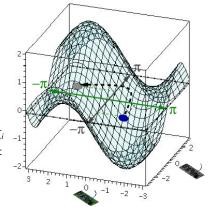


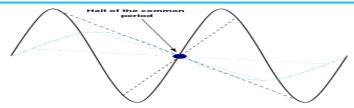
• Fitness dependent on distance $|\cos(\varphi_{\text{opt}}) - \cos(\varphi_i)|$



- Compared to sopt
 - No configuration short of the optimum configuration s_i = s_{opt} exists
 - For which distance is increased for phase offset δ_i
 - regardless of the sign of δ_i
- No local optima

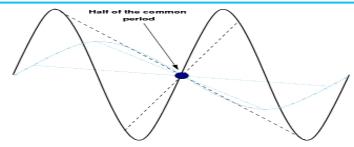
- Distinct transmit frequencies: $e^{j(2\pi f_i t + \gamma_i)}; \forall i \in \{1, \dots, n\}$
 - Consider phase offset between two signals:
 - Modified signal component ζ_i
 - Nearest global optimum ζ_{opt}





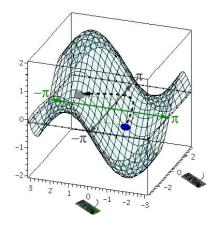
- Distinct transmit frequencies: $e^{j(2\pi f_i t + \gamma_i)}$; $\forall i \in \{1, \dots, n\}$
 - Feedback function not affected by phase modifications only
 - ullet Periodic function: Reflection in half of common period Φ
 - For every positive contribution also negative contribution

$$\begin{array}{ll} & e^{j(2\pi(f_1)t \mod \varPhi + \gamma_1)} - e^{j(2\pi ft \mod \varPhi)} \\ = & - \left(e^{j(2\pi(f_1)t' \mod \varPhi + \gamma_1)} - e^{j(2\pi ft' \mod \varPhi)} \right) \end{array}$$



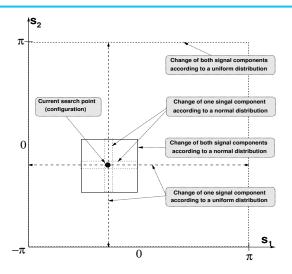
- Distinct transmit frequencies: $e^{j(2\pi f_i t + \gamma_i)}$; $\forall i \in \{1, \dots, n\}$
 - signal quality is not affected by phase adaptations when frequencies are unsynchronised
 - without frequency synchronisation, phase synchronisation alone is useless in order to improve the signal quality
- In both cases no local optima but several global optima

- Variation operators
 - Mutation
 - Crossover



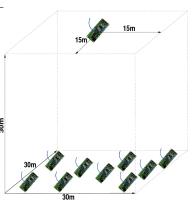
- Variation operators Mutation
 - Small modifications on individuals
 - Target individuals with small distance more probable
 - Phase modification of one or more carrier signals ζ_i
 - Design parameters:
 - Count of altered carrier signal components
 - Method for alteration of a single carrier

- Variation operators Mutation
 - Count of altered carrier signal components
 - Fixed number (how to implement in sensor network?)
 - Random number (Probability for each node)
 - Method for alteration of a single carrier
 - Neighbourhood bounds vs. Probability distribution
 - Uniform vs. Normal
 - Standard deviation σ (search neighbourhood)
 - Mean μ (search direction)



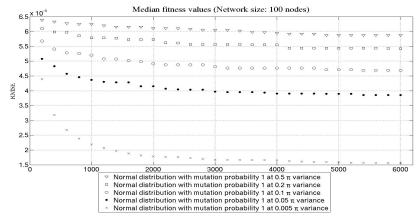
Analysis of the problem scenario

Property	Value
Node distribution area	30 <i>m</i> × 30 <i>m</i>
Location of the receiver	(15m, 15m, 30m)
Mobility	stationary nodes
Base band frequency	$f_{base} = 2.4 \text{ GHz}$
Transmission power of nodes	$P_{tx}=1 \text{ mW}$
Gain of the transmit antenna	$G_{tx} = 0 \text{ dB}$
Gain of the receive antenna	$G_{rx} = 0 \text{ dB}$
Iterations per simulations	6000
Identical simulation runs	10
Random noise power	−103 dBm
Pathloss calculation (P_{rx})	$P_{tx} \left(\frac{\lambda}{2\pi d} \right)^2 G_{tx} G_{rz}$



Variation operators – Mutation – example

Analysis of the problem scenario



Variation operators – Mutation – example

- Variation operators Crossover
 - Not yet considered in the literature
 - ullet (1 + 1)-EA straightforward as it consides one individual at a time
 - Multiple individuals possible by
 - Simultaneous transmission on distinct transmit signals
 - 2 Time-shifted transmission of several individuals

- Summary
 - 1-bit feedback based phase synchronisation always converges⁶
 - We can now come to the same result:
 - No local optima in the search space
 - Algorithm does never accept worse points
 - But: What is the expected time to reach an optimum?

⁶R. Mudumbai, J. Hespanha, U. Madhow, G. Barriac: Distributed transmit beamforming using feedback control. IEEE Transactions on Information Theory (In review)

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Feedback based distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Outline

Feedback based distr. adaptive beamforming

- Analysis of the problem scenario
 - Individual representation
 - Fitness function
 - Search space
 - Variation operators
- Analysis of the convergence time
 - An upper bound on the synchronisation performance
 - A lower bound on the synchronisation performance
- Simulation and experimental results for the basic scenario
 - Impact of distinct parameter configurations
 - Impact of environmental parameters
 - Impact of algorithmic modifications

Analysis of the convergence time

Assumptions:

- Network of n nodes
- Each node changes the phase of its carrier signal with probability $\frac{1}{n}$
- Carrier phase altered uniformly at random from $[0,2\pi]$
- Feedback function $\mathcal{F}: \zeta^*_{\mathsf{sum}} \to \mathbb{R}$ maps

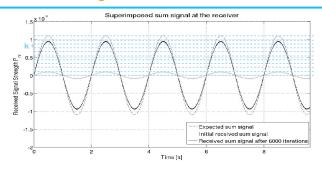
$$\zeta_{\mathsf{sum}} = \Re\left(m(t)e^{j2\pi f_c t}\sum_{i=1}^n \mathsf{RSS}_i e^{j(\gamma_i + \phi_i + \psi_i)}\right)$$

to a real-valued fitness score.

Possible feedback:

$$\mathcal{F}\left(\zeta_{\mathsf{sum}}\right) = \int_{t=0}^{2\pi} \left| \zeta_{\mathsf{sum}} - \zeta_{\mathsf{opt}} \right|$$

Analysis of the convergence time



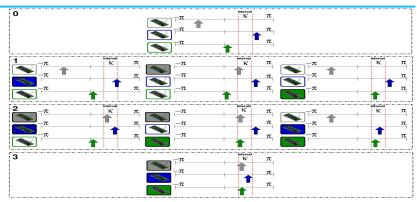
Optimisation aim:

- Achieve maximum relative phase offset of $\frac{2\pi}{k}$
- Between any two carrier signals
- For arbitrary k
- Divide phase space into k intervals of width $\frac{2\pi}{k}$

Analysis of the convergence time

- An upper bound on the synchronisation performance
 - Upper bound by method of fitness based partitions
 - Value of fitness function increases with number of carrier signals ζ_i that share same interval for phase offset γ_i
 - Assume, that $\kappa \in [1, k]$ is interval with most carrier phases
 - Worse fitness values are not accepted
 - Count iterations required for all carrier signals to change to interval κ
 - Note: We disregard positive possibilities to reach any other optimum
 - Possible since only upper bound is calculated

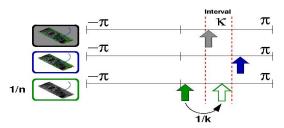
Analysis of the convergence time



Divide values of the fitness function into k partitions:

• L_1, \ldots, L_n , depending on the count of carrier signals with phase offset in κ

Analysis of the convergence time



Divide values of the fitness function into k partitions:

- Probability to adapt phase to specific interval: $\frac{1}{k}$
- Probability to reach at least to next partition

$$\frac{1}{k}\cdot(n-i)\cdot\frac{1}{n}$$

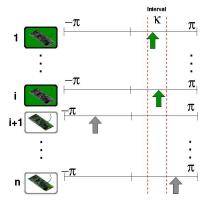
Analysis of the convergence time

• In partition i, one of

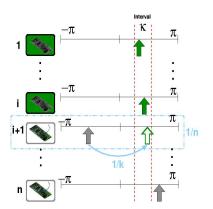
$$\left(\begin{array}{c} n-i\\1\end{array}\right)=n-i$$

carrier signals suffice to improve the fitness value

- this happens with probability $\frac{1}{n} \cdot \frac{1}{k}$
- At least one shall be correctly altered while all other n-1 signals remain unchanged



Analysis of the convergence time

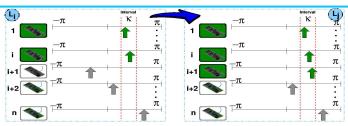


- Alter 1 carrier and keep n-1 signals
- This happens with probability

$$\begin{pmatrix} n-i \\ 1 \end{pmatrix} \cdot \frac{1}{n} \cdot \frac{1}{k} \cdot \left(1 - \frac{1}{n}\right)^{n-1}$$

$$= \left(\frac{n-i}{n \cdot k}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1}$$

Analysis of the convergence time



Since

$$\left(1-\frac{1}{n}\right)^n<\frac{1}{e}<\left(1-\frac{1}{n}\right)^{n-1}$$

• Probability that L_i is left for partition i, i > i:

$$P[L_i] \ge \frac{n-i}{n \cdot e \cdot k}$$

Analysis of the convergence time

• Expected number of iterations to change layer bounded from above by $P[L_i]^{-1}$:

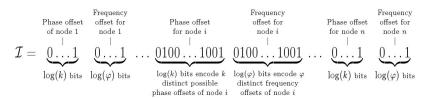
$$E[T_{\mathcal{P}}] \leq \sum_{i=0}^{n-1} \frac{e \cdot n \cdot k}{n-i}$$

$$= e \cdot n \cdot k \cdot \sum_{i=1}^{n} \frac{1}{i}$$

$$< e \cdot n \cdot k \cdot (\ln(n) + 1)$$

$$= O(n \cdot k \cdot \log n)$$

Analysis of the convergence time



- A lower bound on the synchronisation performance
 - We utilise the method of the expected progress
 - After initialisation, phases of carrier signals are identically and independently distributed.
 - Each bit in the binary representation of search point s_{ζ} has equal probability to be 1 or 0.

Analysis of the convergence time

																	\sum
$\mathcal{I}_i =$	1	0	1	1	0	1	1	1	1	0	1	1	0	1	1	1	
${\cal I}_i = \ {\cal I}_{ m opt} =$	1	0	1	0	1	1	0	1	1	0	1	0	1	1	0	1	
$h(\mathcal{I}_i, \mathcal{I}_{ ext{opt}}) =$	0	0	0	1	1	0	1	0	0	0	0	1	1	0	1	0	6

• Probability to start with hamming distance $h(s_{\text{opt}}, s_{\zeta}) \leq I$; $I \ll n \cdot \log(k)$ to global optima s_{opt} at most

$$P[h(s_{\text{opt}}, s_{\zeta}) \leq I] = \sum_{i=0}^{I} \binom{n \cdot \log(k)}{n \cdot \log(k) - i} \cdot \frac{k}{2^{n \cdot \log(k) - i}}$$

$$\leq \frac{(n \cdot \log(k))^{I+2}}{2^{n \cdot \log(k) - I}}$$

Analysis of the convergence time

																		\sum
	$\mathcal{I}_i =$	1	0	1	1	0	1	1	1	1	0	1	1	0	1	1	1	
	$egin{aligned} \mathcal{I}_i = \ \mathcal{I}_{ ext{opt}} = \end{aligned}$	1	O	1	O	1	1	O	1	1	O	1	O	1	1	O	1	,
7	$n(\mathcal{I}_i, \mathcal{I}_{ ext{opt}}) = 0$	0	0	0	1	1	0	1	0	0	0	0	1	1	0	1	0	6

$$P[h(s_{\text{opt}}, s_{\zeta}) \le I] \le \frac{(n \cdot \log(k))^{l+2}}{2^{n \cdot \log(k) - I}}$$

• Count of configurations with *i* bit errors to s_{opt}:

$$\left(\begin{array}{c} n \cdot \log(k) \\ n \cdot \log(k) - i \end{array}\right)$$

- Probability for all these bits to be correct: $\frac{1}{2^{n \cdot \log(k) i}}$
- Count of global optima: k

Analysis of the convergence time

$$\mathcal{I} = \underbrace{0 \dots 1}_{\text{log}(k) \text{ bits}} \underbrace{\log(\varphi) \text{ bits}}_{\text{offset for of seeks offset of of seeks of seeks}}^{\text{Frequency}} \underbrace{0 \text{ fiset for phase offset of for node } i}_{\text{phase offset of node } i} \underbrace{0 \dots 1}_{\text{phase offset of of node } i} \underbrace{0 \dots 1}_{\text{phase offset of node } i} \underbrace{0 \dots 1}_{\text{phase o$$

$$P[h(s_{\text{opt}}, s_{\zeta}) \leq I] = \sum_{i=0}^{I} \binom{n \cdot \log(k)}{n \cdot \log(k) - i} \cdot \frac{k}{2^{n \cdot \log(k) - i}}$$

$$\leq \frac{(n \cdot \log(k))^{I+2}}{2^{n \cdot \log(k) - I}}$$

• This means that with high probability (w.h.p.) the hamming distance to the nearest global optimum is at least /.

Analysis of the convergence time

- Use method of expected progress to calculate lower bound:
- (s_{ζ}, t) denotes that s_{ζ} is achieved after t iterations
- Assume progress measure $\Lambda: \mathbb{B}^{n \cdot \log(k)} o \mathbb{R}_0^+$
- $\Lambda(s_{\zeta}, t) < \Delta$: Global optimum not found in first t iterations
- ullet For every $t\in\mathbb{N}$ we have

$$E[T_{\mathcal{P}}] \geq t \cdot P[T_{\mathcal{P}} > t]$$

$$= t \cdot P[\Lambda(s_{\zeta}, t) < \Delta]$$

$$= t \cdot (1 - P[\Lambda(s_{\zeta}, t) \geq \Delta])$$

Analysis of the convergence time

$$E[T_{\mathcal{P}}] \geq t \cdot (1 - P[\Lambda(s_{\zeta}, t) \geq \Delta])$$

• With the help of the Markov-inequality we obtain

$$P[\Lambda(s_{\zeta},t)\geq \Delta]\leq \frac{E[\Lambda(s_{\zeta},t)]}{\Lambda}$$

and therefore

$$E[T_{\mathcal{P}}] \geq t \cdot \left(1 - \frac{E[\Lambda(s_{\zeta}, t)]}{\Delta}\right)$$

Obtain lower bound by providing expected progress after t iterations

Analysis of the convergence time

Probability for I bits to correctly flip at most

$$\left(1 - \frac{1}{n \cdot \log(k)}\right)^{n \cdot \log(k) - l} \cdot \left(\frac{1}{n \cdot \log(k)}\right)^{l} \le \frac{1}{(n \cdot \log(k))^{l}}$$

Probability that no correct but remaining / bits flip:

$$\left(1 - \frac{1}{n \cdot \log(k)}\right)^{n \cdot \log(k) - l}$$

- I bits mutate with probability $\left(\frac{1}{n \cdot \log(k)}\right)^I$
- Expected progress in one iteration:

$$E[\Lambda(s_{\zeta},t),\Lambda(s_{\zeta'},t+1)] \leq \sum_{i=1}^{l} \frac{i}{(n \cdot \log(k))^{i}} < \frac{2}{n \cdot \log(k)}$$

• Expected progress in t iterations: $\leq \frac{2t}{n \cdot \log(k)}$

Analysis of the convergence time

- Choose $t = \frac{n \cdot \log(k) \cdot \Delta}{4} 1$
- Double of expected progress still smaller than Δ .
- With Markov inequality: Progress not achieved with prob. $\frac{1}{2}$.
- Expected optimisation time bounded from below by

$$E[T_{\mathcal{P}}] \geq t \cdot \left(1 - \frac{E[\Lambda(s_{\zeta}, t)]}{\Delta}\right)$$

$$\geq \frac{n \cdot \log(k) \cdot \Delta}{4} \cdot \left(1 - \frac{\frac{2 \cdot n \cdot \log(k)}{4 \cdot n \cdot \log(k)} \cdot \Delta}{\Delta}\right)$$

$$= \Omega(n \cdot \log(k) \cdot \Delta)$$

• With $\Delta = k \cdot \frac{\log(n)}{\log(k)}$: Same order as upper bound:

$$E[T_{\mathcal{P}}] = \Theta(n \cdot k \cdot \log(n))$$

Overview and Structure

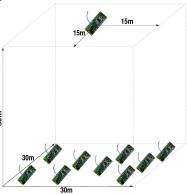
- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Feedback based distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Simulation and experimental results
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

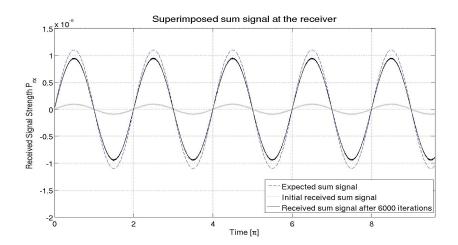
Outline

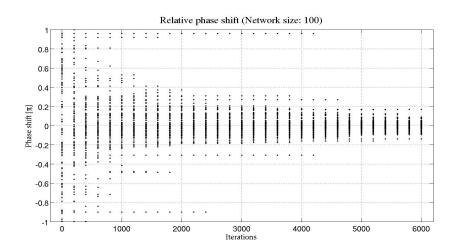
Feedback based distr. adaptive beamforming

- Analysis of the problem scenario
 - Individual representation
 - Fitness function
 - Search space
 - Variation operators
- Analysis of the convergence time
 - An upper bound on the synchronisation performance
 - A lower bound on the synchronisation performance
- Simulation and experimental results for the basic scenario
 - Impact of distinct parameter configurations
 - Impact of environmental parameters
 - Impact of algorithmic modifications

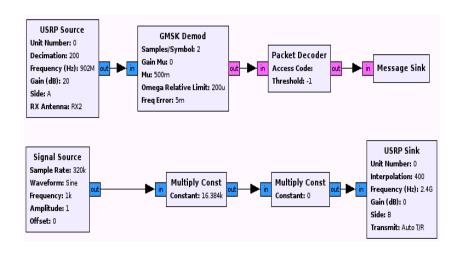
Property	Value
Node distribution area	30 <i>m</i> × 30 <i>m</i>
Location of the receiver	(15m, 15m, 30m)
Mobility	stationary nodes
Base band frequency	$f_{base} = 2.4 \text{ GHz}$
Transmission power of nodes	$P_{tx}=1 \; mW$
Gain of the transmit antenna	$G_{tx}=0 \text{ dB}$
Gain of the receive antenna	$G_{rx} = 0 \text{ dB}$
Iterations per simulations	6000 ⁸
Identical simulation runs	10
Random noise power	−103 dBm
Pathloss calculation (P_{rx})	$P_{tx}\left(\frac{\lambda}{2\pi d}\right)^2 G_{tx}G_{rx}$

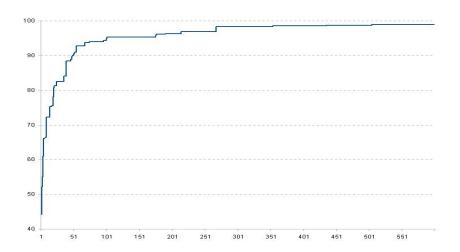




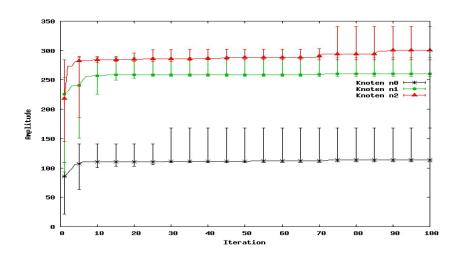


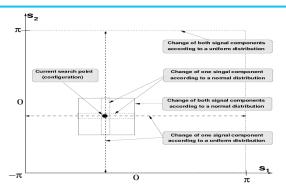
- Experiment with USRP software radios
 - Software: GNURadio
 - Processing, analysis and visualisation of RF signals
 - Graphical assembly of Signal flow graph





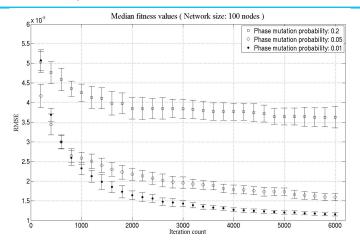
	Experiment 1	Experiment 2
Sender	4	3
Mobility	stationary	stationary
Distance to receiver [m]	≈ 0.75	\approx 4
Separation of TX antennas [m]	≈ 0.21	≈ 0.3
Transmit RF Frequency [MHz]	$f_{TX} = 2400$	$f_{TX} = 27$
Receive RF Frequency [MHz]	$f_{RX} = 902$	$f_{RX} = 902$
Gain of receive antenna [dBi]	$G_{RX}=3$	$G_{RX}=3$
Gain of transmit antenna [dBi]	$G_{TX}=3$	$G_{TX} = 1.5$
Iterations per experiment	500	200
Identical experiments	14	10
Median gain (P_{RX}) [dB]	2.19	3.72





- Impact of distinct optimisation parameters
 - Uniformly distributed phase offset
 - distributed phase offset
 - Probability for individual nodes to alter their phase

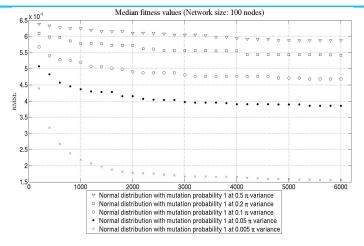
Simulation and experimental results



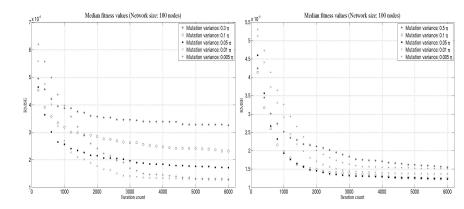
 Uniformly distributed phase offset – Impact of the mutation probability

- Uniformly distributed phase offset Impact of the mutation probability
 - Small mutation probability beneficial
 - Small steps in the search space
 - Higher mutation probability leads to better performance at the start of the synchronisation
 - Best: One node changes phase offset on average in one iteration

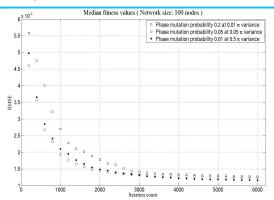
Simulation and experimental results



Normal distributed phase offset – Impact of the mutation variance



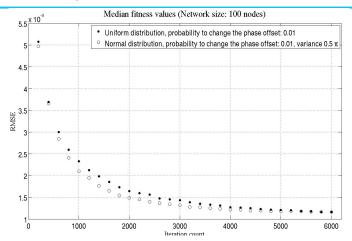
- Normal distributed phase offset Impact of the mutation variance
 - Optimisation performance degenerates when variance too small



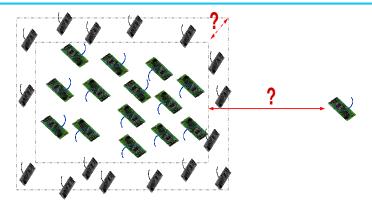
- Normal distributed phase offset Impact of the mutation variance
 - Optimum variance dependent on mutation probability
 - Small mutation probabilities generally beneficial

- Normal distributed phase offset Impact of the mutation variance
 - Small variance beneficial
 - Small steps in the search space
 - Higher variance leads to better performance at the start of the synchronisation
 - But: When variance too small, optimisation performance degenerates
 - Best variance dependent on mutation probability
- Performance of best configuration similar for uniform and normal distributed phase alteration process.

Simulation and experimental results

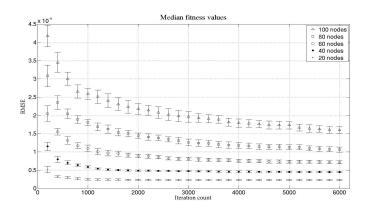


 Performance of best configuration similar for uniform and normal distributed phase alteration process.

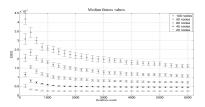


- Impact of environmental parameters
 - Network size
 - Distance between receiver and network

Simulation and experimental results

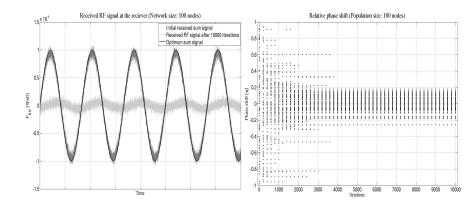


Impact of the network size



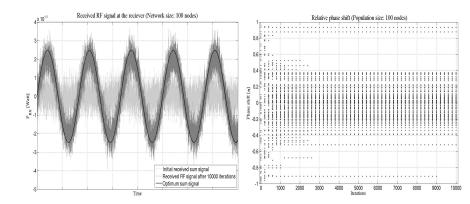
- Impact of the network size
 - Smaller network size results in faster synchronisation performance
 - RMSE decreases as maximum distance between received and optimum signal decreased
 - Optimum level reached earlier for smaller network sizes

Simulation and experimental results



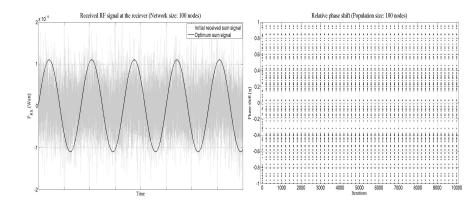
Distance between receiver and network – 100m

Simulation and experimental results

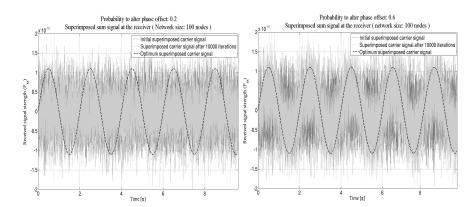


Distance between receiver and network – 200m

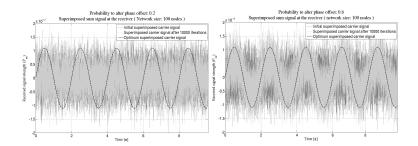
Simulation and experimental results



Distance between receiver and network – 300m



- Distance between receiver and network 300m.
 - Improved synchronisation quality with increased mutation probability



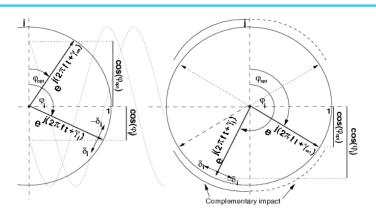
- Impact of the transmission distance
 - Synchronisation performance and quality decrease with increasing distance
 - With higher relative noise figure, an increased mutation probability is beneficial

- Impact of algorithmic modifications
 - Reelection of unsuccessful nodes
 - Reelection of successful nodes
 - Preconfigured nodes

- Reelection of unsuccessful nodes⁷
 - Information is lost when nodes discard carrier phases due to worse feedback
 - On average: Fitness decreases on every second iteration
 - Performance improvement of factor 2

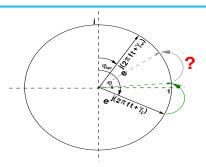
⁷ J.A. Bucklew, W.A. Sethares: Convergence of a class of decentralised beamforming algorithms. IEEE Transactions on Signal Processing 56(6) (2008)

Simulation and experimental results



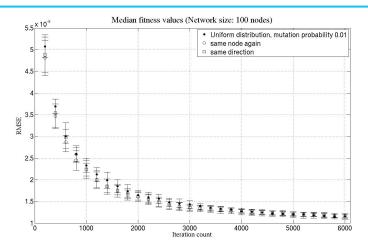
Reelection of unsuccessful nodes⁸

⁸ J.A. Bucklew, W.A. Sethares: Convergence of a class of decentralised beamforming algorithms. IEEE Transactions on Signal Processing 56(6) (2008)

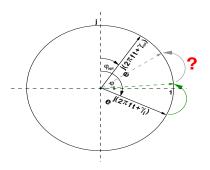


- Reelection of successful nodes
 - Random search
 - Whp: When node successful, fitness still not optimal
 - Possible implementations:
 - Utilise same node again
 - Apply same phase offset again

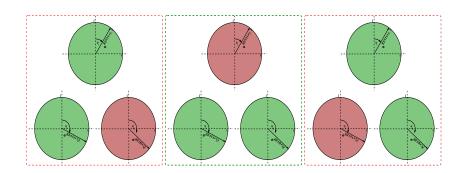
Simulation and experimental results



Reelection of successful nodes



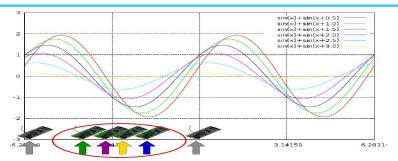
- Reelection of successful nodes
 - For both implementations performance improvement
 - Early in the synchronisation
 - Only small improvements



- Preconfigured nodes
 - When only a subset of nodes is required to reach the receiver
 - Choose those nodes that are best preconfigured
 - Start with better preconfigured nodes

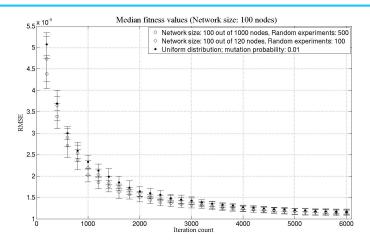
Scenario analysis and algorithmic improvement

Impact of the node choice

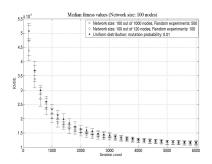


- Synchronisation performance dependent on number of participating nodes
- When not all nodes are required, utilise only a subset of nodes
- Optimum: Select subset of nodes that is best pre-synchronised

Simulation and experimental results



Preconfigured nodes



- Preconfigured nodes
 - Performance improved in all cases
 - Also when only 20% of all nodes are disregarded