Collaborative transmission in wireless sensor networks

Introduction to probability theory

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

May 5, 2010

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Outline

Basics of probability theory

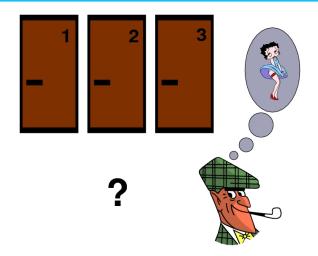
- Introduction
- Notation
- Calculation with probabilities
- The Markov inequality
- The Chernoff bound

Probability in everyday life

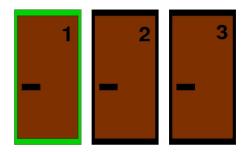
We are confronted with Probability constantly:

- Weather forecasts
- Quiz shows
- . . .

The treasure behind the doors

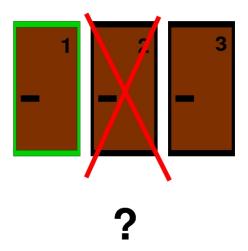


The treasure behind the doors



?

The treasure behind the doors



The treasure behind the doors

- What shall the candidate do?
 - Alter his decision?
 - Retain his decision?
 - Does it make a difference?

The treasure behind the doors

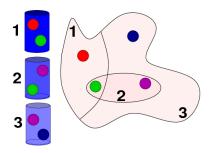
- What shall the candidate do?
 - Alter his decision?
 - Retain his decision?
 - Does it make a difference?
- We will consider the solution to this Problem in some minutes

Outline

- Introduction
- 2 Notation
- Calculation with probabilities
- The Markov inequality
- The Chernoff bound

Notation

Experiments, Events and sample points



- The results of experiments or observations are called events.
- Events are sets of sample points.
- The sample space is the set of all possible events.

Notation

Experiments, Events and sample points

What is the sample space for the experiment of tossing a coin two times?

Sample spaces

• Three distinct balls (a,b,c) are to be placed in three distinct bins.

		2									11		13
1	abc			ab	ab	С		С		ac	ac	b	
2		abc		С		ab	ab		С	b		ac	ac
3			abc		С		С	ab	ab		b		b
					•			'	, i			•	
14	15	16	17	18	19	20		22	23		25	26	27
b		bc	bc	a		a		a	а	b	b	С	С
	b ac	а		bc	bc		a	b	С	a	С	a	b
ac	ac		a		a	bc	bc	С	b	С	а	b	a

Sample spaces

• Suppose that the three balls are not distinguishable.

	Event	1	2	3	4	5	6	7	8	9	10
Bin											
1		***			**	**	*		*		*
2			***		*		**	**		*	*
3				***		*		*	**	**	*

Sample spaces

• Indistinguishable balls and indistinguishable bins

	Event	1	2	3
Bin				
1		***	**	*
2			*	*
3				*

Notation

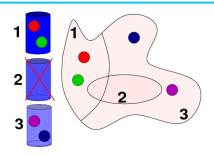
Probability space

Probability space

A probability space (Π, P) consists of a sample space Π and a probability measure $P:\Pi\to [0,1]$. This function satisfies the following conditions

- For each subset $\Pi' \subseteq \Pi$, $0 \le P(\Pi') \le 1$
- $P(\Pi) = 1$
- For each $\Pi' \subseteq \Pi$, $P(\Pi') = \sum_{\chi \in \Pi'} P(\chi)$

Impossible events



Impossible event

With $\chi=\{\}$ we denote the fact that event χ contains no sample points. It is impossible to observe event χ as an outcome of the experiment.

Probability of events

Probability of events

Given a sample space Π and an event $\chi \in \Pi$, the occurrence probability $P(\chi)$ of event χ is the sum probability of all sample points from χ :

$$P(\chi) = \sum_{x \in \chi} P(x). \tag{1}$$

Statistical independence

Independence

A collection of events χ_i that form the sample space Π is independent if for all subsets $\Pi' \subseteq \Pi$

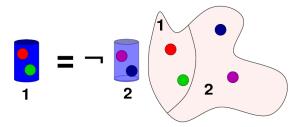
$$P\left(\bigcap_{\chi_i\in\Pi'}\chi_i\right)=\prod_{\chi_i\in\mathcal{S}}P(\chi_i). \tag{2}$$

- Statistical independence is required for many useful results in probability theory.
- Be careful to apply such results not in cases where independence between sample points is not provided.

Outline

- Introduction
- 2 Notation
- Calculation with probabilities
- The Markov inequality
- The Chernoff bound

Negation of events

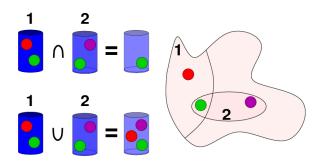


For every event χ there is an event $\neg \chi$ that is defined as ' χ does not occur'.

Negation of events

The event consisting of all sample points x with $x \notin \chi$ is the complementary event (or negation) of χ and is denoted by $\neg \chi$.

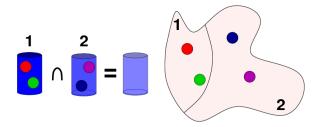
Subsumming events



$$\chi_1 \cap \chi_2 = \{ x | x \in \chi_1 \land x \in \chi_2 \} \tag{3}$$

$$\chi_1 \cup \chi_2 = \{x | x \in \chi_1 \lor x \in \chi_2\} \tag{4}$$

Mutual exclusive events



Mutual exclusive events

When the events χ_1 and χ_2 have no sample point x in common, the event $\chi_1 \cap \chi_2$ is impossible: $\chi_1 \cap \chi_2 = \{\}$. The events χ_1 and χ_2 are mutually exclusive.

Combining probabilities

• To compute the probability $P(\chi_1 \cup \chi_2)$ that either χ_1 or χ_2 or both occur we add the occurrence probabilities

$$P(\chi_1 \cup \chi_2) \le P(\chi_1) + P(\chi_2) \tag{5}$$

Combining probabilities

• To compute the probability $P(\chi_1 \cup \chi_2)$ that either χ_1 or χ_2 or both occur we add the occurrence probabilities

$$P(\chi_1 \cup \chi_2) \le P(\chi_1) + P(\chi_2) \tag{5}$$

 The '≤'-relation is correct since sample points might be contained in both events:

$$P(\chi_1 \cup \chi_2) = P(\chi_1) + P(\chi_2) - P(\chi_1 \cap \chi_2).$$
 (6)

Coin tosses

Question

What is the probability that in two coin tosses either head occurs first or tail occurs second?

Coin tosses

Events	coin tosses	probability	
head - head		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	
head - tail	20	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	
tail - head	2 CENT	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	
tail - tail	2 m 2 m	$\tfrac{1}{2}\cdot \tfrac{1}{2} = \tfrac{1}{4}$	

Coin tosses

Events	coin tosses	probability	sum probability	
head - head		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
head - tail	2 CLIND	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
tail - tail		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	$\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$	

Conditional probability

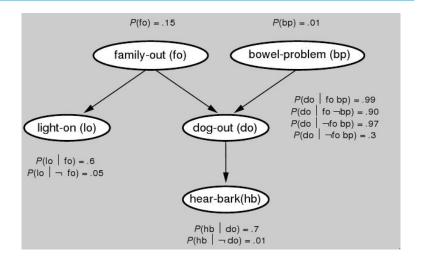
Conditional probability

The conditional probability of two events χ_1 and χ_2 with $P(\chi_2) > 0$ is denoted by $P(\chi_1|\chi_2)$ and is calculated by

$$\frac{P(\chi_1 \cap \chi_2)}{P(\chi_2)} \tag{7}$$

 $P(\chi_1|\chi_2)$ describes the probability that event χ_1 occurs in the presence of event χ_2 .

Conditional probability



Bayes Rule

With rewriting and some simple algebra we obtain the Bayes rule:

Bayes Rule

$$P(\chi_1|\chi_2) = \frac{P(\chi_2|\chi_1) \cdot P(\chi_1)}{\sum_i P(\chi_2|\chi_i) \cdot P(\chi_i)}.$$
 (8)

- This equation is useful in many statistical applications.
- With Bayes rule we can calculate $P(\chi_1|\chi_2)$ provided that we know $P(\chi_2|\chi_1)$ and $P(\chi_1)$.

Expectation

Expectation

The expectation of an event χ is defined as

$$E[\chi] = \sum_{\mathbf{x} \in \mathbb{R}} \mathbf{x} \cdot P(\chi = \mathbf{x}) \tag{9}$$

Expectation

Example

Consider the event χ of throwing a dice. The Sample space is given by $S_{\chi} = \{1, 2, 3, 4, 5, 6\}.$

What is the expectation of this event?

Expectation

Example

Consider the event χ of throwing a dice. The Sample space is given by $S_{\chi} = \{1, 2, 3, 4, 5, 6\}.$

What is the expectation of this event?

• The expectation of this event is

$$E[\chi] = \frac{1}{6} \cdot (1 + 2 + 3 + 4 + 5 + 6) = 3.5$$
 (10)

Calculation with expectations

Linearity of expectation

For any two random variables χ_1 and χ_2 ,

$$E[\chi_1 + \chi_2] = E[\chi_1] + E[\chi_2]. \tag{11}$$

Multiplying expectations

For an independent random variables χ_1 and χ_2 ,

$$E[\chi_1 \cdot \chi_2] = E[\chi_1] \cdot E[\chi_2]. \tag{12}$$

Law of large numbers

Law of large numbers

Let $\{\overline{\chi}\}$ be a sequence of mutually independent random variables with a common distribution. If the expectation $E[\overline{\chi}]$ exists, then for every $\varepsilon>0$ and $n\to\infty$

$$P\left\{\left|\frac{\chi_1+\cdots+\chi_n}{n}-E[\overline{\chi}]\right|>\varepsilon\right\}\to0\tag{13}$$

• Probability that the average S_n/n will differ from expectation by less than ε tends to one.

Variance

Variance

The variance of a random variable χ is defined as

$$var[\chi] = E[(\chi - E[\chi])^2]. \tag{14}$$

Calculation with variance

Add variances

For any independent random variables χ_1 and χ_2

$$var[\chi_1 + \chi_2] = var[\chi_1] + var[\chi_2]. \tag{15}$$

Multiplying variances

For any random variable χ and any $c \in \mathbb{R}$,

$$var[c\chi] = c^2 var[\chi]. \tag{16}$$

The Markov inequality

Estimate the deviation of an event from its expectation

Markov inequality

Let (Π, P) be a probability space and $x : \Pi \to \mathbb{R}^+$ a non-negative random variable. For $t \in \mathbb{R}^*$ the following inequality holds:

$$P(x \ge t \cdot E[x]) \le \frac{1}{t} \tag{17}$$

The Chernoff bound

Estimate the deviation of an event from its expectation

Chernoff bound

Let (Π, P) be a probability space and $x_1, x_2, \ldots, x_n : \Pi \to \{0, 1\}$ independent random variables with $0 < P(x_i = 1) < 1$ for all $i \in \{1, 2, \ldots, n\}$. For $X := \sum_{1 \le i \le n} x_i$ and $\delta > 0$ the following inequality holds:

$$P(X < (1+\delta)E[X]) < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{E[X]}$$
 (18)

and for all δ with $0 < \delta < 1$

$$P(X < (1 - \delta)E[X]) < e^{-\frac{E[X]\delta^2}{2}}$$
(19)

The treasure behind the doors

