Technische Universität Braunschweig
  • Study & Teaching
    • Beginning your Studies
      • Prospective Students
      • Degree Programmes
      • Application
      • Fit4TU
    • During your Studies
      • Freshmen-Hub
      • Term Dates
      • Information for Freshman
      • Practical Information
      • Additional Qualifications
      • Financing and Costs
      • Special Circumstances
      • Campus life
    • At the End of your Studies
      • Discontinuation and Credentials Certification
      • After graduation
      • Alumni
    • For Teaching Staff
      • Strategy, Offers and Information
      • Learning Management System Stud.IP
      • Team Teaching and Media Education
    • Contact
      • Student Advice Centre
      • Academic Advice Service
      • Admissions Office
  • Research
    • Research Profile
      • Core Research Areas
      • Clusters of Excellence
      • Research Projects
      • Research Centres
    • Early Stage Researchers
      • Promotion of early career scientists
      • PhD-Students
      • Postdocs
      • Junior research group leaders
      • Junior Professorship and Tenure-Track
      • Habilitation
      • Service Offers for Scientists
    • Research Data & Transparency
      • Transparency in Research
      • Research Data
      • Open Access Strategy
      • Digital Research Announcement
    • Research Funding
      • Research funding
    • Contact
      • Research Services
      • Academy for Graduates
  • International
    • International Students
      • Why Braunschweig?
      • Degree seeking students
      • Exchange Studies
      • Doctorate (PhD)
      • Refugee Students
      • Welcome Programme
      • TU Braunschweig Summer School
    • Scientists
      • Mobile Researchers at the TU Braunschweig
      • Research Services and European Office
    • Language and intercultural competence training
      • Learning German
      • Intercultural Communication
    • International Profile
      • Internationalisation
      • International Cooperation
    • International House
      • Information for first semester students
      • Contact
      • News and Events
      • Advisory Services
      • Location
      • About us
  • TU Braunschweig
    • Our Profile
      • Aims & Values
      • Regulations and Guidelines
      • Alliances & Partners
      • Facts & Figures
      • Our History
    • Career
      • Working at TU Braunschweig
      • Vacancies
    • Economy & Business
      • Knowledge and Technology Transfer
      • Entrepreneurship
    • General Public
      • Access to the University Library
    • Media Services
      • Communications and Press Service
      • Communications and Press Service
      • Film and photo permits
      • Advices for scientists
      • Topics and stories
    • Contact
      • General Contact
      • Getting here
  • Organisation
    • Presidency & Administration
      • Presidency
      • Designated Offices
      • Administration
      • Committees
    • Faculties
      • Carl-Friedrich-Gauß-Fakultät
      • Faculty of Life Sciences
      • Architecture, Civil Engineering and Environmental Sciences
      • Faculty of Mechanical Engineering
      • Fakultät für Elektrotechnik, Informationstechnik, Physik
      • Faculty of Humanities and Studies in Education
    • Institutes
      • Institutes from A to Z
    • Facilities
      • University Library
      • Gauß-IT-Zentrum
      • International House
      • Sports Centre
      • Facilities from A to Z
    • Equal Opportunity Office
      • Equal Opportunity Office
      • Family
      • Diversity for Students
  • Search
  • Quicklinks
    • People Search
    • Webmail
    • Campus map
    • CloudStorage
    • Messenger
    • Cafeteria
    • Courses
    • Stud.IP
    • Library Catalogue
    • IT Self-Service
    • Information Portal (employees)
    • Link Collection
    • DE
    • EN
    • IBR Twitter
    • IBR YouTube
    • Facebook
    • Twitter
    • Instagram
    • YouTube
    • LinkedIn
Menu
  • Technische Universität Braunschweig
  • Organisation
  • Faculties
  • Carl-Friedrich-Gauß-Fakultät
  • Institutes
  • Institute of Operating Systems and Computer Networks
Logo IBR
IBR Login
  • Institute of Operating Systems and Computer Networks
    • News
    • About us
      • Whole Team
      • Directions
      • Floor Plan
      • Projects
      • Publications
      • Software
      • News Archive
    • Connected and Mobile Systems
      • Team
      • Courses
      • Theses
      • Projects
      • Publications
      • Software
      • Datasets
    • Distributed Systems
      • Team
      • Courses
      • Theses
      • Projects
      • Publications
      • Software
    • Algorithms
      • Team
      • Courses
      • Theses
      • Projects
      • Publications
    • Microprocessor Lab
    • Education
      • Summer 2023
      • Winter 2022/2023
      • Summer 2022
      • Theses
    • Services
      • Library
      • Mailinglists
      • Webmail
      • Knowledge Base
      • Wiki
      • Account Management
    • Spin-Offs
      • Docoloc
      • AIPARK
      • Confidential Technologies
    • Research Cooperations
      • IST.hub

Seminar Algorithmik

Semester
Summer 2008
Module #INF-ALG-019
Event #INF-ALG-019
ProgrammesDiplom Informatik, Computer Science Master, Business Information Systems Master, Computer and Communication Systems Engineering Bachelor, Computer and Communication Systems Engineering Master, Electrical Engineering Bachelor, Electrical Engineering Master
IBR GroupALG (Prof. Fekete)
TypeSeminar
Lecturer
Photo
Prof. Dr. Sándor P. Fekete
Abteilungsleiter
s.fekete[[at]]tu-bs.de
+49 531 3913111
Room 335
Assistant
Photo
Dr. Christiane Schmidt
Ehemalige Wissenschaftliche Mitarbeiterin
Credits4
Hours0+2
Time & Place

Die Vorbesprechung findet am 09.04.2008 in Room 262A statt.

In einer Blockveranstaltung am 19.06.2008 ab 14 Uhr werden die Vorträge gehalten.

Die Abgabe der Ausarbeitungen muss bis zum 05.06.2008 erfolgen.

Certificates

Schriftliche Ausarbeitung und erfolgreicher Seminarvortrag. Die Note wird abhängig von der aktiven Teilnahme am Seminar sowie der Qualität des Vortrages und der Ausarbeitung bestimmt.

Vortrag: Ihr Vortrag sollte ca. 45-60 Minuten dauern. Das Medium ist frei, Sie können also Tafel, Overhead-Projektor, Beamer mit PowerPoint, Beamer mit PDF, oder was auch immer Sie sinnvoll finden, einsetzen. Natürlich sollten Sie bei exotischen Wünschen diese erstmal mit dem Betreuer klären, und unbedingt auch Programm-, Programmversions- und sonstige Kompatibilitätsfragen besprechen.

Ausarbeitung: Schreiben Sie eine Ausarbeitung, die Sie zwei Wochen vor dem Vortrag abgeben. Die Ausarbeitung soll ca. 5 Seiten lang sein. Generell interessiert uns aber, dass Sie da eine selbstverfasste Zusammenfassung eines selbst verstandenen Artikels abgeben. Mehr als zehn Seiten sollten es dennoch nicht werden, immerhin geht es hier um die Kunst des Zusammenfassens.

Content

Das Seminar Algorithmik im Sommersemester 2008 beschäftigt sich mit einer Reihe von aktuellen Artikeln, die relativ wenig an Vorwissen erfordern. Schwerpunkt sind diesmal geometrische Themen und solche, bei denen es um die Lösung von Problemen mit unvollständiger Information geht; letztere sind verwandt mit dem Inhalt der aktuellen Vorlesung "Online-Algorithmen". Zu tun hat man es dabei mit Problemen wie (1) dem Gassiführen eines Hundes an einer Leine beschränkter Länge, (2) dem Finden eine Kreis- oder (3) Ellipsenmitteplunkts, (4) dem Kauf einer BahnCard, (5) Bewegungsplanung für Roboter in geometrischer Umgebung oder (6) in Gittern, (7) die Koordination von Robotern, (8+9) dem Vergleich von Kurven, oder (10) der Exploration von Graphen. Unten beschrieben sind die Originalauszüge der Autoren zu den eigenen Artikeln, die jeweils auf englisch erschienen, aber von überschaubarer Länge sind.

Thema 4: The Bahncard Problem

In this paper, we generalize the Ski-Rental Problem to the Bahncard Problem which is an online problem of practical relevance for all travelers. The Bahncard is a railway pass of the Deutsche Bundesbahn (the German railway company) which entitles its holder to a 50% price reduction on nearly all train tickets. It costs 240DM, and it is valid for 12 months. Similar bus or railway passes can be found in many other countries. For the common traveler, the decision at which time to buy a Bahncard is a typical online problem, because she usually does not know when and where she will travel next. We show that the greedy algorithm applied by most travelers and clerks at ticket offices is not better in the worst case than the trivial algorithm which never buys a Bahncard. We present two optimal deterministic online algorithms, an optimistic one and a pessimistic one. We further give a lower bound for randomized online algorithms and present an algorithm which we conjecture to be optimal; a proof of the conjecture is given for a special case of the problem. It turns out that the optimal competitive ratio only depends on the price reduction factor (50% for the German Bahncard Problem), but does not depend on the price or validity period of a Bahncard.

Thema 6: Exploring Simple Grid Polygons

We investigate the online exploration problem of a shortsighted mobile robot moving in an unknown cellular room without obstacles. The robot has a very limited sensor; it can determine only which of the four cells adjacent to its current position are free and which are blocked, i. e., unaccessible for the robot. Therefore, the robot must enter a cell in order to explore it. The robot has to visit each cell and to return to the start. Our interest is in a short exploration tour, i. e., in keeping the number of multiple cell visits small. For abitrary environments without holes we provide a strategy producing tours of length S<=C+1/2E-3 where C denotes the number of cells—the area—, and E denotes the number of boundary edges—the perimeter—of the given environment. Further, we show that our strategy is competitive with a factor of 4/3 , and give a lower bound of 7/6 for our problem. This leaves a gap of only 1/6 between the lower and the upper bound

Thema 10: Exploring Unknown Undirected Graphs

A robot has to construct a complete map of an unknown environment modeled as an undirected connected graph. The task is to explore all nodes and edges of the graph using the minimum number of edge traversals. The penalty of an exploration algorithm running on a graph G = (V(G), E(G)) is the worst-case number of traversals in excess of the lower bound IE(G)I that it must perform in order to explore the entire graph. We give an exploration algorithm whose penalty is O(lV(G)l) for every graph. We also show that some natural exploration algorithms cannot achieve this efficiency.

last changed 2009-10-08, 17:12 by Martin Lorek

For All Visitors

Vacancies of TU Braunschweig
Career Service' Job Exchange 
Merchandising

For Students

Term Dates
Courses
Degree Programmes
Information for Freshman
TUCard

Internal Tools

Glossary (GER-EN)
Change your Personal Data

Contact

Technische Universität Braunschweig
Universitätsplatz 2
38106 Braunschweig

P. O. Box: 38092 Braunschweig
GERMANY

Phone: +49 (0) 531 391-0

Getting here

© Technische Universität Braunschweig
ImprintPrivacyAccessibility