mm-Wave Sensor and Communications Components at 60, 94, and 122 GHz in SiGe BiCMOS Technology

Workshop on “Wireless Multi-Gigabit-Systems”, Center for Informatics and Information Technology, TU Braunschweig, July 2st 2009

Christoph Scheytt
IHP Leibnizinstitut für Innovative Mikroelektronik GmbH
15236 Frankfurt (Oder), Germany
Outline

• Silicon technology progress and mm-wave design

• 1 Gbps 60 GHz transceiver (WIGWAM, BMBF)

• 2 – 6 Gbps 60 GHz transceiver (Easy-A, BMBF)

• 94 and 122 GHz components for mm-wave sensing (ISM, ZIM)

• Towards 100 Gbps Wireless Short-Range Communications (TeraCom, Leibniz Excellence Project)
Outline

• Silicon technology progress and mm-wave design
 • 1 Gbps 60 GHz transceiver (WIGWAM, BMBF)
 • 2 – 6 Gbps 60 GHz transceiver (Easy-A, BMBF)
 • 94 and 122 GHz components for mm-wave sensing (ISM, ZIM)
 • Towards 100 Gbps Wireless Short-Range Communications (TeraCom, Leibniz Excellence Project)
Silicon Technologies for Wireless & Broadband

- Advanced silicon (SiGe, CMOS) technologies feature:
 - f_T, f_{max} up to 200 ... 350 GHz,
 - $\text{NF}_{\text{min}} < 0.5 \text{ dB@1GHz}$,
 - $\text{NF}_{\text{min}} \sim 8 \text{ dB@100GHz}$

 Operating frequencies up to >100 GHz
 Digital & RF integration
 Simplified packaging
 Low die cost (< 0.2 USD / mm2)

⇒ Low-cost, reliable, high-frequency & broadband systems
Silicon technology progress and mm-wave design

Johnson Limit

\[\frac{E_{\text{max}} v_{\text{sat}}}{2\pi} = BV \times f_T = \text{const.} \]

- The product of transistor break voltage and \(f_T \) is constant
- It depends only on the semiconductor material (Si, SiGe, GaAs, InP)

⇒ Faster semiconductor technologies give higher RF gain but lower maximum PA power!

1 “Physical limitations on frequency and power parameters of transistors”, E. O. Johnson, RCA Review, June 1965; 163-177
Silicon technology progress and mm-wave design

Link Budget Considerations

- Free space loss is proportional to $1/f^2$
- From Johnson limit we could conclude that max. $P_{TX} \sim 1/f^2$

- Link budget

$$P_{RX} = P_{TX} G_{TX} G_{RX} \left(\frac{\lambda}{4\pi R} \right)^2$$

RX power proportional to $\sim 1/f^4$!
for given antenna gain, range, and Johnson limit.

There are some good physical reasons for the THz gap!
What About the Receiver NF?

- \(\text{NF}_{\text{min}} \): Minimum achievable amplifier noise figure

\[
\text{NF}_{\text{min}} \approx 1 + \frac{1}{\beta} + \sqrt{2g_m r_b} \sqrt{\frac{1}{\beta} + \left(\frac{f}{f_T}\right)^2}
\]

- A mm-wave LNA can be designed at roughly NFmin + 2 dB

\textit{The receiver NF benefits from scaling.}
Silicon technology progress and mm-wave design

Preliminary Conclusions and Remarks

• Semiconductor technology scaling allows us to have gain > 1 at ever higher frequencies

• Due to Johnson limit and free space path loss received power is reduced by $1/f^4$

• There are some good news, too: Johnson limit is increasing (at least for SiGe)
 Beam-forming
 mm-wave short-range communication and sensing applications
 …
Comparison of mm-Wave SiGe Production Technologies

IHP „workhorse“ for mmWave / 60 GHz

<table>
<thead>
<tr>
<th>Feature</th>
<th>IHP SG25H1</th>
<th>IHP SG13</th>
<th>ST BiCMOS9MW</th>
<th>IBM 8HP</th>
<th>Jazz SBC18HX</th>
<th>Infineon B7HF200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature size</td>
<td>0.25 µm</td>
<td>0.13 µm</td>
<td>0.12 µm</td>
<td>0.13 µm</td>
<td>0.18 µm</td>
<td>0.35 µm</td>
</tr>
<tr>
<td>Trench Isolation</td>
<td>Shallow</td>
<td>Shallow</td>
<td>Deep</td>
<td>Deep</td>
<td>Deep</td>
<td>Deep</td>
</tr>
<tr>
<td>MIMs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Poly resistors</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MOS varactors</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>N.A.</td>
</tr>
<tr>
<td>Top metal thickness</td>
<td>3 µm</td>
<td>3 µm</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Metallization</td>
<td>Al</td>
<td>Al</td>
<td>Cu</td>
<td>Cu</td>
<td>Al</td>
<td>Cu</td>
</tr>
<tr>
<td>npn beta</td>
<td>200</td>
<td>500</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>250</td>
</tr>
<tr>
<td>npn fT</td>
<td>190 GHz</td>
<td>250 GHz</td>
<td>230 GHz</td>
<td>207 GHz</td>
<td>155 GHz</td>
<td>200 GHz</td>
</tr>
<tr>
<td>npn fmax</td>
<td>220 GHz</td>
<td>300 GHz</td>
<td>280 GHz</td>
<td>285 GHz</td>
<td>200 GHz</td>
<td>275 GHz</td>
</tr>
<tr>
<td>npn BVCE0</td>
<td>1.9 V</td>
<td>1.7 V</td>
<td>1.6 V</td>
<td>1.7 V</td>
<td>2.2 V</td>
<td>1.7 V</td>
</tr>
<tr>
<td>npn BVCB0</td>
<td>4.5 V</td>
<td>5.5 V</td>
<td>N.A.</td>
<td>5.5 V</td>
<td>N.A.</td>
<td>5.8 V</td>
</tr>
<tr>
<td>dig. / RF CMOS</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Mask levels</td>
<td>25</td>
<td>34</td>
<td>N.A.</td>
<td>N.A.</td>
<td>39</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

1 N.A. = not available (published) parameter
Comparison of mm-Wave SiGe Production Technologies

New, 1st designs in 2008/2009, for >100 GHz

<table>
<thead>
<tr>
<th>Feature</th>
<th>IHP SG25H1</th>
<th>IHP SG13</th>
<th>ST BiCMOS9MW</th>
<th>IBM 8HP</th>
<th>Jazz SBC18HX</th>
<th>Infineon B7HF200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature size</td>
<td>0.25 µm</td>
<td>0.13 µm</td>
<td>0.12 µm</td>
<td>0.13 µm</td>
<td>0.18 µm</td>
<td>0.35 µm</td>
</tr>
<tr>
<td>Trench Isolation</td>
<td>Shallow</td>
<td>Shallow</td>
<td>Deep</td>
<td>Deep</td>
<td>Deep</td>
<td>Deep</td>
</tr>
<tr>
<td>MIMs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Poly resistors</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MOS varactors</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>N.A.</td>
</tr>
<tr>
<td>Top metal thickness</td>
<td>3 µm</td>
<td>3 µm</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Metallization</td>
<td>Al</td>
<td>Al</td>
<td>Cu</td>
<td>Cu</td>
<td>Al</td>
<td>Cu</td>
</tr>
<tr>
<td>npn beta</td>
<td>200</td>
<td>500</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>250</td>
</tr>
<tr>
<td>npn ft</td>
<td>190 GHz</td>
<td>250 GHz</td>
<td>230 GHz</td>
<td>207 GHz</td>
<td>155 GHz</td>
<td>200 GHz</td>
</tr>
<tr>
<td>npn fmax</td>
<td>220 GHz</td>
<td>300 GHz</td>
<td>280 GHz</td>
<td>285 GHz</td>
<td>200 GHz</td>
<td>275 GHz</td>
</tr>
<tr>
<td>npn BVCE0</td>
<td>1.9 V</td>
<td>1.7 V</td>
<td>1.6 V</td>
<td>1.7 V</td>
<td>2.2 V</td>
<td>1.7 V</td>
</tr>
<tr>
<td>npn BVCB0</td>
<td>4.5 V</td>
<td>5.5 V</td>
<td>N.A.</td>
<td>5.5 V</td>
<td>N.A.</td>
<td>5.8 V</td>
</tr>
<tr>
<td>dig. / RF CMOS</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Mask levels</td>
<td>25</td>
<td>34</td>
<td>N.A.</td>
<td>N.A.</td>
<td>39</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

1 N.A. = not available (published) parameter
Outline

• Silicon technology progress and mm-wave design

• 1 Gbps 60 GHz transceiver (WIGWAM, BMBF)

• 2 – 6 Gbps 60 GHz transceiver (Easy-A, BMBF)

• 94 and 122 GHz components for mm-wave sensing (ISM, ZIM)

• Towards 100 Gbps Wireless Short-Range Communications (TeraCom, Leibniz Excellence Project)
Why 60 GHz for Gbps communication?

- 3.5 to 7 GHz bandwidth world-wide => exceptionally high BW
- 40 dBm EIRP allowed in most regions => sufficient range
- Largely unused to date => low interference probability
- 60 GHz does not penetrate walls => security

60 GHz well suited for short-range (1…10 m) wireless communication
60 GHz Applications

- Standardization activities in IEEE 802.15, 802.11 & ECMA
- Applications
 - media streaming
 - data synchronisation
 - Wireless networking

Entertainment in aircrafts, buses, trains, cars

Unlicensed PtP microwave links
WIGWAM Project, Targets of IHP

- RF at 60 GHz
- Target data rate 1 Gbps
- 14*500 MHz channel scheme for realistic multi-user operation
- Eff. Channel BW ~400 MHz
- SiGe Frontend
- OFDM BB and Gbps MAC (FPGA)
60 GHz System

Wigwam System Demonstrator

60-GHz analog front-end
- 60-GHz RF Tx
- IF I/Q mod.
- 60-GHz RF Rx
- IF I/Q demod.

Digital baseband processor
- I/Q DAC
- OFDM Tx FPGA
- I/Q ADC
- OFDM Rx FPGA

MAC processor
- MAC FPGA (hardware accelerator)
- 32-bit MAC processor
- RAM + Flash
RF Frontend Architecture

- Super-Heterodyne
- IF at 5 GHz, LO at 56 GHz
- Image at 51 GHz (TX & RX)
60 GHz 1 Gbps RX

60 GHz RX IC¹

die area = 1.6 mm²

Prototype PCB w. integrated antenna

RX Figures

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA Gain</td>
<td>18 dB</td>
</tr>
<tr>
<td>LNA NF</td>
<td>6.8 dB</td>
</tr>
<tr>
<td>56 GHz PLL PN</td>
<td>-90 dBC @ 1 MHz</td>
</tr>
<tr>
<td>RX 1dB CP</td>
<td>-5 dBm</td>
</tr>
<tr>
<td>RX NF</td>
<td>7.3 dB</td>
</tr>
<tr>
<td>RX Power</td>
<td>736 mW</td>
</tr>
</tbody>
</table>

56 GHz PLL IC

PLL Figures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase noise</td>
<td>-90 dBc/Hz @ 1 MHz</td>
</tr>
<tr>
<td>BW</td>
<td>4.5 MHz</td>
</tr>
<tr>
<td>XTAL Freq.</td>
<td>109 MHz</td>
</tr>
<tr>
<td>PLL type</td>
<td>4th order, CP / passive LF</td>
</tr>
<tr>
<td>Power diss.</td>
<td>600 mW</td>
</tr>
</tbody>
</table>

“A Fully Integrated BiCMOS PLL for 60 GHz Wireless Applications“ W. Winkler, J. Borngräber, B. Heinemann, F. Herzel, ISSCC 2005

And: „60 GHz Transceiver System Design“ Y. Sun, Proc. of the European Microwave Week, 2007;
60 GHz PA w. Image Rejection

- PA is very critical component in 60 GHz WLAN
 - linear output power (P1dB)
 - gain vs. stability
- BV_{CBO} limits saturated and lin. output power (P1dB)
 - => critical for OFDM
- Passives & substrate coupling endanger stability

Results:
- Fully diff. design
- Power gain: 20 ... 33 dB
- Psat: 19 dBm
- P1dB: 13.5 ... 17.2 dBm
- PAE: 9 ... 10%
- Power: 600 ... 800 mW
60 GHz PA w. Image Rejection

S. Glisic, C. Scheytt: „A 17 dBm 1dBCP Selective High-Gain PA for 60 GHz Applications in SiGe” BCTM 2008, Monterey

Highest P1dB w. SiGe reported so far (!)
60 GHz 1 Gbps TX w. PA and Image Reception Filter

60 GHz Transmitter w. integrated PA and IR filter

- **Mixer**
- **Preamplifier**
- **Image-rejection Filter**
- **Power Amplifier**

5GHz Input → Mixer → Preamplifier → Image-rejection Filter → Power Amplifier → 60GHz Output

TX Figures

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>40 dB</td>
</tr>
<tr>
<td>P1dB (single-ended)</td>
<td>10.5 dB</td>
</tr>
<tr>
<td>Psat (single-ended)</td>
<td>14.9 dBm</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>better -40 dB @ 51 GHz</td>
</tr>
<tr>
<td>Power diss.</td>
<td>1.15 W</td>
</tr>
</tbody>
</table>

Prototype PCB w. antenna

- **1.8 x 1.4 mm²**

S. Glisic, C. Scheytt: „A Fully Integrated 60 GHz Transmitter Front-End with a PLL, an Image-rejection Filter and a PA in SiGe, ESSCIRC 2008, Edinburgh
60 GHz Transceiver in LTCC Package

- Package designed and fabricated by IMST and TU Ilmenau
- Integrated cavity antenna on backside
Outline

- Silicon technology progress and mm-wave design
- 1 Gbps 60 GHz transceiver (WIGWAM, BMBF)
- 2 – 6 Gbps 60 GHz transceiver (Easy-A, BMBF)
- 94 and 122 GHz components for mm-wave sensing (ISM, ZIM)
- Towards 100 Gbps Wireless Short-Range Communications (TeraCom, Leibniz Excellence Project)
Easy-A Project

- BMBF project
- 15 partners, 5 subcontractors, coordinated by IHP

- Two systems targeted
 - **VHR-E**: 2 to 6 Gbps data rate, up to 10m range (IEEE 802.15.3c)
 - **UHR-C**: Up to 10 Gbps, 1 m range

- Channel allocation for VHR-E:
 - 4 bands with each having BW of 2 GHz

![Diagram](image-url)
Easy-A RF Frontend Architecture

- 2 GHz BW -> higher IF required
- Sliding-IF transceiver (Atheros’ solution for 802.11a) chosen
- 48 GHz PLL, 12 GHz IF
- Image at 60GHz-24GHz = 36GHz is well suppressed by LNA / PA
- 1:4 division delivers accurate quadrature signals at 12GHz

Funded by BMBF
15 Partners, 5 Subcontractors
Start: 1.1.2008
Co-ordinated by IHP
Easy-A 48 GHz Synthesizer

- Fully-integrated PLL, tunable from 47.2 to 49.6 GHz
- Coarse and fine-tuning loop => reduced VCO input noise
- Novel resistive biasing => PLL dynamics invariant to tuning
- PN at 48 GHz: -98 dBc/Hz @ 1 MHz
- PN exceeds requirements for 16QAM OFDM mode in 802.15.3c

“A Fully Integrated 48-GHz Low-Noise PLL with a Constant Loop Bandwidth”,
Outline

• Silicon technology progress and mm-wave design

• 1 Gbps 60 GHz transceiver (WIGWAM, BMBF)

• 2 – 6 Gbps 60 GHz transceiver (Easy-A, BMBF)

• 94 and 122 GHz components for mm-wave sensing (ISM, ZIM)

• Towards 100 Gbps Wireless Short-Range Communications (TeraCom, Leibniz Excellence Project)
94 GHz LNA

Gain: 16.2 dB
NF: 10.6 dB
P1dB: -1 dB
Supply Volt.: 3.5 V
Pdiss: 61 mW
Technology: SG25H1

"94 GHz Amplifier in SiGe:C BiCMOS Technology", Wolfgang Winkler, Johannes Borngräber, Falk Korndörfer, Christoph Scheytt, European Microwave Week 2008
122 GHz Receiver in SiGe BiCMOS

122 GHz Radar Receiver in SiGe BiCMOS

- ISM band at 122.5 GHz w. BW of 1 GHz
- Radar-based distance, angle, speed, sensing
- Low-cost solutions in BiCMOS / CMOS possible with mm-Wave SoC approach
- Low-cost packaging
- Antenna in package

- Applications:
 - Commercial sensors (buildings, safety) (replacement of ultra-sonic, laser-based devices)
 - Industrial sensors (material characterisation, safety)
 - Security applications (body scanners)

Example of mm-wave package for 77 GHz radar (Source: HS Ulm)
122 GHz LNA in SiGe BiCMOS

122 GHz LNA\(^1\)

Transistor Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter Area</td>
<td>0.17 x 0.53 μm</td>
</tr>
<tr>
<td>Peak f\text{max}</td>
<td>255 GHz</td>
</tr>
<tr>
<td>Peak f\text{T}</td>
<td>315 GHz</td>
</tr>
<tr>
<td>BV\text{CBO}</td>
<td>1.8 V</td>
</tr>
<tr>
<td>BV\text{CEO}</td>
<td>5.6</td>
</tr>
<tr>
<td>β</td>
<td>600</td>
</tr>
</tbody>
</table>

\(^1\)“122 GHz LNA in SiGe Technology“, Wolfgang Winkler et al., accepted at ESSCIRC 2009
122 GHz LNA Measurement Results

Performance Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>13.5 dB @ 122 GHz</td>
</tr>
<tr>
<td>NF</td>
<td>9.6 dB @ 122 GHz</td>
</tr>
<tr>
<td>Supply Volt.</td>
<td>3.5 V</td>
</tr>
<tr>
<td>ICC</td>
<td>15 mA</td>
</tr>
</tbody>
</table>

Graphs

Gain vs. Frequency
- **m1**
 - freq = 122.0 Hz
 - LNA120GHz_27..Gain = 13.500

NF vs. Frequency
- **m2**
 - freq = 122.0 Hz
 - LNA120GHz_27..corrNoise = 9.590
122 GHz Receiver in SiGe BiCMOS

122 GHz Receiver

- 122 GHz LNA
- Subharmonic mixer with poly-phase filter
- 60 GHz oscillator with integrated frequency divider
- Interstage coupling w. transformers

1“122 GHz Receiver in SiGe Technology”, K.Schmalz et al., accepted at IEEE BCTM 2009
122 GHz Receiver in SiGe BiCMOS

- Optimum operating frequency 127 GHz -> needs some tweaking due to VCO frequency and optimum matching between LO and mixer shifted to higher frequency
- Future work: RX redesign and TX design
Outline

- Silicon technology progress and mm-wave design
- 1 Gbps 60 GHz transceiver (WIGWAM, BMBF)
- 2 – 6 Gbps 60 GHz transceiver (Easy-A, BMBF)
- 94 and 122 GHz components for mm-wave sensing (ISM, ZIM)
- Towards 100 Gbps Wireless Short-Range Communications (TeraCom, Leibniz Excellence Project)
Wireless Short Range Roadmap

- Flash (NVM) scaling exponentially
- NVM is driver for mobile wireless short links
- Wireless short range data rates have to increase exponentially\(^1\) (!)
- Technical solution for 100 Gbps and ~1m needed by 2015

\(^1\) Flash read/write time bottleneck has to be overcome
How Far Can We Get at 60 GHz?

- 5 GHz of BW at 60 GHz will be good for ~10 Gbps (single-user)

- Higher data rates?

 => 60 GHz MIMO could be solution

 => Or go to higher frequencies / higher BW beyond 100 GHz

Table: Modulation Formats and Data Rates

<table>
<thead>
<tr>
<th>Modulation Format</th>
<th>Spectral Efficiency [b/(s×Hz)]</th>
<th>FEC Code Rate</th>
<th>Bandwidth [GHz]</th>
<th>Decoded Data Rate [Gbps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>2</td>
<td>0.75</td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td>8-PSK</td>
<td>3</td>
<td>0.75</td>
<td>5</td>
<td>11.3</td>
</tr>
<tr>
<td>16-QAM</td>
<td>4</td>
<td>0.75</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>64-QAM</td>
<td>6</td>
<td>0.75</td>
<td>5</td>
<td>22.5</td>
</tr>
</tbody>
</table>
Spectral Efficiency for 50 to 100 Gbps Wireless

Using frequency band beyond 250 GHz for 100 Gbps ...

<table>
<thead>
<tr>
<th>Modulation Format</th>
<th>Spectral Efficiency ([b/(s \times Hz)])</th>
<th>FEC Code Rate</th>
<th>Bandwidth ([GHz])</th>
<th>Decoded Data Rate ([Gbps])</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>1</td>
<td>0,75</td>
<td>25 / 48</td>
<td>18.75 / 36</td>
</tr>
<tr>
<td>QPSK</td>
<td>2</td>
<td>0,75</td>
<td>25 / 48</td>
<td>37.5 / 72</td>
</tr>
<tr>
<td>8-PSK</td>
<td>3</td>
<td>0,75</td>
<td>25 / 48</td>
<td>56.25 / 108</td>
</tr>
<tr>
<td>16-QAM</td>
<td>4</td>
<td>0,75</td>
<td>25 / 48</td>
<td>75 / 144</td>
</tr>
</tbody>
</table>

... still spectral efficiency of > 3 ... 4 bits/s/Hz is needed.
ITRS f_T, f_{max} Roadmap on SiGe HBTs

"Manufacturing solutions are NOT known"

"Manufacturing solutions are known"
DOTFIVE Project

- Partners: ST, Infineon, IHP, IMEC
- Target: SiGe technology with fmax of 500 GHz
- With DOTFIVE European companies and institutes are trying to get ahead of ITRS roadmap
SiGe HBT Critical Parameters for mm-Wave Design

- Johnson law ($BV_{CEO} \cdot f_T = \text{const.}$) not valid anymore!
- New interpretation needed.
f_T, f_{max} vs. Operating Frequency

- Results beyond 60 GHz in 250 GHz SiGe Technology (IHP SG25H1):
 - 122 GHz RX Frontend w. NF 11 dB, gain >15 dB
 - 100 to 200 GHz fundamental frequency VCOs
 - 95 GHz Frequency Divider

 ⇒ RF Components demonstrated at >f_{max}/2

- 60 (and 77 GHz) Frontends implemented in SG25H1

 ⇒ Mature RF frontends demonstrated at f_{max}/3

- IHP & partners working towards 500 GHz SiGe HBT in DOTFIVE
- SiGe HBT f_T, f_{max} performance of > 800, 1000 GHz predicted1

250 to 300 GHz SiGe Frontend will be feasible!

1 Y. Shi and Goufu Niu, “2-D Analysis of Device Parasitics for 800/1000 GHz f_T/f_{\text{max}}$ SiGe HBT”, in Proceedings BCTM, pp. 252-255, 2005
Challenges for 100 Gbps Wireless Communications

- Semiconductor technology challenges
 - 500 GHz HBTs & process integration
 - Breakdown-voltage optimization

- RF / analog design challenges
 - Component / Frontend design
 - Beam-forming
 - ADC, DAC
 - Mixed-signal processing

- System design challenges
 - Baseband complexity, power diss.
 - ADC, DAC, BW, ENOB, clock jitter
 - Novel modulation schemes
 - MAC issues

- Packaging challenges
 - Low-cost
 - Antenna integration
 - Beam forming
 - Chip interfaces
 - BB interfaces / integration

⇒ Concurrent research is required to enable low-cost, highly-integrated, energy-efficient 50-100 Gbps wireless communication devices
Conclusion

• 60 GHz band offers BW for up to 10 Gbps wireless short-range communication or more.

• SiGe BiCMOS (and CMOS) technology very well suited for 60 GHz wireless communication frontends.

• 50 to 100 Gbps wireless short-range communication is driven by NVM capacity and high-resolution media applications

• Beyond 250 GHz abundant BW is available which could be used for wireless short-range communication.

• Silicon technology will enable low-cost single-chip RF frontends for such applications
Acknowledgements

- Thanks to:

 IHP circuit design dept., specifically
 Yaoming Sun, Frank Herzel, Srdjan Glisic, Klaus Schmalz, Chang-Soon Choi, Johannes Borngräber

 IHP system design dept.

 IHP technology dept.

 BMBF for funding of Wigwam / Easy-A project

 …

 today's audience!