Evaluation of the 6TiSCH Network Formation

Dario Fanucchi¹ Barbara Staehle² Rudi Knorr ^{1,3}

¹Department of Computer Science University of Augsburg, Germany

²Department of Computer Science University of Applied Sciences Konstanz, Germany

³Fraunhofer Institute for Embedded Systems and Communication Technologies, Munich, Germany

Industrial Wireless Sensor Networks (IWSNs)

Targeted applications: Process monitoring and control

Strict requirements:

- Reliability up to 99,999%
- Lifetime > 5 years
- Latency: tens of milliseconds

Main characteristics of a IWSN:

- mesh, multi-hop, lossy network
- harsh environment
- a gateway and up to 100 resource constrained nodes
- specific designed communication protocols

Industrial Wireless Sensor Networks (IWSNs)

Targeted applications: Process monitoring and control Strict requirements:

- Reliability up to 99,999%
- Lifetime > 5 years
- Latency: tens of milliseconds

Main characteristics of a IWSN:

- mesh, multi-hop, lossy network
- harsh environment
- a gateway and up to 100 resource constrained nodes
- specific designed communication protocols

Industrial Wireless Sensor Networks (IWSNs)

Targeted applications: Process monitoring and control Strict requirements:

- Reliability up to 99,999%
- Lifetime > 5 years
- Latency: tens of milliseconds

Main characteristics of a IWSN:

- mesh, multi-hop, lossy network
- harsh environment
- a gateway and up to 100 resource constrained nodes
- specific designed communication protocols

Applications								
CoAP (OSCORE)	6LoWPAN ND	RPL						
UDP ICMPv6								
IPv6								
6LoWPAN HC / 6LoRH HC								
6top (6TiSCH)								
IEEE Std 802.15.4 TSCH								
IEEE Std 802.15.4 PHY								

- Upper layers: IPv6-connectivity
 - 6LoWPAN, IPv6, CoAP etc.
 - RPL as distributed routing protocol
- Glueing together: 6top protocol proposed by *IETF 6TiSCH*
 - assignment of communication links
 - definition of bootstrapping procedures
- At the bottom: IEEE 802.15.4-2015
 - 2.4 GHz low-power radio
 - *MAC: Time Slotted Channel Hopping* for industrial performance

• Upper layers: IPv6-connectivity

- 6LoWPAN, IPv6, CoAP etc.
- RPL as distributed routing protocol
- Glueing together: 6top protocol proposed by *IETF 6TiSCH*
 - assignment of communication links
 - definition of bootstrapping procedures

• At the bottom: IEEE 802.15.4-2015

- 2.4 GHz low-power radio
- *MAC: Time Slotted Channel Hopping* for industrial performance

- Upper layers: IPv6-connectivity
 - 6LoWPAN, IPv6, CoAP etc.
 - RPL as distributed routing protocol

At the bottom: IEEE 802.15.4-2015

- 2.4 GHz low-power radio
- MAC: Time Slotted Channel Hopping for industrial performance

- Upper layers: IPv6-connectivity
 - 6LoWPAN, IPv6, CoAP etc.
 - RPL as distributed routing protocol
- Glueing together: 6top protocol proposed by *IETF 6TiSCH*
 - assignment of communication links
 - definition of bootstrapping procedures
- At the bottom: IEEE 802.15.4-2015
 - 2.4 GHz low-power radio
 - *MAC: Time Slotted Channel Hopping* for industrial performance

Scenario:

- Mesh, multi-hop network for industrial wireless
- 6TiSCH-Stack as IETF proposal for industrial IoT

Problem statement:

- Interplay of MAC and Routing protocols affects network performance
- Initial network formation is challenging

Our simulative study hightlights...

- why a blind adoption of IETF 6TiSCH proposal is risky
- how to tune the MAC and Routing protocol for a successful network formation (situation dependent)

Scenario:

- Mesh, multi-hop network for industrial wireless
- 6TiSCH-Stack as IETF proposal for industrial IoT

Problem statement:

- Interplay of MAC and Routing protocols affects network performance
- Initial network formation is challenging

Our simulative study hightlights...

- why a blind adoption of IETF 6TiSCH proposal is risky
- how to tune the MAC and Routing protocol for a successful network formation (situation dependent)

Scenario:

- Mesh, multi-hop network for industrial wireless
- 6TiSCH-Stack as IETF proposal for industrial IoT

Problem statement:

- Interplay of MAC and Routing protocols affects network performance
- Initial network formation is challenging

Our simulative study hightlights...

- why a blind adoption of IETF 6TiSCH proposal is risky
- how to tune the MAC and Routing protocol for a successful network formation (situation dependent)

At least two processes, before network is operational:

TSCH synchronisation

- Goal: build a globally synchronized mesh network
- Exchanging Enhanced Beacon (EB) frames with time information

RPL DODAG construction

- Goal: organize nodes as a directed to solve the sink
- Exchanging DODAG Information Object (DIO) packets

At least two processes, before network is operational:

TSCH synchronisation

- Goal: build a globally synchronized mesh network
- Exchanging Enhanced Beacon (EB) frames with time information

In the second second

- Goal: organize nodes as a directed tree rooted at the sink
- Exchanging DODAG Information Object (DIO) packets

At least two processes, before network is operational:

TSCH synchronisation

- Goal: build a globally synchronized mesh network
- Exchanging Enhanced Beacon (EB) frames with time information

emitted every *t*e

PL DODAG construction

- Goal: organize nodes as a directed tree rooted at the sink
- Exchanging DODAG Information Object (DIO) packets

At least two processes, before network is operational:

TSCH synchronisation

- Goal: build a globally synchronized mesh network
- Exchanging Enhanced Beacon (EB) frames with time information
 - emitted every t_{eb}

PL DODAG construction

- Goal: organize nodes as a directed tree rooted at the sink
- Exchanging DODAG Information
 Object (DIO) packets

At least two processes, before network is operational:

TSCH synchronisation

- Goal: build a globally synchronized mesh network
- Exchanging Enhanced Beacon (EB) frames with time information
 - emitted every t_{eb}
- PRPL DODAG construction
 - Goal: organize nodes as a directed tree rooted at the sink
 - Exchanging DODAG Information Object (DIO) packets

 Trickle algorithm for adaptive generation

At least two processes, before network is operational:

TSCH synchronisation

- Goal: build a globally synchronized mesh network
- Exchanging Enhanced Beacon (EB) frames with time information
 - emitted every t_{eb}
- PL DODAG construction
 - Goal: organize nodes as a directed tree rooted at the sink
 - Exchanging DODAG Information Object (DIO) packets
 - Trickle algorithm for adaptive generation

At least two processes, before network is operational:

TSCH synchronisation

- Goal: build a globally synchronized mesh network
- Exchanging Enhanced Beacon (EB) frames with time information
 - emitted every t_{eb}
- PL DODAG construction
 - Goal: organize nodes as a directed tree rooted at the sink
 - Exchanging DODAG Information Object (DIO) packets
 - Trickle algorithm for adaptive generation

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.

At the end: every node knowns the *minimal schedule* and is in the DODAG

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.

At the end: every node knowns the *minimal* schedule and is in the DODAG

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.

At the end: every node knowns the *minimal* schedule and is in the DODAG

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.

At the end: every node knowns the *minimal* schedule and is in the DODAG

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.

At the end: every node knowns the *minimal* schedule and is in the DODAG

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.

At the end: every node knowns the *minimal* schedule and is in the DODAG

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.
- At the end: every node knowns the *minimal schedule* and is in the DODAG

IETF 6TiSCH minimal configuration (6TiSCH-MC, RFC 8180):

- Sink sets TSCH-schedule with one shared slot and sends EBs and DIOs
- Joining Nodes keep their radio on and listen for EB
- After hearing an EB: Node learns the minimal schedule and is synchronised
- After hearing a DIO: Node selects a preferred parent and broadcasts EBs and DIOs messages on its turn.
- At the end: every node knowns the *minimal schedule* and is in the DODAG

- Contiki OS and Cooja simulator
 (1) open-source, (2) popular and (3) compliance with 6TiSCH-stack
- Different topologies and three network sizes N_{size} ∈ {9, 16, 25}

- Contiki OS and Cooja simulator
 - (1) open-source, (2) popular and (3) compliance with 6TiSCH-stack
- Different topologies and three network sizes $N_{size} \in \{9, 16, 25\}$

- Contiki OS and Cooja simulator
 - (1) open-source, (2) popular and (3) compliance with 6TiSCH-stack
- Different topologies and three network sizes $\textit{N}_{\textit{size}} \in \{9, 16, 25\}$

• Varying crucial parameter of TSCH and RPL Trickle:

Parameter	Symbol	Value
TSCH number of channels	Nc	$\{4, 16\}$
TSCH EB period	t _{eb}	{2048, 4096, 8192, 16384} ms
RPL minimal interval	I _{min}	$\{128, 256,, 4096\}$ ms

- Contiki OS and Cooja simulator
 - (1) open-source, (2) popular and (3) compliance with 6TiSCH-stack
- Different topologies and three network sizes $N_{size} \in \{9, 16, 25\}$

• Varying crucial parameter of TSCH and RPL Trickle:

Parameter	Symbol	Value
TSCH number of channels	Nc	{4,16}
TSCH EB period	t _{eb}	{2048, 4096, 8192, 16384} ms
RPL minimal interval	I _{min}	$\{128, 256,, 4096\}$ ms

• Performance metrics:

(1) time, (2) charge consumed and (3) number of control frames exchanged until completed network formation

Results: Limits of 6TiSCH-MC

In dense network or with improper setting of TSCH and RPL parameters:

- some nodes are not yet operational after 30 minutes
- In high battery consumption in several nodes

		Grid				Ellipse			Random		
		N _{size}				N _{size}			N _{size}		
t _{eb}	N _c	9	16	25	9	16	25	9	16	25	
2048 ms	4	0%	0%	0%	70%	16%	0%	0%	0%	0%	
4096 ms	4	84%	0%	0%	100%	100%	86%	46%	0%	0%	
8192 ms	4	100%	20%	0%	100%	100%	100%	100%	2%	0%	
16384 ms	4	100%	70%	0%	100%	100%	100%	100%	14%	0%	
1	1 .	·	1 0	1 /		101	. 10)	1.1	10	

Table: Successful DODAG formations within 30 min

With slotframe duration $T_{sf} = 1.01 s$ (i.e. $N_s = 101$, $t_s = 10 ms$) and $I_{min} = 1024 ms$

Due to...

- collisions of control frame
- queuing delay of DIO packets

Results: Limits of 6TiSCH-MC

In dense network or with improper setting of TSCH and RPL parameters:

- some nodes are not yet operational after 30 minutes
- In high battery consumption in several nodes

		Grid			Ellipse			Random		
		N _{size}			N _{size}			N _{size}		
t _{eb}	N _c	9	16	25	9	16	25	9	16	25
2048 ms	4	0%	0%	0%	70%	16%	0%	0%	0%	0%
4096 ms	4	84%	0%	0%	100%	100%	86%	46%	0%	0%
8192 ms	4	100%	20%	0%	100%	100%	100%	100%	2%	0%
16384 ms	4	100%	70%	0%	100%	100%	100%	100%	14%	0%

Table: Successful DODAG formations within 30 min

With slotframe duration $T_{sf} = 1.01 s$ (i.e. $N_s = 101$, $t_s = 10 ms$) and $I_{min} = 1024 ms$

Due to...

- collisions of control frame
- queuing delay of DIO packets

Main Observations and Recommendations (1)

Network formation time:

In dense topologies:

- **1** Time gap between TSCH-synchronisation and DODAG completion
- PL minimal interval I_{min} matters

Recommendations for implementers

Set $t_{eb} \ge 4 \cdot (\text{slotframe duration})$ and $I_{min} = (\text{slotframe duration}) + \epsilon$

Main Observations and Recommendations (1)

Network formation time:

In dense topologies:

- **1** Time gap between TSCH-synchronisation and DODAG completion
- RPL minimal interval I_{min} matters

Recommendations for implementers

Set $t_{eb} \geq 4 \cdot (\text{slotframe duration})$ and $I_{min} = (\text{slotframe duration}) + \epsilon$

Main Observations and Recommendations (2)

Extending 6TiSCH-MC with $N_b = 2$ shared slots:

theoretical twice duty-cycle, but reduced charge consumedreduction of the time spent for network formation

Recommendation for implementers:

If dense topologies: Add additional shared slots for time and energy savings

d.fanucchi@informatik.uni-augsburg.de

Main Observations and Recommendations (2)

Extending 6TiSCH-MC with $N_b = 2$ shared slots:

- theoretical twice duty-cycle, but reduced charge consumed
- equation of the time spent for network formation

Recommendation for implementers:

If dense topologies: Add additional shared slots for time and energy savings

Herein:

- Overview of the IETF 6TiSCH minimal configuration (6TiSCH-MC)
- Extensive simulations to characterize its behaviour

Conclusions:

- Potential downsides of 6TiSCH-MC with dense topologies
- Recommendations for setting TSCH and RPL parameters

- Validate the results with testbeds/realistic channel
- Develop an algorithm for allocation of broadcast links in TSCH

Herein:

- Overview of the IETF 6TiSCH minimal configuration (6TiSCH-MC)
- Extensive simulations to characterize its behaviour

Conclusions:

- Potential downsides of 6TiSCH-MC with dense topologies
- Recommendations for setting TSCH and RPL parameters

- Validate the results with testbeds/realistic channel
- Develop an algorithm for allocation of broadcast links in TSCH

Herein:

- Overview of the IETF 6TiSCH minimal configuration (6TiSCH-MC)
- Extensive simulations to characterize its behaviour

Conclusions:

- Potential downsides of 6TiSCH-MC with dense topologies
- Recommendations for setting TSCH and RPL parameters

- Validate the results with testbeds/realistic channel
- Develop an algorithm for allocation of broadcast links in TSCH

Herein:

- Overview of the IETF 6TiSCH minimal configuration (6TiSCH-MC)
- Extensive simulations to characterize its behaviour

Conclusions:

- Potential downsides of 6TiSCH-MC with dense topologies
- Recommendations for setting TSCH and RPL parameters

- Validate the results with testbeds/realistic channel
- Develop an algorithm for allocation of broadcast links in TSCH

