
Managing Swarms of Robots: From
Centralized to Decentralized Scheduling

Daniel Graff, Reinhardt Karnapke

FG Kommunikations- und Betriebssysteme
Technische Universität Berlin

13. September 2018

OS Support for Mobile Robots

Set of heterogeneous devices
(with different capabilities)

The Swarm

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 1 / 20

OS Support for Mobile Robots

Management, control and coordination by the operating
system

Swarm Runtime System

The Swarm

The OS

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 1 / 20

OS Support for Mobile Robots

Multiple (distributed) applications executed (simultaneously
on the “swarm”

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 1 / 20

Example: Exploration

USV
UAV
UGV

Virtual Movement
Observation Spot

Coast-line
Rough Terrain

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 2 / 20

Example: Exploration

USV
UAV
UGV

Virtual Movement
Observation Spot

Coast-line
Rough Terrain

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 2 / 20

Example: Exploration

USV
UAV
UGV

Virtual Movement
Observation Spot

Coast-line
Rough Terrain

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 2 / 20

Example: Exploration

USV
UAV
UGV

Virtual Movement
Observation Spot

Coast-line
Rough Terrain

Virtual
Movement

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 2 / 20

Example: Exploration

USV
UAV
UGV

Physical Movement
Observation Spot

Coast-line
Rough Terrain

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 2 / 20

Types of Movement

Definition
Virtual movement: “Logic” movement of application
Physical movement: Real physical movement

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 3 / 20

Application Model

Building blocks
Flexible composition of actions at runtime
Connect input / output

Actions
Constrainable in space and time
E.g., take picture, measure temperature

Execution
Concurrent / sequential execution of (in-)dependent actions
Transparent execution across node boundaries

c

b

a d e f

node 1 node 3node 2 node 4

application

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 4 / 20

Scheduling of ActionSuites

Input: ActionSuite as, dependency graph gd

Action a ∈ as = (g, tmin, tmax ,d)
gd is a directed, acyclic graph

Output: Scheduled job (ja, j t) for each ai ∈ as
ja = (p, t , r)
j t = [(x1, y1, t1), ..]

World
Static obstacles Os

Dynamic obstacles Om, f : T → R2

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 5 / 20

Determine Slot Candidate

Determine slot candidate
Euclidean distance: s = ||~xai − ~xaj ||
Overhead of detour: ∆s := (s1 + s2)− s12
Select slot candidate with minimal detour

Temporal constraints
tmin, tmax are action constraints
t1, t2 define begin / end of free slot

1 2 3 4 5 6 7

1
2
3
4
5

x

y r2r1

g

P

a1

a2
a3

s1

s2

s12

Schedule a3

schedule new job a3

job a1 job a2

tmax

job a3move a1 a3 move a3 a2

tmin

job a1 job a2move a1 a2

t

t

t1 t2

Schedule of r2

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 6 / 20

Path Planner
Computes trajectory

.. from ~xa1 to ~xa3(s1)

.. from ~xa3 to ~xa2(s2)

Resulting problem is a Trajectory Planning Problem (TPP)
Solution: Path-Velocity-Decomposition

Static Path Planning Problem (PPP)
Dynamic Velocity Planning Problem (VPP)

Path Planner obtains input from the job scheduler
loc: location candidate (P)
slot : (r , [t1, t2])

1 2 3 4 5 6 7

1
2
3
4
5

x

y r2r1

g

P

a1

a2
a3

s1

s2

s12

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 7 / 20

Forbidden Regions

Compute possible collisions with dynamic obstacles and
mark them as forbidden regions
Om crosses robot path π
The result is a forbidden region in s × t space
n robot segment and m segments of Om creates n ×m tiles

x

y

Om crosses π

s

t

tF

t2

t1

tI s1 s2 sFsI

Forbidden region

s

t

n

m

n × m tiles

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 8 / 20

Velocity Planning Problem (VPP)

Computes velocity profile along path π
s × t-space shows forbidden regions (dynamic obstacles)
Find time based mapping s : T → S, S = [sI , sF] = [0,8]
s(2) = 1 or s(2) = 4
Extend to: ~xπ : T → ~x ⇔ ~xπ : (T → S)→ ~x

vmax > 2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

s

t
t2

(sI,tI)
fr

e
e
 s

lo
t

[t
1
,
t 2

]

path length [sI, sF]

Intial with vmax = 2

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 9 / 20

Velocity Planning Problem (VPP)

Computes velocity profile along path π
s × t-space shows forbidden regions (dynamic obstacles)
Find time based mapping s : T → S, S = [sI , sF] = [0,8]
s(2) = 1 or s(2) = 4
Extend to: ~xπ : T → ~x ⇔ ~xπ : (T → S)→ ~x

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

s

t

vmax > 2

(sF,tF,1)
(sF,tF,2)

(sF,tF,3)

(sF,tF,4)

(sI,tI)

s = sF

Graph Construction

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 9 / 20

Velocity Planning Problem (VPP)

Computes velocity profile along path π
s × t-space shows forbidden regions (dynamic obstacles)
Find time based mapping s : T → S, S = [sI , sF] = [0,8]
s(2) = 1 or s(2) = 4
Extend to: ~xπ : T → ~x ⇔ ~xπ : (T → S)→ ~x

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

s

t

vmax > 2

(sF,tF,4)

(sI,tI)

Shortest Path

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 9 / 20

Complexity and Scalability

VPP induces high complexity
Meshing to obtain velocity graph
Check of visibility

→ Execution time depends on Om, πm, π (segments)
planning
However, scalability problem still remains

Very large worlds
Huge amount of robots

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 10 / 20

Possible Solutions

GPGPU computing suitable for trajectory planning
Approaches from autonomous driving, TP with time horizon
→ Loose guarantees and predictability, deadlocks
Scalability→ Decentralized Approaches

Static Approach
Dynamic Approach

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 11 / 20

Static Approach

Splitting the world into static regions
Each regions has its own scheduler
Scheduling decentralized and in parallel

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 12 / 20

Static Approach

Cross-boundary movement possible
.. requires locking
Full locking→ degenerates to centralized version
→ unlikely

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 13 / 20

Static Approach

~250 trajectory segments
17 segments with cross-boundary movement
≈ 93.2%

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 14 / 20

Dynamic Approach
Regions emerge dynamically based on scheduling requests
Formation of “scheduler groups”
Run distributed and in parallel
Getting destroyed after request

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 15 / 20

Dynamic Approach

Each group creates a region lock
Bounding box of group
If overlap→ dependency (waiting) graph
Variants

One node becomes scheduler
All nodes become schedulers (first one wins)
All nodes become schedulers (consensus / majority voting)

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 16 / 20

Preliminary Results
25 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
Time: Centralized vs. decentralized
f (o), number of obstacles
10,000 jobs
More obstacles create more path segments
→ Complexity of forbidden regions increase

20

1750

1000

ti
m

e
 (

se
c)

obstacles

1500

1250

750

500

250

0
0 10 30 40 50 60 70

decentralized
centralized

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 17 / 20

Preliminary Results

25 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
Time: Centralized vs. decentralized
f (r), region size
10,000 jobs

0

50

100

150

200

ti
m

e
 (

se
c)

250

region size
200x200

300x300 2k x 2k
1k x 1k

700x700
500x500

decentralized
centralized

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 18 / 20

Preliminary Results
50 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
Acceptance rate: Centralized vs. decentralized
f (n), number of nodes
Non-linear increase of acceptance rate
(De-)centralized approach has only little impact

20
nodes

0 10 30 40 50

0.05

0

0.10

0.15

0.20

0.25

a
cc

e
p
ta

n
ce

 r
a
te

decentralized
centralized

5k jobs

20
nodes

0 10 30 40 50

0.02

0

0.04

0.06

0.08

0.10

a
cc

e
p

ta
n
ce

 r
a
te

0.12

0.14 decentralized
centralized

10k jobs

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 19 / 20

Conclusion / Future Work

OS support for mobile robot swarms
TPP has high complexity
Address scalability by decentralization

Static approach
Dynamic approach

Locking vs non-locking
Distributed data structures: transfer only delta schedule

After scheduling
On request

Daniel Graff (TU Berlin) Decentralized Scheduling 13. September 2018 20 / 20

