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OS Support for Mobile Robots

Set of heterogeneous devices
(with different capabilities)

The Swarm
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OS Support for Mobile Robots

Management, control and coordination by the operating
system

Swarm Runtime System

The Swarm

The OS
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OS Support for Mobile Robots

Multiple (distributed) applications executed (simultaneously
on the “swarm”
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Example: Exploration

USV
UAV
UGV

Virtual Movement
Observation Spot

Coast-line
Rough Terrain
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Example: Exploration
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Virtual
Movement
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Example: Exploration

USV
UAV
UGV

Physical Movement
Observation Spot

Coast-line
Rough Terrain
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Types of Movement

Definition
Virtual movement: “Logic” movement of application
Physical movement: Real physical movement
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Application Model

Building blocks
Flexible composition of actions at runtime
Connect input / output

Actions
Constrainable in space and time
E.g., take picture, measure temperature

Execution
Concurrent / sequential execution of (in-)dependent actions
Transparent execution across node boundaries
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Scheduling of ActionSuites

Input: ActionSuite as, dependency graph gd

Action a ∈ as = (g, tmin, tmax ,d)
gd is a directed, acyclic graph

Output: Scheduled job (ja, j t) for each ai ∈ as
ja = (p, t , r)
j t = [(x1, y1, t1), ..]

World
Static obstacles Os

Dynamic obstacles Om, f : T → R2
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Determine Slot Candidate

Determine slot candidate
Euclidean distance: s = ||~xai − ~xaj ||
Overhead of detour: ∆s := (s1 + s2)− s12
Select slot candidate with minimal detour

Temporal constraints
tmin, tmax are action constraints
t1, t2 define begin / end of free slot
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Path Planner
Computes trajectory

.. from ~xa1 to ~xa3(s1)

.. from ~xa3 to ~xa2(s2)

Resulting problem is a Trajectory Planning Problem (TPP)
Solution: Path-Velocity-Decomposition

Static Path Planning Problem (PPP)
Dynamic Velocity Planning Problem (VPP)

Path Planner obtains input from the job scheduler
loc: location candidate (P)
slot : (r , [t1, t2])
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Forbidden Regions

Compute possible collisions with dynamic obstacles and
mark them as forbidden regions
Om crosses robot path π
The result is a forbidden region in s × t space
n robot segment and m segments of Om creates n ×m tiles
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Velocity Planning Problem (VPP)

Computes velocity profile along path π
s × t-space shows forbidden regions (dynamic obstacles)
Find time based mapping s : T → S, S = [sI , sF ] = [0,8]
s(2) = 1 or s(2) = 4
Extend to: ~xπ : T → ~x ⇔ ~xπ : (T → S)→ ~x

vmax > 2
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Velocity Planning Problem (VPP)

Computes velocity profile along path π
s × t-space shows forbidden regions (dynamic obstacles)
Find time based mapping s : T → S, S = [sI , sF ] = [0,8]
s(2) = 1 or s(2) = 4
Extend to: ~xπ : T → ~x ⇔ ~xπ : (T → S)→ ~x
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Complexity and Scalability

VPP induces high complexity
Meshing to obtain velocity graph
Check of visibility

→ Execution time depends on Om, πm, π (segments)
planning
However, scalability problem still remains

Very large worlds
Huge amount of robots
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Possible Solutions

GPGPU computing suitable for trajectory planning
Approaches from autonomous driving, TP with time horizon
→ Loose guarantees and predictability, deadlocks
Scalability→ Decentralized Approaches

Static Approach
Dynamic Approach
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Static Approach

Splitting the world into static regions
Each regions has its own scheduler
Scheduling decentralized and in parallel
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Static Approach

Cross-boundary movement possible
.. requires locking
Full locking→ degenerates to centralized version
→ unlikely
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Static Approach

~250 trajectory segments
17 segments with cross-boundary movement
≈ 93.2%
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Dynamic Approach
Regions emerge dynamically based on scheduling requests
Formation of “scheduler groups”
Run distributed and in parallel
Getting destroyed after request
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Dynamic Approach

Each group creates a region lock
Bounding box of group
If overlap→ dependency (waiting) graph
Variants

One node becomes scheduler
All nodes become schedulers (first one wins)
All nodes become schedulers (consensus / majority voting)
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Preliminary Results
25 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
Time: Centralized vs. decentralized
f (o), number of obstacles
10,000 jobs
More obstacles create more path segments
→ Complexity of forbidden regions increase
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Preliminary Results

25 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
Time: Centralized vs. decentralized
f (r), region size
10,000 jobs
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Preliminary Results
50 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
Acceptance rate: Centralized vs. decentralized
f (n), number of nodes
Non-linear increase of acceptance rate
(De-)centralized approach has only little impact
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Conclusion / Future Work

OS support for mobile robot swarms
TPP has high complexity
Address scalability by decentralization

Static approach
Dynamic approach

Locking vs non-locking
Distributed data structures: transfer only delta schedule

After scheduling
On request
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