Managing Swarms of Robots: From

Centralized to Decentralized Scheduling

Daniel Graff, Reinhardt Karnapke

FG Kommunikations- und Betriebssysteme
Technische Universitat Berlin

13. September 2018



OS Support for Mobile Robots

@ Set of heterogeneous devices
(with different capabilities)
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OS Support for Mobile Robots

@ Management, control and coordination by the operating
system

Swarm Runtime System
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OS Support for Mobile Robots

@ Multiple (distributed) applications executed (simultaneously
on the “swarm”
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Example: Exploration
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Example: Exploration
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Types of Movement

Definition

@ Virtual movement: “Logic” movement of application
@ Physical movement: Real physical movement
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Application Model

@ Building blocks

e Flexible composition of actions at runtime
e Connect input / output

@ Actions

e Constrainable in space and time
e E.g., take picture, measure temperature

@ Execution

e Concurrent / sequential execution of (in-)dependent actions
e Transparent execution across node boundaries
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Scheduling of ActionSuites

@ Input: ActionSuite as, dependency graph g°
e Action a € as = (g, tmin, tmax, d)
e g%is a directed, acyclic graph

@ Output: Scheduled job (j4, j!) for each a; € as

e j@=(ptr)
o jl=1[(x1,y1,t),.]
@ World

e Static obstacles O°
e Dynamic obstacles O™, f: T — R?
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Determine Slot Candidate

@ Determine slot candidate
o Euclidean distance: s = |[Xa — Xl
e Overhead of detour: As := (sy + S2) — S12
@ Select slot candidate with minimal detour
@ Temporal constraints
@ Imin, fmax are action constraints
e 1, I define begin / end of free slot

job a; move a; » a, job a,

T
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Path Planner

@ Computes trajectory
o .. from Xz, to Xa,(51)
o .. from Xz, t0 Xa,(S2)
@ Resulting problem is a Trajectory Planning Problem (TPP)
@ Solution: Path-Velocity-Decomposition
e Static Path Planning Problem (PPP)
e Dynamic Velocity Planning Problem (VPP)
@ Path Planner obtains input from the job scheduler
@ Joc: location candidate (P)
e slot: (r,[t,t])
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Forbidden Regions

@ Compute possible collisions with dynamic obstacles and
mark them as forbidden regions

@ O™ crosses robot path =
@ The result is a forbidden region in s x t space
@ nrobot segment and m segments of O™ creates n x m tiles
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Velocity Planning Problem (VPP)

@ Computes velocity profile along path =

@ s x t-space shows forbidden regions (dynamic obstacles)

@ Find time based mappings: T — S, S=[s;, s¢] = [0, 8]
s(2)=1ors(2)=4

@ Extendto: X, : T - X & X, :(T—8)—X

t) path length 7 [s), s¢]
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Velocity Planning Problem (VPP)

@ Computes velocity profile along path =

@ s x t-space shows forbidden regions (dynamic obstacles)

@ Find time based mappings: T — S, S=[s;, s¢] = [0, 8]
s(2)=1o0rs(2)=4

@ Extendto: X, : T =X & X.:(T—8)—X
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Complexity and Scalability

@ VPP induces high complexity

e Meshing to obtain velocity graph
e Check of visibility

— Execution time depends on O™, 7, = (segments)
planning
@ However, scalability problem still remains

e Very large worlds
e Huge amount of robots
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Possible Solutions

@ GPGPU computing suitable for trajectory planning

@ Approaches from autonomous driving, TP with time horizon
— Loose guarantees and predictability, deadlocks

@ Scalability — Decentralized Approaches

e Static Approach
e Dynamic Approach
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Static Approach

@ Splitting the world into static regions
@ Each regions has its own scheduler
@ Scheduling decentralized and in parallel
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Static Approach

@ Cross-boundary movement possible
@ .. requires locking

@ Full locking — degenerates to centralized version
— unlikely
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Static Approach

@ ~250 trajectory segments
@ 17 segments with cross-boundary movement
@ ~93.2%
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Dynamic Approach

@ Regions emerge dynamically based on scheduling requests
@ Formation of “scheduler groups”

@ Run distributed and in parallel

@ Getting destroyed after request
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Dynamic Approach

@ Each group creates a region lock

@ Bounding box of group

@ If overlap — dependency (waiting) graph
@ Variants

@ One node becomes scheduler
@ All nodes become schedulers (first one wins)
@ All nodes become schedulers (consensus / majority voting)
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Preliminary Results

@ 25 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
@ Time: Centralized vs. decentralized
@ f(0), number of obstacles
@ 10,000 jobs
@ More obstacles create more path segments
— Complexity of forbidden regions increase
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Preliminary Results

@ 25 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
@ Time: Centralized vs. decentralized

@ f(r), region size

@ 10,000 jobs
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Preliminary Results

@ 50 nodes: Core i3-6100U CPU @ 2.30GHz, dual core
@ Acceptance rate: Centralized vs. decentralized

@ f(n), number of nodes

@ Non-linear increase of acceptance rate
@ (De-)centralized approach has only little impact
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Conclusion / Future Work

@ OS support for mobile robot swarms
@ TPP has high complexity
@ Address scalability by decentralization

e Static approach
e Dynamic approach

@ Locking vs non-locking

@ Distributed data structures: transfer only delta schedule

o After scheduling
e On request
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