

A Latency Analysis of IEEE 802.11-based Tactile Wireless Multi-Hop Networks

Frank Engelhardt, Mesut Güneş

Communication and Networked Systems (ComSys)

www.comsys.ovgu.de | {fengelha,guenes}@ovgu.de

OvGU Magdeburg

Tactile Wireless Multi-Hop Networks

- Tactile Internet (TI) requires ultra reliable, ultra low-latency networks
- WMHN are more flexible than single-hop networks
- 5G will introduce multi-hop characteristics through Device-2-Device, but question of performance is open
- V2X, Teleoperation, Telesurgery, ...

Tactile Wireless Multi-Hop Networks

Latency

Aijaz, A. et al., Realizing the tactile internet: Haptic communications over next generation 5g cellular networks, IEEE Wireless Communications 2017

Frank Engelhardt, Mesut Güneş – 17. GI/ITG KuVS Fachgespräch Sensornetze – FGSN 2018

Single-Flow Latency Model

A haptic flow consists of

- a sub-flow Master →Slave
- another sub-flow Slave →Master

Both sub-flows have the properties

- 1 kHz packet rate
- <100 Bytes per packet (e.g. 6*sizeof(float), a 6 DoF vector)
- requires 1 ms latency bound

Single-Flow Latency Model

- End-to-End latency $d_{e2e} \sim h$ $= k \cdot h$
- → Upper bound for h to reach latency requirement

Multi-Flow Latency Model

- Multiple flows may cross at one or more routers
- $\rightarrow d_{e2e} \sim h$ is no longer true
- E.g, a simple example with two flows crossing at router Rx

Multi-Flow Latency Model

Multi-Flow Latency Model

• Multiple flows may cross at one or more routers

 $\rightarrow d_{e2e} = k \cdot h + 8 \cdot d_{Pkt,max}$ for this example

 $\rightarrow d_{e2e} = k \cdot h + 4 \cdot n \cdot d_{Pkt,max}$ for n intersecting flows

Evaluation of Queueing Delay relative to n

- We model an M/M/1 Queue for the sender of Rx
 - Unscheduled WiFi traffic, which has non-deterministic behavior
- Average delay $d_{avg} = \frac{\lambda}{\lambda(\mu \lambda)}$ with arrival rate λ and service rate μ
 - $\mu = r/s$ with transmission bit rate r, packet size s
 - $\lambda = 4 \cdot n \cdot \lambda_{Flow}$, with the packet rate per flow $\lambda_{Flow} = 1 k H z$

•
$$d_{avg}(n) = \frac{4 \cdot s \cdot n \cdot \lambda_{Flow}}{r^2 - 4 \cdot r \cdot n \cdot \lambda_{Flow}}$$

Evaluation

• We consider three constellations: Q1, Q2, Q3

	Q1	Q2	Q3
Arrival rate (per flow) $\lambda_{\text{Flow}} [s^{-1}]$	10	100	1000
Bit rate r [Mbit/s]	0.5	5	50
Packet size s [bit]	800	800	800
Service rate μ [s ⁻¹]	625	6250	62500

Concluding Remarks

 Linearization could lead to a simple linear model for the entire network:

 $d_{Flow,avg}(n,h) = k_1 \cdot h + k_2 \cdot n_{Flow},$

with n_{Flow} =number of concurrent flows intersecting the current flow

• Model calibration based on simulation and also on realhardware testbeds is ongoing work