

IoT Communication Introduced Limitations for High Sampling Rate Applications

Silvia Krug and Mattias O'Nils

Motivation & Problem Statement

- IoT and "Smart"-things are trending in various application fields
 - Raise interest from other use cases
 - Different, new application requirements
- Increased challenges for traditional IoT communications
 - Other design assumptions
 - Possible limitations to applications
- Goal here
 - Check applicability of given technologies
 - Show what is possible
 - Raise attention to possible limitations for users / developers

IoT Communications

- Design assumptions
 - Low power
 - Low rate
 - 250 kbps 802.15.4
 - Many (massive) devices

- Example:
 - 6LoWPAN over 802.15.4
 - 250 kbps PHY data rate
 - 127 byte max. raw MAC frame size
 - With 6LoWPAN up to 97 byte user data per frame

Demand for Different Application Patterns

- More challenging applications
 - Increase system / process efficiency
 - "Smart" or "sensing" capabilities as additional feature
- Examples
 - Predictive maintenance
 - Vibrations, pressure
 - Potentially fast-changing parameters
 - High sampling and thus rate
 - Visual monitoring and assessment
 - Capture of imaging data
 - High data amount

- Desired features
 - Node Internet accessibility
 - IPv6-based communication
 - Cloud integration
 - Dashbord visualization
 - Control initiation
 - Eventually AI based
 - Big data analytics
 - Typically not on individual nodes
 - Node cooperation

Challenges & Limitations

- High data amounts to transport
 - Due to
 - High sampling rates
 - Sensors that produce more data
 - Cooperative applications
 - Technology design goals different
 - Still applicable?
 - Where are limits?
 - Challenges
 - Available bandwidth & utilization

Example – 6LoWPAN & High Sampling Rate Application

- Vibration Monitoring Application
 - High sampling rates > 100 Hz desired
 - Distributed observation at multiple measurement points
- Why transfer all data?
 - Initial process characterization
 - Detect all possible events
 - Uncover correlations between neighboring measurement points
 - Later tuning also possible

- Vibration Sensor with High Sample Rate
 - MPU 9250 9 DOF motion senor
 - 3 axes
 - 16 bit sample each
 - 6 byte per complete sample
 - 0.25 1000 Hz sampling frequency
- 6LoWPAN communication
 - IPv6
 - 802.15.4 as base technology

Results

Theoretical Performance 1.25 Δ Δ Δ Δ 10² 1.00 Δ C \triangle Q Δ Data Rate [kbit/s] Q 10¹ 0.75 \triangle Scheme ð Delay [s] MTU Size Δ ₽ \triangle Packets 🛆 81 Byte \$ Δ igtriangleta Raw Ó O 1232 Byte 0 10⁰ O Aggregated \triangle 0 ∇ 0 0 Δ ∇ Δ ∇ 10⁻¹ \triangle 0.25 ∇ ∇ Ó 0.00 - ∇ 10⁻² C 10² 10² 10³ 10⁰ 10¹ 10³ 10⁴ 10⁰ 10¹ Data Amount [Byte] Sample Rate [Hz]

Measured Throughput

Mittuniversitetet

FGSN 2018 - Braunschweig, Germany

2018-09-14

Lessons Learned

Scientific Perspective

- 6LoWPAN has much overhead
 - But required for IP-based communication
 - Limitations exist but can be handled
- Data aggregation to mitigate effect
 - Time dependent applicability
- Further analysis for high rate applications

Developer Perspective

- Stack implementation and config crucial
 - Allow effective utilization of resources
- Balance application needs and local network load
 - Consider network capabilities in application development

Alternatives

- In-Node Processing
 - Data reduction through
 - Filtering (Thresholds, Differences)
 - Event Detection
 - Unknown events or initial process observation ?
 - Tradeoff for processing effort
 - Time and energy
 - How to capture correlated metrics with neighbors if data is filtered ?

- Alternative Communication Technologies
 - BLE ?
 - WiFi ?
 - Cellular ?

Conclusions

- New application fields want to benefit from "smart" sensing and Internet connectivity
 - Contrary requirements to original design goals
 - Energy-efficient operation of nodes
- Balance between application and network load needed
- Discussion on other traffic requirements and realization

Thanks for your attention. Questions?

Dr.-Ing. Silvia Krug

Mittuniversitetet Avdelningen för Elektronikkonstruktion (EKS) Holmgatan 10 85170 Sundsvall

 Rum:
 S 208

 Telefon:
 + 46 10 142 84 35

 E-post:
 silvia.krug@miun.se

