
The 29th European Workshop on Computational Geometry

March 17-20, 2013, Braunschweig, Germany

Preface

Computer Science is arguably the universal scientific field of our time. There is no discipline
that does not make use of tools from computer science; what is more, the fundamental insights
and perspectives of computation provide a powerful outlook on our world, so that the mere
observation of phenomena in nature gives way to active construction of complex systems.
Computational Geometry reflects this broad range of topics and objectives of Computer Sci-
ence. It reaches all the way from pure theory to practical application, some of which involve
diverse fields such as visualization, robotics, computer graphics, and geographic information
systems.
The community of researchers working in Computational Geometry spans the world. Consisting
of hundreds of professional researchers, young and old, its work is conducted in a spirit of
friendly and cooperative collaboration, and fostered by a wide range of meetings, workshops
and conferences.
Among these, the European Workshop on Computational Geometry (EuroCG) plays an impor-
tant and prominent role as an annual, informal workshop whose goal is to provide a forum for
scientists to meet, present their work, interact, and establish collaborations, in order to promote
research in the field of Computational Geometry, within Europe and beyond. The workshop aims
at providing an informal atmosphere through which both established and young researchers
will have a productive exchange of ideas and collaboration.
EuroCG does not have formally reviewed proceedings; a book of abstracts is distributed elec-
tronically and does not have an ISBN. Therefore, results presented at EuroCG are often also
submitted to peer-reviewed conferences and/or journals. This volume presents the abstracts
of the 29th EuroCG, which takes place from March 17–20, 2013 in Braunschweig.
We are happy to welcome you to this city of science, and hope that you will find many
opportunities to discover new ideas, meet other scientists, extend existing collaborations, start
new ones—and enjoy our wonderful environment!

March 2013 Sándor P. Fekete

Organization

Local Arrangements

Sándor P. Fekete, TU Braunschweig
Christiane Schmidt, TU Braunschweig

Program Commitee

Dominique Attali, CNRS, France
Erin Chambers, Saint Louis U., USA
Tamal Dey, Ohio State U., USA
Sándor Fekete, TU Braunschweig (chair), Germany
Jie Gao, Stony Brook U., USA
Joachim Giesen, Jena U., Germany
Sariel Har-Peled, U. Illinois at Urbana-Champaign, USA
Michael Hemmer, Tel-Aviv U., Israel
Ferran Hurtado, U. Politècnica de Catalunya, Spain
Michael Kerber, Stanford U., USA
David Kirkpatrick, U. of British Columbia, Canada
Christian Knauer, U. Bayreuth, Germany
Alexander Kröller, TU Braunschweig, Germany
Marc van Kreveld, U. Utrecht, The Netherlands
Sylvain Lazard, INRIA Nancy, France
Maarten Löffler, U. Utrecht, The Netherlands
Alejandro López-Ortiz, U. of Waterloo, Canada
Henk Meijer, Roosevelt Academy, The Netherlands
Joe Mitchell, Stony Brook University, USA
Christiane Schmidt, TU Braunschweig, Germany
Bettina Speckmann, TU Eindhoven, The Netherlands
Monique Teillaud, INRIA Sophia Antipolis, France
Jan Vahrenhold, U. Münster, Germany
Carola Wenk, Tulane U., USA

Additional Referees

Mahmuda Ahmed Christian Scheffer
Olivier Devillers Jessica Sherette
Robert Fraser Isabelle Sivignon
Shahin Kamali Frank Staals
André Lieutier Fabian Stehn
Quentin Merigot Remy Thomasse
Jazmin Romero Sonia Waharte

Support

Rausch Schokolade

Heimbs Kaffee

Table of Content

Facets for Art Gallery Problems . 1

Sándor P. Fekete, Stephan Friedrichs, Alexander Kröller and Christiane Schmidt.

The Minimum Guarding Tree Problem . 5

Adrian Dumitrescu, Joseph Mitchell and Pawe l Żyliński.

Covering Class-3 Orthogonal Polygons with the Minimum Number of r-Stars . 9

Leonidas Palios and Petros Tzimas.

Extending Visibility Polygons by Mirrors to Cover Specific Targets . 13

Arash Vaezi and Mohammad Ghodsi.

Rotation Minimizing Frames on Monotone-helical Quintics: Approximation and Applications to
Modeling Problems . 17

Fatma Şengüler-Çiftçi and Gert Vegter.

Layered Reeb Graphs of a Spatial Domain . 21

Birgit Strodthoff and Bert Jüttler.

Collapsing Rips Complexes . 25

David Salinas, Dominique Attali and André Lieutier.

Constructing Complicated Spheres . 29

Mimi Tsuruga and Frank H. Lutz.

Selecting a Small Covering from a Double Covering . 33

Peter Brass.

Smart-grid Electricity Allocation via Strip Packing with Slicing . 35

Soroush Alamdari, Therese Biedl, Timothy M. Chan, Elyot Grant, Krishnam Raju Jampani, S.
Keshav, Anna Lubiw and Vinayak Pathak.

Packing Identical Simple Polygons of Constant Complexity is NP-hard . 39

Ning Xu.

Computing the Fréchet Distance with Shortcuts is NP-Hard . 43

Maike Buchin, Anne Driemel and Bettina Speckmann.

Parallel Computation of the Hausdorff Sistance between Shapes . 47

Helmut Alt and Ludmila Scharf.

Hardness Results on Curve/Point Set Matching with Fréchet Distance . 51

Paul Accisano and Alper Üngör.

Differential-Based Geometry . 55

Konrad Polthier.

New Results on Convex Stabbers . 57

Lena Schlipf.

Unions of Onions . 61

Maarten Löffler and Wolfgang Mulzer.

Finding a Largest Empty Convex Subset in Space Is W[1]-Hard . 65
Panos Giannopoulos and Christian Knauer.

The Degree of Convexity . 69
Günter Rote.

Algorithms for Distance Problems in Planar Complexes of Global Nonpositive Curvature 73
Daniela Maftuleac.

On the Complexity of Finding Spanner Paths . 77
Mikael Nilsson.

Polylogarithmic Approximation for Generalized Minimum Manhattan Networks 81
Aparna Das, Krzysztof Fleszar, Stephen Kobourov, Joachim Spoerhase, Sankar Veeramoni and
Alexander Wolff.

Distributed Computational Geometry and Multi-Robot Systems: Twins Separated at Birth? 85
James McLurkin.

Topologically Safe Curved Schematization . 87
Arthur van Goethem, Herman Haverkort, Wouter Meulemans, Andreas Reimer and Bettina
Speckmann.

Straight-Line Triangle Representations . 91
Nieke Aerts and Stefan Felsner.

Reconstructing Polygons from Embedded Straight Skeletons . 95
Therese Biedl, Martin Held and Stefan Huber.

A Conceptual Take on Invariants of Low-Dimensional Manifolds Found by Integration 99
Mathijs Wintraecken and Gert Vegter.

Cut Equivalence of d-Dimensional Guillotine Partitions . 103
Andrei Asinowski, Gill Barequet, Toufik Mansour and Ron Pinter.

Approximating Weighted Geodesic Distances on 2-Manifolds in R3 . 107
Christian Scheffer and Jan Vahrenhold.

Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles 111
Ioannis Emiris, Vissarion Fisikopoulos and Bernd Gaertner.

Flip Distance Between Triangulations of a Simple Polygon is NP-Complete . 115
Oswin Aichholzer, Wolfgang Mulzer and Alexander Pilz.

Selecting the Aspect Ratio of a Scatter Plot Based on Its Delaunay Triangulation 119
Martin Fink, Jan-Henrik Haunert, Joachim Spoerhase and Alexander Wolff.

Computational Aspects of Triangulations with Bounded Dilation . 123
Wolfgang Mulzer and Paul Seiferth.

Exploiting Air Pressure to Map Floorplans on Point Sets . 127
Stefan Felsner.

Book Embeddings of Iterated Subdivided-Line Graphs . 131
Toru Hasunuma.

Area Requirement of Graph Drawings with Few Crossings per Edge . 135
Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta and Fabrizio Montecchiani.

Distributed Universal Reconguration of 2D Lattice-Based Modular Robots . 139

Ferran Hurtado, Enrique Molina, Suneeta Ramaswami and Vera Sacristan.

The Number of Different Unfoldings of Polyhedra . 143

Takashi Horiyama and Wataru Shoji.

Computational Complexity of Piano-Hinged Dissection . 147

Zachary Abel, Erik D. Demaine, Martin L. Demaine, Takashi Horiyama and Ryuhei Uehara.

Coding Ladder Lotteries . 151

Tomoki Aiuchi, Katsuhisa Yamanaka, Takashi Hirayama and Yasuaki Nishitani.

On Counting Triangles, Quadrilaterals and Pentagons in a Point Set . 155

Sergey Bereg and Kira Vyatkina.

Randomized Incremental Construction of the Hausdorff Voronoi Diagram of Non-Crossing Clusters . . 159

Panagiotis Cheilaris, Elena Khramtcova and Evanthia Papadopoulou.

Geometry and Images . 163

Marcus Magnor.

Balanced Partitions of 3-colored Geometric Sets in the Plane . 165

Sergey Bereg, Ferran Hurtado, Mikio Kano, Matias Korman, Dolores Lara, Carlos Seara, Rodrigo
Silveira, Jorge Urrutia and Kevin Verbeek.

The Complexity of Separating Points in the Plane . 169

Sergio Cabello and Panos Giannopoulos.

Kinetic Euclidean 2-centers in the Black-Box Model . 173

Mark de Berg, Marcel Roeloffzen and Bettina Speckmann.

New Representation Results for Planar Graphs . 177

Farhad Shahrokhi.

New Sequential and Parallel Algorithms for Computing Beta-spectrum . 181

Gabriela Majewska and Miros law Kowaluk.

Voronoi Diagrams from Distance Graphs . 185

Mario Kapl, Franz Aurenhammer and Bert Jüttler.

A Sweepline Algorithm for Higher Order Voronoi Diagrams . 189

Evanthia Papadopoulou and Maksym Zavershynskyi.

On the Complexity of the Partial Least-Squares Matching Voronoi Diagram . 193

Matthias Henze, Rafel Jaume and Balazs Keszegh.

A Truly Local Strategy for Ant Robots Cleaning Expanding Domains . 197

Rolf Klein, David Kriesel and Elmar Langetepe.

2-Modem Pursuit-Evasion Problem . 201

Yeganeh Bahoo Torudi, Ali Mohades, Marzieh Eskandari and Mahsa Sorouri.

Euclidean Traveling Salesman Tours through Stochastic Neighborhoods . 205

Pegah Kamousi and Subhash Suri.

Large-Volume Open Sets in Normed Spaces without Integral Distances . 209

Sascha Kurz and Valery Mishkin.

Clear Unit-Distance Graphs . 213
Marc van Kreveld, Maarten Löffler and Frank Staals.

Extending Partial Representations of Proper and Unit Interval Graphs . 217
Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell and Tomas
Vyskocil.

Augmentability of Geometric Matching and Needlework . 221
Tillmann Miltzow.

Quasi-Parallel Segments and Characterization of Unique Bichromatic Matchings 225
Andrei Asinowski, Tillmann Miltzow and Günter Rote.

Hierarchical Flows with an Application to Image Matching . 229
Stefan Funke and Sabine Storandt.

Two-Sided Boundary Labeling with Adjacent Sides . 233
Philipp Kindermann, Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer, André Schulz and
Alexander Wolff.

Trajectory-Based Dynamic Map Labeling . 237
Andreas Gemsa, Benjamin Niedermann and Martin Nöllenburg.

Dynamic Point Labeling Is Strongly PSPACE-hard . 241
Kevin Buchin and Dirk H.P. Gerrits.

Schedule

MONDAY, MARCH 18, 2013

09:00-09:15: Opening

09:15-09:30: Fast Forward: 1A, 1B, 2A, 2B

09:40-11:10: Session 1A—Visibility and Guarding

1A1 Facets for Art Gallery Problems. Sándor P.
Fekete, Stephan Friedrichs, Alexander Kröller
and Christiane Schmidt

1A2 The Minimum Guarding Tree Problem. Adrian
Dumitrescu, Joseph Mitchell and Pawe l Żyliński

1A3 Covering Class-3 Orthogonal Polygons with
the Minimum Number of r-Stars. Leonidas
Palios and Petros Tzimas

1A4 Extending Visibility Polygons by Mirrors to
Cover Specific Targets. Arash Vaezi and Mo-
hammad Ghodsi

09:40-11:10: Session 1B—Topology

1B1 Rotation Minimizing Frames on Monotone-
helical Quintics: Approximation and Applica-
tions to Modeling Problems. Fatma Şengüler-
Çiftçi and Gert Vegter

1B2 Layered Reeb Graphs of a Spatial Domain.
Birgit Strodthoff and Bert Jüttler

1B3 Collapsing Rips Complexes. David Salinas,
Dominique Attali and André Lieutier

1B4 Constructing Complicated Spheres. Mimi
Tsuruga and Frank H. Lutz

11:00-11:30: Coffee Break

11:30-12:30: Session 2A—Packing and Covering

2A1 Selecting a Small Covering from a Double
Covering. Peter Brass

2A2 Smart-grid Electricity Allocation via Strip
Packing with Slicing. Soroush Alamdari,
Therese Biedl, Timothy M. Chan, Elyot Grant,
Krishnam Raju Jampani, S. Keshav, Anna Lu-
biw and Vinayak Pathak

2A3 Packing Identical Simple Polygons of Con-
stant Complexity is NP-hard. Ning Xu

11:30-12:30: Session 2B—Fréchet and Hausdorff

2B1 Computing the Fréchet Distance with Short-
cuts is NP-Hard. Maike Buchin, Anne Driemel
and Bettina Speckmann

2B2 Parallel Computation of the Hausdorff Sis-
tance between Shapes. Helmut Alt and Ludmila
Scharf

2B3 Hardness Results on Curve/Point Set Match-
ing with Fréchet Distance. Paul Accisano and
Alper Üngör

12:30-14:00: Lunch Break

14:00-15:00: Session 3—Invited Talk: Konrad Polthier Differential-Based Geometry.

15:00-15:10: Fast Forward: 4A, 4B

15:10-15:40: Coffee Break

15:40-17:00: Session 4A—Convexity

4A1 New Results on Convex Stabbers. Lena
Schlipf

4A2 Unions of Onions. Maarten Löffler and Wolf-
gang Mulzer

4A3 Finding a Largest Empty Convex Subset in
Space Is W[1]-Hard. Panos Giannopoulos and
Christian Knauer

4A4 The Degree of Convexity. Günter Rote

15:40-16:40: Session 4B—Distance Problems

4B1 Algorithms for Distance Problems in Planar
Complexes of Global Nonpositive Curvature.
Daniela Maftuleac

4B2 On the Complexity of Finding Spanner Paths.
Mikael Nilsson

4B3 Polylogarithmic Approximation for General-
ized Minimum Manhattan Networks. Aparna
Das, Krzysztof Fleszar, Stephen Kobourov,
Joachim Spoerhase, Sankar Veeramoni and
Alexander Wolff

17:15-18:15: Business Meeting

TUESDAY, MARCH 19, 2013

09:00-10:00: Session 5—Invited Talk: James McLurkin.
Distributed Computational Geometry and Multi-Robot Systems: Twins Separated at Birth?

10:00-10:20: Fast Forward: 6A, 6B, 7A, 7B, 8A, 8B

10:20-10:50: Coffee Break

11:10-12:10: Session 6A—Representation and Re-
construction

6A2 Topologically Safe Curved Schematization.
Arthur van Goethem, Herman Haverkort,
Wouter Meulemans, Andreas Reimer and Bet-
tina Speckmann

6A3 Straight-Line Triangle Representations. Nieke
Aerts and Stefan Felsner

6A4 Reconstructing Polygons from Embedded
Straight Skeletons. Therese Biedl, Martin Held
and Stefan Huber

10:50-12:10: Session 6B—Higher-Dimensional
Problems

6B1 A Conceptual Take on Invariants of Low-
Dimensional Manifolds Found by Integration.
Mathijs Wintraecken and Gert Vegter

6B2 Cut Equivalence of d-Dimensional Guillotine
Partitions. Andrei Asinowski, Gill Barequet,
Toufik Mansour and Ron Pinter

6B3 Approximating Weighted Geodesic Distances
on 2-Manifolds in R3. Christian Scheffer and
Jan Vahrenhold

6B4 Efficient Volume and Edge-Skeleton Compu-
tation for Polytopes Given by Oracles. Ioannis
Emiris, Vissarion Fisikopoulos and Bernd Gaert-
ner

12:10-13:30: Lunch Break

13:30-14:30: Session 7A—Triangulations

7A1 Flip Distance Between Triangulations of a
Simple Polygon is NP-Complete. Oswin Aich-
holzer, Wolfgang Mulzer and Alexander Pilz

7A2 Selecting the Aspect Ratio of a Scatter Plot
Based on Its Delaunay Triangulation. Martin
Fink, Jan-Henrik Haunert, Joachim Spoerhase
and Alexander Wolff

7A3 Computational Aspects of Triangulations with
Bounded Dilation. Wolfgang Mulzer and Paul
Seiferth

13:30-14:30: Session 7B—Drawing and Embed-
ding

7B1 Exploiting Air Pressure to Map Floorplans on
Point Sets. Stefan Felsner

7B2 Book Embeddings of Iterated Subdivided-Line
Graphs. Toru Hasunuma

7B3 Area Requirement of Graph Drawings with
Few Crossings per Edge. Emilio Di Giacomo,
Walter Didimo, Giuseppe Liotta and Fabrizio
Montecchiani

14:30-15:00: Coffee Break

15:00-16:00: Session 8A—Reconfiguration

8A1 Distributed Universal Reconguration of 2D
Lattice-Based Modular Robots. Ferran Hur-
tado, Enrique Molina, Suneeta Ramaswami and
Vera Sacristan

8A2 The Number of Different Unfoldings of Poly-
hedra. Takashi Horiyama and Wataru Shoji

8A3 Computational Complexity of Piano-Hinged
Dissection. Zachary Abel, Erik D. Demaine,
Martin L. Demaine, Takashi Horiyama and
Ryuhei Uehara

15:00-16:00: Session 8B—Combinatorics

8B1 Coding Ladder Lotteries. Tomoki Aiuchi, Kat-
suhisa Yamanaka, Takashi Hirayama and Ya-
suaki Nishitani

8B2 On Counting Triangles, Quadrilaterals and
Pentagons in a Point Set. Sergey Bereg and Kira
Vyatkina

8B3 Randomized Incremental Construction of the
Hausdorff Voronoi Diagram of Non-Crossing
Clusters. Panagiotis Cheilaris, Elena Khramt-
cova and Evanthia Papadopoulou

16:00-19:00: Social Event

19:30- Conference Banquet

WEDNESDAY, MARCH 20, 2013

09:00-10:00: Session 9—Invited Talk: Marcus Magnor. Geometry and Images

10:00-10:20: Fast Forward: 10A, 10B, 11A, 11B, 12A, 12B

10:20-10:50: Coffee Break

10:50-12:10: Session 10A—Clustering

10A1 Balanced Partitions of 3-colored Geomet-
ric Sets in the Plane. Sergey Bereg, Ferran
Hurtado, Mikio Kano, Matias Korman, Dolores
Lara, Carlos Seara, Rodrigo Silveira, Jorge Ur-
rutia and Kevin Verbeek

10A2 The Complexity of Separating Points in the
Plane. Sergio Cabello and Panos Giannopoulos

10A3 Kinetic Euclidean 2-centers in the Black-Box
Model. Mark de Berg, Marcel Roeloffzen and
Bettina Speckmann

10A4 New Representation Results for Planar
Graphs. Farhad Shahrokhi

10:50-12:10: Session 10B—Voronoi and Relatives

10B1 New Sequential and Parallel Algorithms for
Computing Beta-spectrum. Gabriela Majewska
and Miros law Kowaluk

10B2 Voronoi Diagrams from Distance Graphs.
Mario Kapl, Franz Aurenhammer and Bert
Jüttler

10B3 A Sweepline Algorithm for Higher Order
Voronoi Diagrams. Evanthia Papadopoulou and
Maksym Zavershynskyi

10B4 On the Complexity of the Partial Least-
Squares Matching Voronoi Diagram. Matthias
Henze, Rafel Jaume and Balazs Keszegh

12:10-13:30: Lunch Break

13:30-14:30: Session 11A—Optimal Motion

11A1 A Truly Local Strategy for Ant Robots
Cleaning Expanding Domains. Rolf Klein, David
Kriesel and Elmar Langetepe

11A2 2-Modem Pursuit-Evasion Problem.
Yeganeh Bahoo Torudi, Ali Mohades, Marzieh
Eskandari and Mahsa Sorouri

11A3 Euclidean Traveling Salesman Tours through
Stochastic Neighborhoods. Pegah Kamousi and
Subhash Suri

13:30-14:30: Session 11B—Integer Distance

11B1 Large-Volume Open Sets in Normed Spaces
without Integral Distances. Sascha Kurz and
Valery Mishkin

11B2 Clear Unit-Distance Graphs. Marc van Krev-
eld, Maarten Löffler and Frank Staals

11B3 Extending Partial Representations of Proper
and Unit Interval Graphs. Pavel Klav́ık, Jan
Kratochv́ıl, Yota Otachi, Ignaz Rutter, Toshiki
Saitoh, Maria Saumell and Tomas Vyskocil

14:30-15:00: Coffee Break

15:00-16:00: Session 12A—Matching

12A1 Augmentability of Geometric Matching and
Needlework. Tillmann Miltzow

12A2 Quasi-Parallel Segments and Characteriza-
tion of Unique Bichromatic Matchings. Andrei
Asinowski, Tillmann Miltzow and Günter Rote

12A3 Hierarchical Flows with an Application to
Image Matching. Stefan Funke and Sabine
Storandt

15:00-16:00: Session 12B—Labeling

12B1 Two-Sided Boundary Labeling with Adja-
cent Sides. Philipp Kindermann, Benjamin Nie-
dermann, Ignaz Rutter, Marcus Schaefer, André
Schulz and Alexander Wolff

12B2 Trajectory-Based Dynamic Map Labeling.
Andreas Gemsa, Benjamin Niedermann and
Martin Nöllenburg

12B3 Dynamic Point Labeling Is Strongly
PSPACE-hard. Kevin Buchin and Dirk H.P.
Gerrits

16:00-16:10: Closing Remarks

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Facets for Art Gallery Problems

Sándor P. Fekete⇤ Stephan Friedrichs* Alexander Kröller* Christiane Schmidt*

Abstract We discuss polyhedral methods for com-
puting optimal solutions for large instances of the Art

Gallery Problem (AGP). We extend our previous
work [7], which uses a primal-dual linear program-
ming approach to solve the fractional AGP to opti-
mality, using cutting planes that eliminate fractional
solutions.

We identify two classes of facets of the associ-
ated polytopes, based on Edge Cover (EC) and
Set Cover (SC) inequalities. Solving the separation
problem for these facets is NP-complete, but exploit-
ing the underlying geometric structure of the AGP, we
show that large subclasses of fractional SC solutions
cannot occur for the AGP. This allows us to sepa-
rate the relevant subset of facets in polynomial time.
Finally, we characterize all facets for finite AGP re-
laxations with coefficients in {0, 1, 2}.

1 Introduction

The Art Gallery Problem (AGP) asks for the
minimum number of points that can guard a given
polygonal region P with n vertices. Chvátal [3] (and
Fisk [6]) showed that bn

3 c guards are sometimes nec-
essary and always sufficient for a simple polygon P .
See O’Rourke [9] for a classical survey.

Algorithmically, the AGP is closely related to the
Set Cover (SC) problem; it is NP-hard, even for
simple polygons [8]. However, there are two differ-
ences to a discrete SC problem. On the one hand,
geometric variants of problems may be easier to solve
or approximate than their discrete, graph-theoretic
counterparts; on the other hand, the AGP is far from
being discrete: both the set that is to be covered (all
points in P) and the covering family (all visibility
polygons within P) usually are uncountably infinite.

Amit, Mitchell and Packer [1] have considered
purely combinatorial primal and dual heuristics for
general AGP instances. Only very recently have re-
searchers begun to combine methods from integer lin-
ear programming with non-discrete geometry in order
to obtain optimal solutions. As we showed in [7], it
is possible to combine an iterative primal-dual relax-
ation approach with structures from computational
geometry in order to solve AGP instances with unre-
stricted guard positions. Couto et al. [5] used a similar

⇤
Department of Computer Science, TU Braunschweig,

Germany. {s.fekete, stephan.friedrichs, a.kroeller,

c.schmidt}@tu-bs.de

Figure 1: (Top) An optimal fractional solution of
an AGP instance. The half-filled circles indicate 1

2 -
guards. (Bottom) Cutting planes from Sections 3
and 4 force 2 guards in the left and 5 in the right
part of the polygon respectively, thus yielding an in-
teger optimum.

approach for the AGP with vertex guards. Closely
related to this paper, Balas and Ng [2] describe all
facets with coefficients in {0, 1, 2} of the discrete SC
polytope.

Formal Description We consider a polygonal region
P , possibly with holes, with n vertices. For a point
p 2 P , we denote by V(p) the visibility polygon of p
in P . P is star-shaped if P = V(p) for some p 2 P .
The set of all such points is the kernel of P . For a set
S ✓ P , V(S) := [p2SV(p). A set C ✓ P is a guard

cover, if V(C) = P . The AGP asks for a guard cover
of minimum cardinality.

Our Results In this paper, we extend and deepen
our previous work on iterative primal-dual relax-
ations, by proving a number of polyhedral properties
of the resulting AGP polytopes.

• We show how to employ cutting planes for an
iterative primal-dual framework for solving the
AGP. This is interesting in itself, as it provides an
approach to tackling optimization problems with
infinitely many constraints and variables. The
particular challenge is to identify constraints that

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be

considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a

journal.

1

29th European Workshop on Computational Geometry, 2013

remain valid for any choice of infinitely many pos-
sible primal and dual variables, as we are solving
an iteratively refined sequence of LPs.

• Based on a geometric study of the involved SC
constraints, we characterize all facets of involved
AGP polytopes that have coefficients in {0, 1, 2}.
We also provide an additional class based on
Edge Cover (EC) constraints.

• One class of discussed facets originates from the
SC polytope. In that setting, the separation
problem is NP-complete. We exploit the geome-
try to prove that the majority of these facets can-
not cut off fractional solutions in an AGP setting
(under reasonable assumptions), allowing us to
avoid the NP-complete separation problem.

• We demonstrate the practical usefulness of our
results with experiments.

2 Mathematical Programming Formulation and
LP-Based Solution Procedure

Let G ✓ P be a set of possible guard locations, and
W ✓ P a set of witnesses, i. e., points to be guarded.
We assume W ✓ V(G). In previous work [7], we
have presented an LP-based procedure for the orig-
inal AGP. It can be formulated as an integer linear
program AGP(G,W):

min
X

g2G

xg (1)

s. t.
X

g2G\V(w)

xg � 1 8w 2 W (2)

xg 2 {0, 1} 8g 2 G (3)

The original problem, AGP(P, P), has uncountably
many variables and constraints and thus cannot be
solved directly, especially, because a finite witness set
generally cannot ensure coverage of P [4]. So we con-
sider finite G,W ⇢ P . For dual separation and to
generate lower bounds, we require the LP relaxation
AGR(G,W) obtained by relaxing the integrality con-
straint (3):

0 xg 1 8g 2 G . (4)

We have shown that AGR(P, P) can be solved op-
timally for many problem instances by using finite G

and W and solving the primal and dual separation
problems, see [7]:

1. Given a solution (xg)g2P , decide if it is feasible
for AGR(G,P), i. e., completely covers the poly-
gon, or prove infeasibility by presenting an in-
sufficiently covered point w. In the latter case
a new witness w is added to W , and the LP
is re-solved. Otherwise, (xg)g2P is optimal for
AGR(G,P), and its objective value is an upper
bound for AGR(P, P).

2. Given a solution (yw)w2P for the dual LP of
AGR(G,W), decide whether it is feasible for the
dual of AGR(P,W), or prove infeasibility by pre-
senting a violated dual constraint. This coincides
with presenting an additional guard point g that
will improve the solution. If such a g does not
exist, (yw)w2P is an optimal dual solution for
AGR(P,W) and the objective value is a lower
bound for AGR(P, P).

If the upper and the lower bound meet, we have an
optimal solution of the fractional AGP, AGR(P, P).

Both separation problems can be solved efficiently
using the overlay of the visibility polygons of all points
g 2 G with xg > 0 (for the primal case) and all w 2 W

with yw > 0 (for the dual case), which decomposes P

into a planar arrangement of bounded complexity.
Our approach may produce fractional solutions as

in Fig. 1. In this paper, we use cutting planes to
eliminate such fractional solutions. The cuts must
remain feasible in all iterations of our algorithm, so
feasibility for AGP(G,W) is insufficient; we require
them not to cut off integer solutions of AGP(G0

, P)
for any G

0 � G.

3 Set Cover Facets

We transfer known facets [2] of the SC polytope to
the AGP polytope, and show that the underlying ge-
ometry greatly reduces their impact on the involved
AGP polytopes.

3.1 A Family of Facets

Consider a finite non-empty subset ; ⇢ S ✓ W of
witness positions. Every feasible cover of P is a cover
of S. Analogous to what Balas and Ng [2] did for
the SC polytope, we partition P = J0 [̇ J1 [̇ J2, as
follows, see Fig. 2: J2 := {g 2 P | S ✓ V(g)}, the
set of positions that cover all of S; J0 := {g 2 P |
V(g) \ S = ;}, the set of positions that see none of
S; J1 := P \ (J2 [J0) the set of positions that cover
a non-trivial subset of S. Thus, it takes one guard in
J2, or at least two guards in J1 to cover S. This can
be captured in the following inequality:

X

g2J2\G

2xg +
X

g2J1\G

xg � 2 . (5)

Sufficient coverage of S is necessary for sufficient
coverage of P , so (5) is valid for any feasible solution
of AGP(G,P). However, covering S may require more
than two guards in J1, so (5) does not always provide
a supporting hyperplane of conv(AGP(G,W)). For
|S| 2, the inequality never cuts off any point of
AGR(G,W); hence, we only consider the case |S| � 3.

In order to show when Inequality (5) defines a facet
of conv(AGP(G,W)), we apply a result of [2] to the

2

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

w2

w1

w4

w3

J0
J2

J1

Figure 2: Witness selection S = {w1, w2, w3, w4} and
resulting partition P = J0 [̇ J1 [̇ J2.

AGP setting. All proofs in this paper are omitted due
to space limitations.

Lemma 1 Let P be a polygon and G,W ⇢ P

finite sets of guard and witness positions. Then

conv(AGP(G,W)) is full-dimensional, if and only if

|V(w) \G| � 2 8w 2 W .

We require some terminology adapted from [2].
Two guards g1, g2 2 J1 form a 2-cover of S, if
S ✓ V({g1, g2}). The 2-cover graph is the graph with
nodes in J1 \ G and an edge between g1 and g2 iff
g1, g2 are a 2-cover. Finally, we define T (g) := {w 2
V(g) \W | V(w) \G \ (J0 \ {g}) = ;}.

Theorem 2 Given a polygon P and finite G,W ⇢ P ,

let conv(AGP(G,W)) be full-dimensional, and let

S be maximal, i. e., there is no w 2 W \ S with

V(w) ✓ V(S). Then Inequality (5) is facet-defining

for conv(AGP(G,W)), if and only if:

1. Every 2-cover graph component has an odd cycle.

2. 8g 2 J0 \G with T (g) 6= ; there exists either

(a) some g

0 2 J2 \G such that T (g) ✓ V(g0), or

(b) g

0
, g

00 2 J1\G with T (g)[S ✓ V(g0)[V(g00).

3.2 Geometric Properties.

For any size |S|, there are SC instances where the gen-
eral, abstract variant of Inequality (5) actually cuts off
fractional solutions [2]. In this section, we show that
for the AGP, only a very reduced number of these
actually occur.

Lemma 3 Let P be a polygon and G,W ⇢ P be

finite. Assume ; ⇢ S ✓ W is minimal for G, i. e.,

there is no proper subset R (S inducing the same

Inequality (5) as S. Then the LP coefficient matrix

of AGP(G,S) contains a permutation of the full cir-

culant of order k = |S|, which is defined as

C

k�1
k :=

0

BBBB@

0 1 · · · 1

1 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1
1 · · · 1 0

1

CCCCA
2 {0, 1}k⇥k

. (6)

w2
w1

w3

g1
g3

g2
w2

w1

w4

w3

g3 g2

g1g4

g

⇤

g2

g3 g4

g1
w3

w1

w4

w2
w

⇤

Figure 3: P

2
3 (left) and two attempts for P

3
4 (middle

and right). In the left case, Ineq. (5) enforces using
two guards instead of three 1

2 -guards. The attempts
for P

3
4 are star-shaped (middle) or invalid, as xg1 =

. . . = xg4 = 1
3 is infeasible (right, at w

⇤).

This motivates a formal definition of polygons that
correspond to C

k�1
k .

Definition 1 (Full Circulant Polygon) A poly-

gon P = P

k�1
k along with G = {g1, . . . , gk} ⇢ P

and W = {w1, . . . , wk} ⇢ P for k � 3 is called Full
Circulant Polygon, if

V(gi) \W = W \ {wi} 81 i k, and (7)
|V(w) \G| � k � 1 8w 2 P . (8)

Note that P

k�1
k is defined such that C

k�1
k com-

pletely describes the visibility relations between G

and W . This implies that the optimal solution of
AGR(G,W) is 1

k�11 (i.e., assigns a value of 1
k�1 to

each g 2 G), with total cost k
k�1 . It is feasible for

AGR(G,P

k�1
k) by Property (8).

Figure 3 captures construction attempts for mod-
els of C

k�1
k . P

2
3 exists, but for k � 4, the polygons

are either star-shaped or not full circulant. If they
are star-shaped, the optimal solution is to place one
guard within the kernel. If they are not full circulant
polygons, the optimal solution of AGR(G,W) is in-
feasible for AGR(G,P

k�1
k). In this case, the current

fractional solution is intermittent, i.e., it will be cut off
by the algorithm by introducing new witnesses. Both
cases eliminate the need for a cutting plane. In the
following we argue that P

k�1
k is indeed star-shaped

for k � 4, allowing us to avoid the NP-complete sep-
aration problem of finding all permutations of all full
circulants in the matrix of AGP(G,W) by reducing
our search to k = 3.

The first step is Lemma 4, which restricts the pos-
sible structure of P k�1

k . It provides the basis for our
main theorem.

Lemma 4 For k � 4, every full circulant polygon is

simple, i.e., it has no holes. This is not true for k < 4.

Theorem 5 For k � 4, every full circulant polygon

is star-shaped.

By Theorem 5, no cuts of type (5) are necessary
to cut off fractional solutions for a full circulant poly-
gon P

k�1
k with k � 4. It is still possible to embed

3

29th European Workshop on Computational Geometry, 2013

P

k�1
k in larger polygons, where these cuts play a role.

However, our experiments, see Section 5, suggest that
these cases rarely occur in practice.

3.3 All Facets with Coe�cients in {0, 1, 2}

Balas and Ng [2] identified all SC facets with coef-
ficients in {0, 1, 2}. The only nontrivial facet class
corresponds to Ineq. (5). As for finite G,W ⇢ P ,
AGP(G,W) is an SC instance, we have identified all
nontrivial AGP facets with coefficients in {0, 1, 2}.

4 Edge Cover Facets

Solving AGR(G,W) for finite G,W ⇢ P in which no
guard sees more than two witnesses is equivalent to
solving a fractional edge cover instance on the follow-
ing graph: The nodes correspond to the witnesses,
each guard is represented by an edge or a loop. This
is the case in the 5-gonal corridor in the right part of
Fig. 1. As outlined in [7], the inequality

X

g2V(W)\G

xg �
⇠
k

2

⇡
(9)

can cut off such fractional solutions, provided |W | is
odd. It is a valid constraint if no guard exists that sees
more than two witnesses in W . Inequality (9) is facet-
defining for conv(AGP(G,W)) under some conditions
that we leave out due to space restrictions.

5 Computational Experience

A variety of experiments on benchmark polygons show
the usefulness of our cutting planes. We employed
the same four classes of test polygons as in [7] with
approximately 60, 200, 500 and 1000 vertices.

The experiments keep track of the gap between
the smallest (integer) upper bound and largest (frac-
tional) lower bound. They were conducted on 3.0GHz
Intel dual core PCs with 2GB of memory. Our algo-
rithms used CGAL 4.0 and CPLEX 12.1.

Due to space restrictions, we only present the rel-
ative gap over time for so-called von Koch polygons
with 1000 vertices. Fig. 4 shows the distribution of
relative gaps over time for different combinations of
cutting planes in the third quartile.

Clearly, using no separation yields the largest gaps.
The EC cuts are successful in reducing the gap and
the SC cuts for k = 3 close the gaps faster than all
other cut separators. The SC cuts for k 2 {3, 4} are
weaker than those limited to k = 3, supporting the
practical relevance of our arguments from Section 3:
The separation for k = 4 takes time, but has no ben-
efits for the gap. Combining SC cuts for k = 3 and
EC cuts is slightly slower than SC cuts for k = 3 only
due to an overlap of the facet classes.

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280
300

320
340

360
380

400
420

440
460

480
500

520
540

560
580

600

0
1
2
3
4
5
6
7
8
9

10

no separator
odd cycle
set cover (3)
set cover (3) and odd cycle
set cover (3 and 4)

time [s]

ga
p

[%
]

Figure 4: Separator performance.

6 Conclusion

In this paper, we have shown how we can exploit
both geometric properties and polyhedral methods of
mathematical programming to solve a classical and
natural, but highly challenging problem from com-
putational geometry. We have shown that an NP-
complete separation problem for the SC case can
mostly be avoided in the AGP scenario by considering
its underlying geometric structure.

Acknowledgments

This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG), contract KR 3133/1-1 (Kunst!).

References

[1] Y. Amit, J. S. B. Mitchell, and E. Packer. Locating
guards for visibility coverage of polygons. Int. J. Com-
put. Geometry Appl., 20(5):601–630, 2010.

[2] E. Balas and M. Ng. On the set covering polytope:
I. all the facets with coefficients in {0, 1, 2}. Math.
Program., 43(1):57–69, January 1989.

[3] V. Chvátal. A combinatorial theorem in plane geome-
try. J. Comb. Theo., Series B, 18(1):39 – 41, 1975.

[4] K.-Y. Chwa, B.-C. Jo, C. Knauer, E. Moet, R. van
Oostrum, and C.-S. Shin. Guarding art galleries by
guarding witnesses. Int. J. Comput. Geometry Appl.,
16:205–226, 2006.

[5] M. C. Couto, P. J. de Rezende, and C. C. de Souza. An
exact algorithm for minimizing vertex guards on art
galleries. Int. Trans. Op. Res., 18(4):425–448, 2011.

[6] S. Fisk. A short proof of Chvátal’s watchman theorem.
J. Comb. Theo., Series B, 24(3):374, 1978.

[7] A. Kröller, T. Baumgartner, S. P. Fekete, and
C. Schmidt. Exact solutions and bounds for general
art gallery problems. J. Exp. Alg., 17, 2012.

[8] D.-T. Lee and A. K. Lin. Computational complex-
ity of art gallery problems. IEEE Trans. Inf. Theor.,
32(2):276–282, 1986.

[9] J. O’Rourke. Art Gallery Theorems and Algorithms.
International Series of Monographs on Computer Sci-
ence. Oxford University Press, New York, NY, 1987.

4

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

The Minimum Guarding Tree Problem

Adrian Dumitrescu∗ Joseph S. B. Mitchell† Pawe!l Żyliński‡

Abstract

We provide a simple alternative NP-hardness proof of
the problem of finding a guarding tree of minimum
length for a set of orthogonal line segments in the
plane (N. Xu, Complexity of minimum corridor guard-
ing problems, Inform. Process. Lett. 112(17-18), 691-
696). Then, we present two approximation algorithms
of factors 2 and 3.98, respectively, for computing a
minimum guarding tree for a subset of a set of n ar-
bitrary non-parallel lines in the plane; their running
times are O(n8) and O(n6 log n), respectively. Finally,
we show that this problem is NP-hard for lines in 3-
space.

1 Introduction

A connected set of lines or line segments can model
of the corridors in a building. Consider a mobile
guard that patrols the corridors; the guard has un-
limited visibility, so a line/segment can be “seen” in
both directions from any point on it. The problem is
to find a shortest guarding “network” for the guard,
e.g., a path, a tree, or a closed route, such that when
traversing all the edges of the network (moving only
within the network), each line/segment is visited at
least once.

In this paper we study the variant of the problem
in which the guarding network is restricted to form a
tree; obviously, a minimum length guarding network
is always a tree. Formally, the problem is defined as
follows. Let X be a connected set of lines or line seg-
ments in the plane, i.e., there exists a path ξ ⊂ ∪l∈X l
from any point p ∈ l to any other point p′ ∈ l′, for any
l, l′ ∈ X . (Observe that a set of lines X is connected
if and only if not all lines are parallel, i.e., there exist
two non-parallel lines in X). Given a subset X̄ ⊆ X , a
guarding tree T = (V (T), E(T)) for X̄ is a tree, with
vertices (points) and edges (segments) contained in
the union of the elements in X , such that if the mo-
bile guard runs on the edges of T , all elements in X̄

∗Department of Computer Science, University of Wisconsin–
Milwaukee, USA, dumitres@uwm.edu. Partially supported by
NSF grant DMS-1001667.

†Department of Applied Mathematics and Statistics, State
University of NY at Stony Brook, USA, jsbm@ams.sunysb.edu.
Partially supported by NSF (CCF-1018388) and by Metron
Aviation (subcontract from NASA Ames

‡Institute of Informatics, University of Gdańsk, Poland,
zylinski@ug.edu.pl.

are visited by the guard. The weight |T | of a guarding
tree T is the sum of its weights of edges, where the
weight of an edge is its Euclidean length.

The minimum guarding tree problem for lines
(MGTL)

Given a subset L̄ of a set L of non-parallel lines in
the plane, find a minimum-weight guarding tree
for L̄.

The minimum guarding tree problem for
segments (MGTS)

Given a subset S̄ of a connected set S of line
segments in the plane, find a minimum-weight
guarding tree for S̄.

Previously, MGTS appears to have been only con-
sidered for arrangements of axis-aligned segments, so-
called grids: Xu and Brass [15, 16] prove the NP-
hardness of MGTS by a reduction from the connected
vertex cover problem in planar graphs with maximum
degree four.

Our results. We first show that MGTS is NP-hard,
and in view of [15, 16], we reprove this result in a
simpler way. Next, we propose two approximation al-
gorithms for MGTL. Their approximation ratios are
2 and 3.98, respectively, and the running times are
O(n8) and O(n6 log n), respectively. Finally, we show
that the problem of computing a minimum-weight
guarding tree for a set of lines in 3-space is NP-hard
even for orthogonal lines.

Related work. The MGT problem for lines or seg-
ments in the plane is a variant of minimum corridor
connection problem [2, 4, 8]. A wider perspective
locates the problem as a variant of the art gallery
problem for segments; see [5, 7, 10, 12, 13, 14], to
mention just a few. Finally, the MGT problem for
lines/segments is closely related to the group Steiner
tree problem [11].

Notation. Let V (A(L)) denote the set of vertices
of the arrangement A(L) formed by lines in a given
set L. Let G(L) be the weighted planar graph with
vertex set V (A(L)) whose edges connect successive
vertices on the elements in L; the weight of an edge
is the Euclidean distance between the corresponding
vertices along the connecting line. For s, t ∈ V (A(L)),

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

5

29th European Workshop on Computational Geometry, 2013

let π(s, t) denote a shortest path connecting s and t in
G(L), and let |π(s, t)| denote its length. Finally, for a
subset L̄ ⊆ L, let Topt(L̄) denote an optimal guarding
tree for L̄, and for two points p and q in the plane, let
|pq| denote the Euclidean length of the segment pq.

2 NP-hardness of MGTS

In this section we present a simple alternative NP-
hardness proof of MGTS for orthogonal line segments.
We relate MGTS to the rectilinear Steiner tree prob-
lem [6], which is known to be NP-hard; its decision
version is the following.

The rectilinear Steiner tree problem
Given a set S of n lattice points in the plane, and
a positive integer m, does there exists a rectilin-
ear Steiner tree for S of total weight at most m?

Theorem 1 [15, 16] MGTS is NP-hard. The prob-
lem remains so even for orthogonal segments.

Xu and Brass proved the above result by a reduction
from the connected vertex cover problem in planar
graphs with maximum degree four [15, 16]. Our sim-
pler alternative proof is as follows.

Proof. Let P be a set of n lattice points, and let R
be the minimal axis-parallel rectangle containing P .
Consider the arrangement H(P) of lines induced by
P , the so called Hanan grid [9], and for each point in
p ∈ P , add to a set S, initially empty, the maximal
(w.r.t. R) horizontal and vertical segments incident
to p; see Fig. 1 for an illustration. Next, for each
point in p ∈ P , add to S a short horizontal segment
s(p) of length 1/(80n) at distance 1/(80n) from p in
R. Observe that the segment s(p) can be only vis-
ited from the grid segment incident to p, moreover,
from the vicinity of p. Since the Hanan grid H(P) is

Figure 1: NP-hardness reduction [5].

known to contain a rectilinear Steiner tree for P [9],
the reduction, and thus the NP-hardness, follows by
the following claim, which is easy to verify.

Claim. For a positive integer m, there exists a rec-
tilinear Steiner tree for P of length at most m if and
only if there exists a guarding tree for S of weight at
most m + 0.1. !

3 MGTL: A slower 2-approximation

The computational complexity of MGTL remains un-
settled. In this section we obtain the following result.

Theorem 2 There exists a ratio 2-approximation al-
gorithm for MGTL, running in O(n8) time.

Proof. In [5], the authors provide an algorithm that
computes the shortest guarding route (i.e., closed
tour) Ropt for a given subset L̄ of a set L of n non-
parallel lines in the plane in O(n8) time. Consider
a vertex x1 ∈ V (A(L)) that lies on Ropt, and let
x1, x2, . . . , xk ∈ V (A(L)) be the consecutive vertices
along Ropt such that at each vertex xi, i = 1, . . . , k,
at least one new line in L̄ becomes visited; vertices
x1, . . . , xk can be determined in O(n3) time (notice
k < n). Let T be any Steiner tree for {x1, x2, . . . , xk}
in the graph Π ⊆ G(L) that results from the union
of all the edges of the shortest paths π(xi, xi+1),
i = 1, . . . , k − 1; clearly, T can be computed in to-
tal O(n5) time [3], where n = |L|.

Now, by the construction, T is a guarding tree for
L̄, and |T | ≤ |Ropt|. Since doubling the edges of an
optimal guarding tree Topt for L̄ results in a guarding
route for L̄, we obtain |Ropt| ≤ 2 · |Topt|, and thus
|T | ≤ 2 · |Topt|, as required. !

4 MGTL: A slightly faster 3.98-approximation

The running time of the algorithm from Section 3
is quite high. In this section, we present a slightly
faster algorithm, with running time O(n6 log n), and
approximation ratio 3.98.

Guessing key elements of an optimal guarding tree.
Assume w.l.o.g. that no line in the input set L is hori-
zontal or vertical, or is of the positive/negative degree
60 slope, and there are no two vertices in V (A(L))
that lie on a horizontal line or a line with the posi-
tive/negative degree 60 slope.

Consider now a minimum guarding tree Topt =
Topt(L̄) for L̄. Let E be a minimal equilateral trian-
gle containing Topt, with a horizontal lower side. Since
Topt visits all lines in L̄, E intersects all lines in L̄. Let
A = {a1, a2, a3} be the set of (at most three) vertices
of A(L) that determine E, labeled counterclockwise
starting with the lower side of E; we have 2 ≤ |A| ≤ 3.
In particular, Topt visits A. Let E = r1r2r3 be labeled
counterclockwise starting with its lower right corner
(see Fig. 2). Suppose we guess A, hence E is deter-
mined, and then we mark all lines in L̄ that intersect
the triangle a1a2a3. Observe that any tree or route
(not necessarily contained in E) visiting the points in
A visits the marked lines as well.

Our algorithm will generate a tree T (not neces-
sarily contained in E) that visits A, thus all marked

6

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

r1

r2

r3 a1

a2

a3

v3

u3

b3

v1

u1

b1

u2
v2

b2

Figure 2: Guessing key elements of an optimal tour.
Vertices of the arrangement A(L) are drawn as filled
circles; other points are drawn as empty circles. Lines
in L are drawn solid.

lines as well as all the unmarked lines. We will en-
sure that |T | ≤ 5+4

√
3

3
· |Topt|. Consequently, T will

be a valid guarding tree for L̄ that gives a ratio 3.98
approximation of the optimal solution.

Consider first the lower right corner (vertex) r1 of
E; the other corners of E are handled in a similar
way. Consider the set L̄1 ⊂ L̄ of unmarked lines
that intersect the corner triangle ∆a1r1a2. If L̄1 is
empty continue with the next corner triangle of E; so
assume that L̄1 is not empty. Identify an unmarked
line !1 ∈ L̄1 such that the triangle ∆u1a1v1 is minimal
with respect to inclusion (i.e., no other such triangle is
contained in it), where u1 and v1 are the intersection
points of !1 with the boundary of E (see again Fig. 2.)
Both the line !1 and the segment u1v1 = !1 ∩ E are
called extremal.

Obviously, each line in L̄1 is visited by Topt at some
vertex on that line contained in ∆a1r1a2. Assume
that the extremal line !1 ∈ L̄1 is visited by Topt at
vertex b1 ∈ !1 ∩ E. Let B = {b1, b2, b3} be the set of
(at most three) vertices, where Topt visits the extremal
lines; we have 0 ≤ |B| ≤ 3.

Lemma 3 The following inequality holds:

|π(a1, b1)| + |π(b1, a2)| + |π(a2, b2)|+
|π(b2, a3)| + |π(a3, b3)| + |π(b3, a1)| ≤ 2 · |Topt|.

Lemma 4 The following inequality holds:

|u1v1| + |u2v2| + |u3v3| ≤

2
√

3

3

(

|a1a2| + |a2a3| + |a3a1|
)

.

Recall, ui and vi are the intersection points of ex-
tremal line !i with the boundary of E, i = 1, 2, 3; due
to space limits, the proofs of the above lemmas are
omitted.

Approximation algorithm. For each equilateral tri-
angle E′ determined by (at most) 3 vertices A′ ⊂
V (A(L)), with the horizontal lower side, do: Check
whether E′ intersects all lines in L̄. If it does not,
move to the next triangle (E′ cannot be the minimal
equilateral triangle E, with the horizontal lower side,
containing a minimum guarding tree for L̄). Other-
wise, compute the tree T = T (E′) (described below),
which intersects all lines. Output the shortest tree
among these.

Determine the (at most 3) extremal lines !1, !2, !3

corresponding to the three corner triangles of E′, as
computed in the preprocessing step (details omitted).
Consider the line !1; the same computation is done
for the other two lines. Retrieve (again from the pre-
processing) the vertex w1 ∈ !1 ∩ E′ that minimizes
the sum |π(a1, w1)| + |π(w1, a2)|. Similarly, retrieve
wi ∈ !i ∩ E′, for i = 2, 3. If for some i ∈ {1, 2, 3},
!i exists but wi does not exist, abandon this trian-
gle E′, and skip to the next one. (Notice that if E′

corresponds to the equilateral triangle E containing
a minimum guarding tree for L̄ and !i exists, then
bi ∈ !i ∩ E′ exists, hence also wi ∈ !i ∩ E′ exists.)

Consider (at most) six paths π1 = π(a1, w1),
π2 = π(w1, a2), π3 = π(a2, w2), π4 = π(w2, a3),
π5 = π(a3, w3), π6 = π(w3, a1), and w.l.o.g. assume
that |π6| = maxi∈{1,...,6} |πi|. Now, to the initially
empty tree T ′, add all the edges of (at most 5) paths
π1, . . . , π5; but do not add multiple edges/segments.
(Notice that the temporary tree T ′ is a Steiner tree
for A ∪ {w1, w2, w3}, and we do not require that the
computed guarding tree T lies inside E.) Next, to
each vertex wi, append (at most six in total) edges
uiwi and wivi, i = 1, . . . , 3, if not added yet, thus
obtaining the final tree T .

Correctness and approximation ratio. First, ob-
serve that T is connected, and since T is a Steiner
tree for A′, it intersects all marked lines. Next, each
unmarked line intersects a corner triangle ∆airiai+1,
for some i = 1, 2, 3, with a4 = a1. Consider an un-
marked line ! intersecting the triangle ∆a1r1a2. Since
!1 is extremal, ! either (i) intersects u1v1 or (ii) inter-
sects the segment a1u1 on the lower side of E′ and the
segment v1a2 on the right side of E′. In case (i), ! in-
tersects one of the edges v1w1 and w1u1. In case (ii),
! separates w1 from a1 and from a2, and thus the path
πT (a1, w1) (and πT (a2, w1)) in T , connecting vertices
a1 and w1 (resp. a2 and w1) in T , intersect !. Hence in
either of the two cases ! intersects T . Consequently,
T intersects all unmarked lines as well, and thus T is
a valid guarding tree for L̄.

It remains to show that for the shortest tree among
those determined for any choice of E′, its weight is
at most 3.98 · |Topt|. Consider the guarding tree T
computed while handling E′ = E. Since w1 ∈ !1 min-
imizes the sum |π(a1, w1)| + |π(w1, a2)|, we have

7

29th European Workshop on Computational Geometry, 2013

|π(a1, w1)| + |π(w1, a2)| ≤ |π(a1, b1)| + |π(b1, a2)|.

By adding the analogous inequalities for all three cor-
ners of E′ = E and using Lemma 3, we obtain

∑6
i=1 |πi| ≤ 2 · |Topt|.

Next, since |π6| = maxi∈{1,...,6} |πi|, we obtain
∑5

i=1 |πi| ≤ 5
3
· |Topt|.

Consequently, by combining the triangle inequality,
Lemma 3 and 4, we obtain

|T | ≤ 5
3
· |Topt| + |u1v1| + |u2v2| + |u3v3|

≤ 5+4
√

3
3

· |Topt| = 3.97606.... · |Topt|.

Running time. The running time of the algorithm
is determined by the number of triples of vertices in
V (A(L)) that constitute the set A′; there are at most
(

n
2

)3
= O(n6) such triples. Each such triple is handled

in O(log n) time using the information gathered dur-
ing preprocessing (details omitted). Therefore, the
total running time is O(n6 log n), and we have the
following result.

Theorem 5 There exists a ratio 3.98-approximation
algorithm for MGTL, running in O(n6 log n) time.

5 Concluding remarks

We conclude with a few open problems.

(i) What is the complexity of MGTL?

(ii) Can the running time of our algorithms for
MGTL be substantially improved?

(iii) What is the complexity of the MGT problem for
an arrangement of planes in 3-space?

(iv) What is the complexity of the minimum guard-
ing path problem for an arrangement of lines in
the plane? (Here we are interested in finding the
shortest path that visits all lines.)

Similarly, as in the case of line segments in the
plane, we observe that our (simple) NP-hardness
proof of the problem of computing a shortest guard-
ing route for a set of lines in 3-space [5] carries over,
without any modification, to the problem of comput-
ing a minimum-weight guarding tree for a set of lines
in 3-space, thus resulting in the following corollary.

Corollary 6 The MGT problem for lines in 3-space
is NP-hard.

Acknowledgment

The authors thank Marc Benkert, Étienne Schramm, and
Alexander Wolff for valuable remarks and interesting con-
versations on the topic.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars, Computational Geometry, Springer
Verlag, 3rd edition, 2010.

[2] H. L. Bodlaender, C. Feremans, A. Grigoriev, E. Pen-
ninkx, R. Sitters, T. Wolle, On the minimum corridor
connection problem and other generalized geometric
problems, Comput. Geom., 42(9), 939–951 (2009).

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
Introduction to Algorithms, third edition, MIT Press,
Cambridge, 2009.

[4] E. D. Demaine, J. O’Rourke, Open problems from
CCCG 2000, Proc. eedings of 13th CCCG, 185–187
(2001).

[5] A. Dumitrescu, J. S. B. Mitchell, and P. Żyliński,
Watchman routes for lines and segments, Proc of 13th
SWAT, Lect. Notes Comp. Sci. 7357, 36–47 (2012).

[6] M. R. Garey and D. S. Johnson, The rectilinear
Steiner tree problem in NP complete, SIAM J. Appl.
Math. 32, 826–834 (1977).

[7] L. P. Gewali and S. Ntafos, Covering grids and or-
thogonal polygons with periscope guards, Computat.
Geom. 2(6), 309–334 (1993).

[8] A. Gonzalez-Gutierrez, T. F. Gonzalez, Approxima-
tion algorithms for the minimum-length corridor and
related problems, Proc. the 19th CCCG, 253–256
(2007).

[9] M. Hanan, On Steiner’s problem with rectilinear dis-
tance, SIAM J. Appl. Math. 14, 255–265 (1966).

[10] A. Kosowski, M. Ma"lafiejski, and P. Żyliński, Cooper-
ative mobile guards in grids, Computat. Geom. 37(2),
59–71 (2007).

[11] J. S. B. Mitchell, Geometric shortest paths and net-
work optimization, in Handbook of Computational
Geometry (J.-R. Sack, J. Urrutia, eds.), Elsevier,
633–701 (2000).

[12] S. Ntafos, On gallery watchmen in grids, Inform. Pro-
cess. Lett. 23(2), 99–102 (1986).

[13] J. O’Rourke, Art Gallery Theorems and Algorithms,
Oxford University Press, New York, 1987.

[14] C. D. Tóth, Illuminating disjoint line segments in the
plane, Discrete Comp. Geom. 30(3), 489–505 (2003).

[15] N. Xu, Complexity of minimum corridor guarding
problems, Inform. Process. Lett. 112(17-18), 691–696
(2012).

[16] N. Xu and P. Brass, On the complexity of guarding
problems on orthogonal arrangements, Abstracts of
the 20th FWCG, #33 (2010).

8

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Covering Class-3 Orthogonal Polygons with

the Minimum Number of r-Stars

Leonidas Palios∗† Petros Tzimas∗

Abstract

We consider the problem of covering simple orthog-
onal polygons with the minimum number of r-stars.
The problem has been considered by Worman and
Keil [10] who described an O(n17poly-logn)-time al-
gorithm where n is the size of the given polygon.

We consider the above problem on simple class-3
orthogonal polygons; a class-3 orthogonal polygon is
defined to have dents along at most 3 different orienta-
tions. By taking advantage of geometric properties of
these polygons, we are able to provide an O(n2)-time
algorithm; this is the first purely geometric algorithm
for this problem and it paves the way for obtaining al-
gorithms for the problem on general simple orthogonal
polygons that are faster than Worman and Keil’s.

1 Introduction

The field of Art Gallery problems is a vibrant and
large research area in combinatorial and computa-
tional geometry [7, 9]. The multitude of variants is in
part due to the fact that getting the minimum number
of guards to watch a given polygon is NP-complete [1],
which stimulated research in restricted types of poly-
gons or with guards possessing different visibility or
mobility characteristics.

Guarding problems have been considered on orthog-
onal polygons, i.e., polygons whose edges are either
horizontal or vertical; the edges can then be char-
acterized as N-edges, S-edges, E-edges, and W-edges
(see Figure 1). Of particular importance are edges
whose both endpoints are reflex vertices of the poly-
gon; such edges are called dents and as above they
are characterized as N-dents, S-dents, E-dents, and
W-dents (see Figure 1). Orthogonal polygons can be
classified in terms of the types of dents that they con-
tain [2]: a class-k orthogonal polygon (0 ≤ k ≤ 4) is
defined to have dents along at most k different ori-
entations. Class-2 polygons can be further classified
into class-2a where the 2 dent orientations are parallel

∗Computer Science Department, University of Ioannina,
GR-45110 Ioannina, Greece, {palios, ptzimas}@cs.uoi.gr

†This research has been co-financed by the European
Union (European Social Fund - ESF) and Greek national
funds through the Operational Program “Education and Life-
long Learning” of the national Strategic Reference Framework
(NSRF) - Research Funding Program: THALIS UOA (MIS
375891).

N-edge

S-edge

E-edge

W-edge

N-dent

S-dent

E-dent
W-dent

p

q

Figure 1: Illustration of the main definitions.

(i.e., N and S, or E and W), and class-2b where the 2
dent orientations are perpendicular to each other.

Essential to a guarding problem is the notion of
visibility of the guards used. We consider r-visibility:
in an orthogonal polygon P , two points p, q of P are r-
visible from one another if and only if the axis-parallel
rectangle with p, q at opposite corners lies within P
(see Figure 1). Then, a polygon P is an r-star if there
exists a point p of P such that every point q ∈ P
is r-visible from p; an r-star is a convex orthogonal
polygon such that there exists a perpendicular line
intersecting both its topmost and bottommost edge
and a horizontal line intersecting both its leftmost and
rightmost edge. (We note that in orthogonal polygons
we may also have s-visibility and s-stars.)

Clearly, the problem of determining a minimum
set of r-visibility guards to watch a simple polygon
is equivalent to determining a minimum covering of
the polygon by r-stars. A covering of a polygon P
into a set S of pieces (or subpolygons or components)
requires that the union of the pieces in S is equal
to P . If additionally the pieces are required to be
mutually disjoint (except along boundaries), then we
have a partition. Obviously, a partition of a polygon
also forms a covering of the polygon; thus, coverings
are better than partitions in terms of the number of
pieces. On the other hand, covering problems prove
to be harder than their corresponding partition prob-
lems and there are cases where the former are NP-
hard whereas the latter admit polynomial solutions.

Covering by r-stars has been investigated early
enough. Keil [4] described an O(n2)-time algorithm to
cover a class-2a orthogonal polygon by r-stars. Cul-

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

9

29th European Workshop on Computational Geometry, 2013

berson and Reckhow [2] showed that Keil’s algorithm
is worst-case optimal if the r-stars need to be explic-
itly reported and presented an O(n)-time algorithm to
count the number of r-stars needed. The time com-
plexity of covering a class-2a orthogonal polygon with
r-stars was improved by Gewali, Keil, and Ntafos [3]
who gave an O(n)-time algorithm to report the lo-
cations of a minimum-cardinality set of guards. An
improvement of this algorithm is presented in [5]. The
problem of covering general orthogonal polygons with
r-stars was addressed by Worman and Keil who took
advantage of the graph-theoretic approach used in [6]
(for s-star coverings) to describe an O(n17poly-logn)-
time algorithm [10].

In this paper, we study the r-star covering prob-
lem for class-3 orthogonal polygons. We take advan-
tage of geometric properties of these polygons and we
describe an O(n2)-time plane-sweep algorithm to re-
port the locations of a minimum-cardinality set of r-
visibility guards to watch the entire polygon. This is
the first purely geometric algorithm for this problem
and it paves the way for obtaining algorithms for the
problem on general simple orthogonal polygons that
are faster than Worman and Keil’s.

2 Theoretical Framework

We consider simple orthogonal polygons; so, in the
following, we will omit the adjective simple.

Consider an orthogonal polygon P that does not
have N-dents. For any horizontal line L intersecting
P , the portion of P on and below L consists of a
number of disjoint parts of P each intersecting L in
a single line segment (due to the lack of N-dents); for
convenience, we call each such part of P a trouser.
Next, we give extensions of the notions of “grid seg-
ment” and “level” used in [3]: a grid segment of P
or a trouser T is a maximal (closed) horizontal line
segment in P or T ; the level of a point or a horizon-
tal line segment (which may be a grid segment or a
horizontal edge) is its y-coordinate. We also use the
notion of orthogonal projection in an orthogonal poly-
gon P given in [5]: the orthogonal projection o(s) of a
horizontal line segment s at level ! in P onto the grid
segment s′ at level !′ ≥ ! is the maximal subsegment
of s′ such that for each point a of o(s) there exists
a vertical line segment in P that goes through a and
intersects s. Finally, for a horizontal line segment s
(edge or grid segment) we define its x-range to be the
set of x-coordinates of the points of s. We note that
although a polygon is considered a closed set, we con-
sider edges to be open sets (i.e., they do not include
their endpoints) and thus their x-ranges are open sets
as well.

The following lemma provides three very important
properties of class-3 orthogonal polygons.

Lemma 2.1 Let P be a class-3 orthogonal polygon
and assume that P has no N-dents. Then:

(i) The polygon P has a single topmost edge.

(ii) Consider sweeping P from bottom to top. Each
edge encountered other than the bottommost
edge of each trouser is incident on the boundary
of the swept polygon.

(iii) Let T be a trouser when P is intersected by a
horizontal line at level !, and let s1 and s2 be grid
segments of T at levels !1 and !2, respectively,
such that !1 < !2 ≤ ! and there exists a vertical
line segment in T intersecting both s1 and s2.
Then, the orthogonal projection of s1 onto ! is a
subset of the orthogonal projection of s2 onto !.

3 The Algorithm

Our algorithm applies plane-sweeping from bottom to
top (as do the algorithms in [3, 5]) assuming that the
given class-3 polygon has no N-dents (thus we can
take advantage of Lemma 2.1); the sweep-line stops
at each S-edge placing a guard-request (Section 3.2),
and at each N-edge where it may place a guard or
a guard request, and it clips information on guards
and guard-requests (Sections 3.1-3.3). The algorithm
reports the locations of a minimum-cardinality set of
r-visibility guards to watch the entire input polygon.

3.1 Maintaining and Processing Guards
We follow the convention in the algorithms in [3] and
[5], according to which the guards are placed at the
leftmost possible point of the highest possible level;
thus each guard is located at the level of a N-edge. In
order to find the appropriate locations of the guards,
with each guard we maintain:

• a location-range, or loc-range for short, which
is the range of x-coordinates of the points at
which the guard can currently be placed so that
it watches a S-edge (if assigned; see Section 3.3)
and as much of the unseen polygon as possible;

• a visibility-range, or vis-range for short, which is
the range of x-coordinates of the points above the
current position of the sweep-line that are visible
to the guard.

Since there are no N-dents, each of these ranges is a
single interval of x-coordinates, and because we place
guards so that they can see as much of the polygon
above them as possible, it always holds that the loc-
range of a guard is a subset of its vis-range.

For a guard g to be placed at a grid segment s! at
a level !, initially its loc-range and its vis-range co-
incide with the range of x-coordinates of s!. As the
sweep-line moves upward, both ranges get clipped by
N-edges whose x-ranges intersect them. Finally, when

10

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

ee

e1

e2

(a) (b)

Figure 2: (a) A guard needs to be placed no higher
than the N-edge e2 to watch the S-edge e; (b) the f-
range (shown dotted) and the p-range (shown dashed)
of the S-edge e.

a N-edge e is encountered such that the (possibly
clipped) loc-range of g is a subset of the closure of the
x-range of e, then g is placed at the point (xl, !) where
xl is the left bound value of g’s loc-range right before
the N-edge e is encountered (in accordance with the
convention followed by [3, 5]).

3.2 Determining Where to Place a Guard
Consider any S-edge e of the given polygon; see Fig-
ure 2(a). As long as the x-range of no encountered
N-edge intersects the x-range of e, then a guard at
a level higher than the level of the N-edge can see
the entire e; this is the case with the N-edge e1 in
Figure 2(a). However, if the x-range of a N-edge d
intersects e’s x-range, then a guard must be placed
at a level between (and including) the levels of e and
d since no guard at a level higher than the level of d
can see the entire e; see edges e and e2 in Figure 2(a).
Additionally, if ! is the level to place such a guard,
the requirement that the guard sees the entire edge e
implies that the guard needs to be placed at the or-
thogonal projection of the grid segment containing e
onto level !.

Therefore, in order to enforce the above observa-
tions, each S-edge e, when processed, submits a type-1
guard-request with which we maintain:

• a forcing-range, or f-range for short, which is the
x-range of the edge e (because a guard is needed
to watch e if the x-range of a N-edge above e
intersects e’s f-range);

• a placement-range, or p-range for short, which is
the x-range of the grid segment containing e (this
is the initial range of x-coordinates of the guard’s
location).

Each of these ranges is a single interval of x-
coordinates (the f-range is open, the p-range is
closed), and it always holds that the f-range of a S-
edge is a subset of its p-range (Figure 2(b)).

In fact, there is one more case in which we need a
guard-request. See Figure 3 (left). While processing
the N-edge e, a guard g gets positioned as shown to
watch the lowermost S-edge. The same guard watches

ee

e′
e1

e2

gg

g1 g2

Figure 3: Type-2 guard-requests (f-range shown dot-
ted, p-range shown dashed).

the S-edge e′ which justifies the removal of the guard-
request produced due to e′; however, if we do not do
anything else, no need will be recorded for a guard
to watch the orthogonal projection of e′ onto a level
slightly above the level of e. This clearly leads to an
error in the case of Figure 3 (left).

Therefore, at each N-edge e (of a trouser T), we
investigate the need to place a type-2 guard-request.
Let I be the grid-segment of T at a level slightly above
e’s level, and let U be the set of points of I that are
not watched by any of the currently placed guards.
If U = ∅, no guard-request is needed. Otherwise, a
guard-request r is submitted with p-range equal to I
and f-range equal to (xl, xr) where xl (xr, resp.) is the
x-coordinate of the leftmost (rightmost, resp.) point
in U (see Figure 3 (right)).

Here is how the f- and p-range of a guard-request r
submitted by an edge e are used: During the sweep-
ing, as long as we encounter N-edges whose x-ranges
do not intersect either range, no change occurs. If
we encounter a N-edge whose x-range intersects the
p-range of r, then the p-range simply gets clipped.
However, if we encounter a N-edge d whose x-range
intersects the f-range of r, then a guard is needed im-
mediately; any guard located at a level between (and
including) the levels of e and d, which can be posi-
tioned at a point with x-coordinate in the p-range of
r will do. Then, the loc-range of the guard chosen to
take care of the guard-request r is clipped about the p-
range of r (in this way, the guard will be able to meet
the need recorded by r and to watch as much of the
unseen polygon as possible), and the guard-request r
is discarded.

3.3 Selecting a Guard to Watch a S-Edge
Many guards at different levels in the polygon may
be able to take care of the need recorded by a guard-
request r when the f-range of r is intersected by
the x-range of a N-edge. In order to make a good
choice among them, we apply the policy suggested
in the following lemma (the proof takes advantage of
Lemma 2.1(iii)).

Lemma 3.1 Whenever a guard-request needs to be
fulfilled, among all guards that can fulfill it, it suffices
to choose the lowermost one.

11

29th European Workshop on Computational Geometry, 2013

replacemen

e1

e2

e3

g1

g2

g3

g

g′

Figure 4: Not selecting the lowermost candidate guard
may lead to a non-minimum number of guards.

In fact, there are cases where by choosing a guard
other than the lowermost available we get an incor-
rect result; see Figure 4. When encountering the N-
edges e1 and e2, we realize that guards are needed at
these levels. If when assigning a guard to watch the
S-edge e3, we select a guard at the level of e2 (see
guard g1 in the polygon at left), then a third guard g3

will also be needed; yet, two guards suffice to watch
the entire polygon as shown at right.

3.4 Outline of the Algorithm
As mentioned, we sweep the given class-3 orthogonal
polygon from bottom to top maintaining information
on the current trousers. The trousers are stored in a
balanced binary search tree in order from left to right
so that we can quickly insert trousers, delete trousers,
and search for the trouser incident on an edge (see
Lemma 2.1(ii)). Along with each trouser T , we store
lists for the guards’ loc-ranges and vis-ranges, a list for
the guard-requests’ p-ranges, and two doubly-linked
lists for the guard-requests’ f-ranges, one ordered by
increasing left endpoint of the f-ranges the other or-
dered by decreasing right endpoint, with each pair of
nodes in these two lists corresponding to the same
request linked to each other. We also maintain sets
Positioned(T) and Available(T), storing the guards
in T that can watch points in P above the current
position of the sweep-line or not, respectively.

During the sweeping, we stop at each horizontal
edge e and process it. If e is a S-edge, we update
the trouser information and set up and insert a cor-
responding type-1 guard-request. If e is a N-edge, we
process the guard-requests whose f-ranges are inter-
sected by e’s x-range, we position the guards whose
loc-ranges are subsets of the closure of e’s x-range, we
clip the p-ranges of all the guard requests and the loc-
and vis-ranges of the guards, and we conditionally set
up and insert a type-2 guard-request.

After all the edges have been processed, the result-
ing guard set Positioned gives us the locations of a
minimum-cardinality set of r-visibility guards.

Since at any given time the number of trousers, the
number of guard-requests, and the number of guards
is linear in the size of the given polygon, we can show
the following theorem (details can be found in [8]):

Theorem 3.1 Let P be a simple class-3 orthogo-
nal polygon with n vertices. Then, a minimum-
cardinality set of r-visibility guards can be computed
in O(n2) time using O(n) space.

4 Open Problems

An immediate open question is to investigate how
ideas from this work can be generalized to yield al-
gorithms for the problem of r-star covering a general
simple orthogonal polygon.

Another interesting open question is to try to ob-
tain faster algorithms for the s-star covering problem
on general simple orthogonal polygons; the current
fastest algorithm requires O(n8) time [6] and is based
on the graph-theoretic approach.

Finally, it would also be interesting to try to im-
prove the time complexity of our algorithm.

References

[1] A. Aggarwal, The Art Gallery Theorem: its Varia-
tions, Applications, and Algorithmic Aspects, PhD
Thesis, Department of Electrical Engineering and
Computer Science, John Hopkins University, 1984

[2] J. Culberson and R.A. Reckhow, Orthogonally con-
vex coverings of orthogonal polygons without holes,
J. Comput. Systems Science 39(2), 166-204, 1989

[3] L. Gewali, M. Keil, and S.C. Ntafos, On covering
orthogonal polygons with star-shaped polygons, In-
formation Sciences 65, 45-63, 1992

[4] J.M. Keil, Minimally covering a horizontally convex
orthogonal polygon, Proc. 2nd Annual ACM Symp.
Computational Geometry, 43-51, 1986

[5] A. Lingas, A. Wasylewicz, and P. Żyliński, Note on
covering orthogonal polygons with star-shaped poly-
gons, Information Processing Letters 104(6), 220-
227, 2007

[6] R. Motwani, A. Raghunathan, and H. Saran, Cover-
ing orthogonal polygons with star polygons: the per-
fect graph approach, J. Comput. Systems Science 40,
19-48, 1990

[7] J. O’Rourke, Art Gallery Theorems and Algorithms,
Oxford University Press, 1987

[8] L. Palios and P. Tzimas, Covering class-3 orthogo-
nal polygons with the minimum number of r-stars,
Technical Report, Department of Computer Science,
University of Ioannina, 2012

[9] J. Urrutia, Art gallery and illumination problems,
Handbook of Computational Geometry, Elsevier Sci-
ence, Amsterdam, 973-1027, 2000

[10] C. Worman and J.M. Keil, Polygon decomposition
and the orthogonal art gallery problem, International
Journal of Computational Geometry & Applications
17(2), 105-138, 2007

12

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Extending Visibility Polygons by Mirrors to Cover Specific Targets

Arash Vaezi∗ Mohammad Ghodsi†.

Abstract

The visibility polygon VP of a point q (VP(q)) inside
a simple polygon P with n vertices, can be computed
in linear time. We propose a linear time algorithm to
extend VP, by converting some edges of P to mirrors,
so that a given segment d can also be seen from the
viewer. In linear time our algorithm finds every edge
such that, when converted to a mirror, makes d visible
to our viewer.

1 Introduction

Many variations of the visibility polygon have been
studied so far. In general, we have a simple polygon
P with n vertices, and a viewer point q inside P . The
goal of the visibility problem is to find the maximal
sub-polygon of P (VP(q)) visible to the viewer. There
are linear time algorithms to compute VP(q) ([6], [3]).

It was shown in 2010 that VP of a given point or
segment can be computed in presence of a mirror in
O(n) [5]. Also, it was shown in the same paper that
the union of two visibility polygons can be computed
in O(n).
We consider the problem of finding all edges any

of which when converted to a mirror (and thus called
mirror-edge) can make a specific segment visible (also
called mirror-visible) to a given point. We propose a
linear time algorithm for this problem.
This paper is organized as follows: In Section 2,

notations are described. Next in Section 3, we present
a linear time algorithm to solve the above problem.
Section 4 contains some discussions and future works.

2 Notations

Suppose P is a simple polygon and int(P) denote its
interior. Two points x and y are visible to each other,
if and only if the open line segment xy lies completely
in int(P). The visibility polygon of a point q in P ,
denoted as VP(q), consists of all points of P visible
to q. Edges of VP(q) that are not edges of P are
called windows. Weak visibility polygon of a segment

∗Department of Computer Engineering, Sharif University ,
Technology, avaezi@ce.sharif.ir

†Department of Computer Engineering, Sharif University
of Technology, and Institute for Research in Fundamental Sci-
ences (IPM), Tehran, Iran. ghodsi@sharif.edu. This author’s
research was partially supported by the IPM under grant No:
CS1389-2-01

d, denoted as WVP(d), is the maximal sub-polygon of
P visible to at least one point (not the endpoints) of
d. The visibility of an edge vivi+1 of a simple polygon
P can be viewed in different ways [1]: P is said to
be completely visible from vivi+1 if every point z ∈ P
and for any point w ∈ vivi+1, w and z are visible. All
these different visibilities can be computed in linear
time (see [4] for the weakly visibility polygon and [1]
for the strongly).

Suppose an edge e of P is a mirror. Two points
x and y are e-mirror-visible, if and only if they are
directly visible with one specular reflection. VP(q)
with a mirror-edge e, is the maximal sub-polygon of
P visible to q either directly or via e.

Two points or segments are mirror-visible if and
only if they cannot see each other directly, but can
with an edge middling as a mirror. We consider the
whole edge as a mirror, thus two points can be mirror-
visible by just a part of an edge. Also, if a point can
see a part of a segment through a mirror, we call them
mirror-visible.

3 Expanding a point visibility polygon

3.1 Recognizing all mirror-edges

We intend to find all edges of P , any of which when
converted to a mirror causes a given point q see a
segment d.

Theorem 1 Suppose P is a simple polygon with the
complexity of n, q is a given point inside P , and d
is a given segment which is not directly visible by q.
All edges any of which can makes d mirror-visible to
q can be found in O(n) time.

Remark. We will prove this theorem using a given
diagonal of P , instead of the given segment. We will
use the two endpoints of the diagonal. Since the as-
sertion that the segment is actually a diagonal in not
used in the proof, the stated proof holds for any seg-
ment inside P . Instead of the endpoints of the diago-
nal, we can use one endpoint of the closet edge of P to
the given segment. Let at least one endpoint of this
edge be upon the given segment inside the polygon.

Proof. First we prove that with an O(n) time of pre-
processing, we can answer any query of whether a
particular edge of P can make d mirror-visible to q
in O(1) time. The processing time is for computing

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

13

29th European Workshop on Computational Geometry, 2013

VP(q) and WVP(d), and finding some reflex vertices
which may block the mirror-visibility area.

Obviously, any mirror-edge that makes d visible to
q should lie in the intersection of VP(q) and WVP(d)
which can be computed in linear time. If goal is the
visibility of the whole segment, we should compute
the complete visibility polygon of the given segment
instead of the weakly visibility polygon of which.

Suppose that e is intersected by both visibility poly-
gon from v1(e) to v2(e) in the order of P ’s vertices.
We assume that this part of e is mirror. We will find
out whether any part of d is e-mirror-visible. Let L1

and L2 be two half-lines from the ray-reflection of q
at v1(e) and v2(e) respectively (see Figure 1).

q
LBV (e)

RBV (e)

v2(e)

P

Visible region through the mirror

L2

L1

d

v1(e) e

Figure 1: The region between L1 and L2 is the visible
area by q through the mirror e.

If d is in the region between L1 and L2 and no
part of P obstructs d, then d is e-mirror-visible (see
Figure 1). Since P is simple, any obstruction has
to contain a reflex vertex. Considering that P ’s ver-
tices are ordered in clockwise direction, we define
LBV (e) (for Left Blocking Vertex of e) to be the re-
flex vertex before v1(e) that can obstruct most the
e-mirror-visibility of d, and similarly RBV (e) (for
Right-Blocking Vertex of e) to be the reflex vertex af-
ter v2(e). Different mirror-edges may have the same
LBV s or RBV s, but LBV and RBV for any edge e
are unique and may be v1(e) or v2(e). It is sufficient
to check only the corresponding LBV and RBV ver-
tices not to block the mirror visibility area. We will
show that we can find all LBV s and RBV s for all
mirror-edges in linear time.

Following cases should be considered:

1. If L1 and L2 both lie on one side of d, d is not in
the mirror-visible area. q cannot see d through
this mirror-edge.

2. If L1 and L2 do not lie on one side of d and if d is
in the middle of the mirror-visible area, q can see
d through the mirror-edge. Because e is visible
to d, and the visibility area from L1 to L2 is a
continuous region.

3. Otherwise L1 or L2 crosses d, and we should
check whether any part of P , obstructs the whole
visible area through the mirror-edge (In the case
of the completely visibility polygon of d, it is suf-
ficient to check L1 and L2 not to cross d, except
in its endpoints.

Now, we should check the polygon not to block
the rays from the right or form the left side of
the mirror-edge. Consider the two segments s1
= LBV v1(e) also s2 = RBV v2(e). If L2 crosses
s1, or if L1 crosses s2, consequently q and d are
not e-mirror-visible.

Obviously, collision checking of a constant number
of points is done in O(1) for any candidate edge in
the intersection polygon of VP(q) andWVP(d), which
in addition to the processing time leads to an O(n)
algorithm to find all feasible mirror-edges. !

3.1.1 Computing LBV and RBV vertices

First we consider the computation of the LBV ver-
tices. Starting from d1 (the left endpoint of the given
diameter) and similar to Graham’s algorithm [2] in
finding the convex hull of points, we trace WVP(d)
using the reflex vertices of P in the P ’s order of ver-
tices. We act as the following:

d1

d2

v2(e2)
v1(e3)

v1(e4)

p3

v2(e3)

p6

p4

q

v1(e2)

p2

p1

v2(e4)

v1(e1)

v2(e1)

p5

j3 = p3p5

j2 = p2p3

j1 = p1p2

Figure 2: Constructing the convex hull for distin-
guishing LBV vertices for all the mirror-edges. p1,
p2, p3 and p5 are the vertices of the convex hull. Four
mirrors are shown, for example p5 is LBV (e1) .

Suppose the reflex vertices from d1 to d2, are
p1, p2, ..., pk, where k ∈ O(n). We start making the
convex hull of the reflex vertices, whose concave re-
gion is directed to the outside of the polygon (see
Figure 2). When we reach a new mirror-edge, we use
the lines containing the edges of the updated convex
shape till that moment.

14

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Assume v2(ei) represents the second endpoint of
the ith candidate mirror-edge. When we reach the
ith mirror-edge we compare v2(ei) with the chosen
line for the (i − 1)th mirror-edge (the last visited
mirror-edge). If v2(ei) lies on–or on the left side of–
that line, then the ith and (i−1)th mirror-candidates
have the same reflex vertex as their LBV . Otherwise,
we should compare v2(ei) with the line which is not
checked yet, and contains the most recent constructed
segment of the convex shape.
For example, suppose the convex shape has 3 seg-

ments (j1, j2, j3) before we reach the first mirror-edge
(e1) with v2(e1). We should check v2(e1) with the
line, which contains the last constructed segment of
the convex hull (j3), to see if it has v2(e1) on its left.
If v2(e1) lies on the right side of that line, we check
v2(e1) with j2. We can continue this way, if there is
no more line, there is no LBV (e1). Assume we select
the line containing j3 for e1. We should check this line
for e2 too, because they may have the same LBV .
At the end, suppose for a mirror-edge e we chose

line L, whose interior contains more than one vertex
of the convex shape. If v2(e) is on the left side of L
then we should choose the most recent joined vertex
of the convex shape on L. But, if v2(e) itself lies on
the L, then we choose the first reflex vertex which
joined the convex shape on L. This reflex vertex is
the closet one on L to d.

However, While we trace WVP(d), facing with any
new reflex vertex we should update the convex shape
(see Figure 3).

d1

d2

p3

p4

q

p2

p5

p1

v2(e2)
v1(e3)

v1(e4)

v2(e3)

p6

v2(e1)
v2(e4)v1(e2)

v1(e1)

Figure 3: Updating the convex shape while tracing
WVP(d) and facing with new reflex vertices. p5 is cho-
sen as LBV (e1), p3 and p2 as LBV (e2) and LBV (e3),
respectively. If we had a reflex vertex p0 for the fourth
mirror-edge, first we may have selected p1. But later
we should change it to v1(e4), because p1 cannot block
the e4-mirror-visibility.

We trace the WVP(d) in counter-clockwise direc-

tion starting from d2 to find all RBV vertices simi-
larly. At the end, since there may be some false chosen
LBV or RBV vertices, we should traceWVP(d) again
in both directions. First we compare all LBV vertices
of the mirror-edges with the corresponding segment
v2(ei), d1. If it was in the left side of the segment,
then the chosen vertex is not obstructing the mirror-
visibility area, hence, we change the chosen LBV to
v1(ei) for the ith mirror-edge. We proceed similarly
for RBV vertices in the other direction.

3.1.2 Proof of correctness

First, the following lemma:

Lemma 2 For each mirror-edge e the reflex vertex
as its LBV , is among the reflex vertices before e in
the P ’s order of vertices (pi 0 ≤ i ≤ k). And it is the
closet one to d (pj) which the corresponding segment

pjv2(e) holds all the other pi (i #= j 0 ≤ i ≤ k) reflex
vertices on its left side (see Figure 4).

d1

d2

q

p1

p2

p3

p4

p5

v2(e2)
v1(e3)

v4(e1)

v2(e3)

p6

v2(e1)v1(e2)

v1(e1)
v2(e4)

Figure 4: From Lemma 2 point p5 must be the best
choice for LBV (e1).

Proof. Suppose e is our mirror-edge and pj is the
chosen LBV (e) using Lemma 2. We will show neither
a farther reflex vertex nor a closer one to d is a better
choice for being LBV (e). Actually, we will show there
are examples of violations for any other reflex vertices,
either farther or closer to d.
Suppose there is a reflex vertex pl, closer than pj to

d. Also assume L2 crosses the polygon on the left of pl
but not on the left side of pj . Therefore, pl obstructs
the e-mirror-visible area so that the viewer cannot see
d through e. This leaves pj , chosen from Lemma 2,
not to be LBV (e). We know that L2 should place on
the right side of d1v2(e), because otherwise the whole
mirror-visibility region is on the left side of d. But,

15

29th European Workshop on Computational Geometry, 2013

pj is chosen by Lemma 2, hence, it should lie on the

right side of plv2(e) (see Figure 5). Thus, L2 cannot
cross the polygon on the left side of pl but not on
the left side of pj . In the stated analysis if the reflex
vertices such as pj or pl lie on L2, they can block the
mirror visibility area. Therefore, we treat them as if
they were on the right side of L2.

d1

d2

pl

v1 v2

pj

d1

d2

pj

v1 v2

pl

(a) (b)

L2

L2

Figure 5: No lower reflex vertex can be a better choice
than the one chosen by Lemma 2

Similarly, assume a reflex vertex ph exists, which
is farther than pj to d. And L2 crosses the segment

phv2(e) and not pjv2(e). From Lemma 2 ph should

be at the left side of pjv2(e), and we know that L2

has intersection with d on the right side of d1v2(e).
Consequently, L2 crosses d on the right side of pj ,

and crosses phv2(e) while it lies on–or on the left side
of– pj . Therefore, it should cross pjv2(e), and we are
done. !

Thus, using Lemma 2, when there are O(n) reflex
vertices LBV s for all the mirror-edges can be com-
puted within O(n2) time complexity.
Now consider two mirror-edges e1 and e2 and

two reflex vertices pi and p(i−1), which the segment

piv2(e1) has all other reflex vertices on its left side for
e1. Also, the segment p(i−1)v2(e2) acts the same for
e2. Hence, pi and p(i−1) are LBV (e1) and LBV (e2),
respectively. The segment pip(i−1) is between those
lines. Therefore, for all the mirror-edges (e) which
have their v2 endpoints on the left side of pip(i−1) the

segment piv2(e) is covering all the other reflex vertices
on its left. The segments on the right side of pip(i−1)

should be considered one by one. sp(i−1)v2(e) can act
the same for those mirror-edges whose v2 vertices lie
on the right side of pip(i−1).
The lines containing the pip(i−1) segments (1 ≤ i ≤

k) evidently satisfy the property of being convex hull,
the direction of the concave region of which is to the
outside of the polygon.

As we mentioned before, each LBV (e) vertex
should lie on the right side of d1v2(e) of e, otherwise,
we should exchange the chosen LBV (e) with v1(e).

Therefore, at the end we should check all of LBV
vertices. The reason is, in these cases there is nothing
to obstruct the visibility region from the left side of
the mirror-edge. Clearly, all the stated analysis holds
in computing RBV vertices, too.

4 Discussion

We dealt with the problem of extending the visibility
polygon of a given point in a simple polygon, so that
another segment becomes visible to it. For this pur-
pose we convert some of the polygon edges to mirrors.
The problem is to find all such kind of edges. Using
the algorithm we proposed, it is possible in linear time
corresponding the complexity of the simple polygon.
We only discussed finding the edges to be mirrors, but
it is shown that having two mirrors, the resulting vis-
ibility polygon, may not be a simple polygon [6]. The
problem can be extended as; put mirrors inside the
polygon, a point with a limited visibility area and so
on.

References

[1] D. Avis, G. T. Toussaint. An optional algorithm
for determining the visibility of a polygon from
an edge. IEEE Transactions on Computers, C-30:
910-1014, 1981.

[2] M. de Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf Computational Geometry Algorithms
and Applications. Springer, third edition Depart-
ment of Computer Science Utrecht University,
13,14 2008.

[3] H. ElGindy, D. Avis. A Linear algorithm for com-
puting the visibility polygon from a point. Journal
of Algorithms, 2: 209-233, 1987.

[4] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir,
and R. E. Tarjan. Linear-time algorithms for vis-
ibility and shortest path problems inside triangu-
lated simple polygons. Algorithmica, 2: 209–233,
1987.

[5] B. Kouhestani, M. Asgaripour, S. S. Mahdavi, A.
Nouri and A. Mohades. Visibility Polygons in the
Presence of a Mirror Edge. In Proc. 26th European
Workshop on Computational Geometry, 26: 209–
212, 2010.

[6] D. T. Lee. Visibility of a simple polygon. Com-
puter Vision, Graphics, and Image Processing, 22:
207–221, 1983.

16

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Rotation minimizing frames on monotone-helical PH quintics:
approximation and applications to modeling problems

Fatma Şengüler-Çiftçi⇤ Gert Vegter†

Abstract

A rotation minimizing frame (RMF) {t, f1, f2} of a
curve in 3-space consists of the tangent t and two
normal vectors f1 and f2 which rotate as little as pos-
sible around t. Having the property of minimum twist
makes RMFs attractive in computer graphics, swept
surface constructions, motion design and similar ap-
plications. Recently we have shown that there is not
any rational RMF (RRMF) on monotone quintic he-
lices, so this motivates to develop a rational approx-
imation to RMFs. It is shown that rational approx-
imation to RMFs on monotone-helical Pythagorean-
hodograph (PH) quintics is computationally cheap,
then it is applied to profile surface modeling and rigid
body design.

1 Introduction

1.1 General context

A parametric curve r(t) = (x(t), y(t), z(t)) is called
a Pythagorean-hodograph (PH) curve if its speed is a
polynomial [2]. The theory of PH curves is a much
studied research topic in Computer Aided Geometric
Design (CAGD) because of their useful properties. An
adapted frame on a space curve r(t) is an orthonormal
moving frame {t, f1, f2} such that, t is the unit tan-
gent r

0(t)/|r0(t)|, and the other two vectors span the
normal plane. Rotation minimizing frames (RMFs)
have minimum twist that makes them distinguished
among adapted frames. RMFs are used in anima-
tion, robotics applications, the construction of swept
surfaces [10] where the axis of a tool should remain
tangential to a given spatial path while minimizing
changes of orientation about this axis.

1.2 Motivation

It is easy to compute exact derivation of RMFs on
spatial PH curves [2]. Further, in practical applica-
tions, especially rational RMFs (RRMFs) are useful
for computational purposes. The only curves having
rational adapted frames are PH curves, since the only

⇤
Johann Bernoulli Institute for Mathematics

and Computer Science, University of Groningen,

F.A.Senguler-Ciftci@rug.nl
†
Johann Bernoulli Institute for Mathematics and Computer

Science, University of Groningen, G.Vegter@rug.nl

PH curves have rational unit tangent vectors. Be-
sides, the arc lengths of PH curves can be computed
precisely, and it can formulate real-time interpolators
to drive multi-axis CNC machines along curve paths,
at fixed or varying speeds from their exact analytic
descriptions [6].
In the family of PH curves, polynomial helices have

remarkable interest, particularly quintic helices. The
relationship between such curves and some problems
in the realm of computer-aided design of curves and
surfaces show that the suitable curves are helical PH
quintics for real applications [3].

1.3 Problem Statement

Having observed that in general PH quintic helices
cannot have RRMFs, we aim at making rational ap-
proximations to RMFs. We focus onmonotone-helical
PH quintics, i.e. curves whose hodograph has coordi-
nates with a common factor, say h. On a monotone-
helical PH quintic curve r(t), RMFs can be computed
easily since there is a simplification in the integral
giving the angle ✓ between Frenet-Serret frame (FSF)
and RMFs. Because, ✓ is given by

✓(t)� ✓0 = �
Z

⌧ � dt, (1)

where � = |r0(t)| and ⌧ is the torsion, and for
monotone-helical PH quintics the integrand ⌧ � turns
out to be 2

gc

, with � = h g and c is the helicity con-
stant. Applying this idea to related topics, such as
sweep surface modeling and rigid body motion design,
is the subject of this work.

1.4 Related Work

In the previous work [11], we showed that there does
not exist RRMFs on monotone-helical PH quintics.

Theorem 1 [11] There is not an RRMF on a (regu-
lar) monotone-helical PH quintic that is not a straight
line.

We also gave a condition (9) on a polynomial helix
of any degree to have an RRMF. This condition leads
to a simplification of rational approximation to RMFs
on monotone-helical PH quintics. For PH cubic curves
and more generally PH curves rational approximation
to RMFs was studied in [5, 9].

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

17

29th European Workshop on Computational Geometry, 2013

1.5 Overview of the Results

The present paper is organized as follows. Sec-
tion 2 introduces definitions of and basic results on
monotone-helical PH quintics, RMFs, RRMFs, and
profile surfaces. In Section 3 we discuss a minimax
rational approximation to an RMF on a monotone-
helical PH quintic. Then we discuss applications to
sweep surface modeling in the same section and to
rigid body motion planning in Section 4. Subse-
quently in Section 5 we conclude with remarks about
our future considerations.

2 Background

In this section we review the preliminary material
which we use along the paper.

2.1 Monotone-Helical PH Quintics

In Hopf map C⇥C ! R3 representation, a PH curve
r(t) is defined by its hodograph

r

0(t) = (2↵(t) �̄(t), |↵(t)|2 � |�(t)|2), (2)

where

↵(t) = u(t) + v(t) i and �(t) = q(t) + p(t) i, (3)

are some complex polynomials, and the identification
R3 ' C⇥ R is assumed [2].

A monotone-helical PH curve r(t) is a quintic
PH curve whose hodograph have components with
a common quadratic factor, then ↵(t) = h(t) a(t)
and �(t) = h(t) b(t) for linear complex polynomials
a(t), b(t) and h(t). Then the helical PH quintic curve
(2) is given by

r

0(t) = |h(t)|2(2 a(t) b̄(t), |a(t)|2 � |b(t)|2). (4)

Example [2]: Let us consider the monotone-helical
PH quintic curve r(t) = (x(t), y(t), z(t)), where

u(t) = t

2 � 3 t, v(t) = t

2 � 5 t+ 10,

p(t) =� 2 t2 + 3 t+ 5, q(t) = t

2 � 9 t+ 10.
(5)

Here a common factor of the components
x(t), y(t), z(t) is h(t) = t

2 � 2 t + 5. The he-
licity constant is obtained to be c = /⌧ = 5

p
2/3,

where , ⌧ are the curvature and torsion, respectively.
We will make use of this curve to demonstrate our
approximation results.

2.2 Rotation Minimizing Frames

The most canonical adapted frame is the FSF
{t,n,b}. There are many other adapted frames asso-
ciated with a given space curve r(t), and among them
the RMFs are the ones which minimize the amount

of rotation along the curve. The variation of a frame
{t, f1, f2} defined on a curve r(t) is given by its vec-
tor angular velocity ! = !0 t+ !1 f1 + !2 f2 with the
relations

t

0 = ! ⇥ t, f

0
1 = ! ⇥ f1, f

0
2 = ! ⇥ f2. (6)

The characteristic property of an RMF is that its an-
gular velocity has no component along t, i.e.,

! · t ⌘ 0. (7)

As we consider a helix r(t), its FSF is rational [2].
Observe that an RMF is given by a rotation in the
normal plane

✓
f1

f2

◆
=

✓
� cos ✓ sin ✓

sin ✓ cos ✓

◆✓
n

b

◆
, (8)

where (1) with the integration constant ✓0 [2]. There-
fore an RMF is not rational in general.

2.3 Rational Frames of Quintic PH Helices

A general condition on helices of any degree to have
RRMFs is also given in [11].

Lemma 2 [11] Let a PH curve r(t) be a helical curve
with /⌧ = c and c 2 R. Then r(t) has an RRMF
if and only if there exist relatively prime polynomials
µ(t) and ⌫(t) satisfying

p
⇢

c�

=
µ ⌫

0 � µ

0
⌫

µ

2 + ⌫

2
, (9)

where

⇢ =(u p0 � u

0
p+ v q

0 � v

0
q)2+

(u q0 � u

0
q + v p

0 � v

0
p)2.

(10)

The proof of Lemma 2 gives an idea of a simplifica-
tion of rational approximation to RMFs on monotone-
helical PH quintic curves. It will be detailed in the
next section.

2.4 Profile Surfaces

A profile surface is a sweep surface generated by an
RMF. More explicitly, it has a parametric represen-
tation

S(s, t) = r(t) + f1(t) c1(s) + f2(t) c2(s), (11)

where r(t) is the spine curve with parameter t 2
[t0, t1] 2 R, c(s) = (c1(s), c2(s))T is the cross sec-
tion or profile curve with parameter s 2 [s0, s1] ⇢ R,
and {t, f1, f2} is an RMF along r(t).

If the cross-section curve is a straight line, then
the profile surface is a developable surface [9]. This
implies that they are flat surfaces, i.e. they have van-
ishing Gauss curvature K = 0. In the next section
we obtain a rational approximation of an RMF on a
monotone-helical PH quintics.

18

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

3 Minimax Rational Approximation on monotone-
helical PH quintics

In this section we will make a minimax rational ap-
proximation on monotone-helical PH quintics by us-
ing Mathematica. A (m, k) degree rational function
is the ratio of a degree m polynomial to a degree k

polynomial. The error of minimax rational approxi-
mation is the di↵erence between the function and its
approximation w.r.t. Euclidean norm. The aim of
minimax rational approximation is to minimize the
maximum of the relative error from the polynomial
curve.
Let f(t) be continuous on a closed interval [t0, t1].

Then there exists a unique (m, k) degree rational poly-

nomial a(t)
b(t) , called the minimax rational approxima-

tion to exact function f(t), that minimizes

"(a(t), b(t)) = max
t0<t<t1

| f(t)� a(t)
b(t) | . (12)

3.1 Minimax Rational Approximation of RMFs on
Monotone-Helical PH Quintics

Nonexistence of RRMFs on a monotone-helical PH
quintic curve motivates an approximation of RRMFs
which can be done as in [5] with further simplifications
as indicated in the following. Standard parametriza-
tion of circle is

(sin ✓, cos ✓) =

✓
2f

1 + f

2
,

1� f

2

1 + f

2

◆
, (13)

where f = tan ✓

2 . Then, one can make a rational ap-
proximation by

f(t) = tan
✓(t)

2
= � tan

✓Z
⌧ �

2
dt

◆
' a(t)

b(t)
, (14)

for some relatively prime polynomials a(t) and b(t),
which gives a rational frame

✓
f̃1

f̃2

◆
= � 1

a

2 + b

2

✓
a

2 � b

2 �2 a b
2 a b a

2 � b

2

◆✓
n

b

◆
. (15)

For a quintic helix, the integrand ⌧ � is a rational
function of degree (2, 4), while for monotone-helical
PH quintic curves this simplifies to (0, 2). This is be-
cause the monotone-helical PH curve identities hold:

� = h g and ⇢ = h

2
, (16)

where h = gcd(x0
, y

0
, z

0) [4]. Furthermore we put to-

gether the curvature of a PH curve [2] = 2
p
⇢

�

2 ,
helicity condition c = /⌧, and monotone-helical con-
ditions (16) in the following computation:

⌧ � =

c

� = 2

p
⇢

c�

2
� =

2

g c

. (17)

0.2 0.4 0.6 0.8 1.0
t

!0.0030

!0.0025

!0.0020

!0.0015

!0.0010

!0.0005

0.0005

Error

Figure 1: Error for the RMF condition (7).

Then from equation (1), we get

✓

2
= �

Z
1

c g

dt. (18)

The integral in (18) gives a simplification of computa-
tions when making the approximation given in (14).

Example: Let us consider the monotone-helical PH
quintic curve (5). After applying the minimax ratio-
nal approximation with error " = �0.000172464, the
rational approximation to exact function f(t) is then

a(t)

b(t)
=

�0.469264 + 0.225286 t

1� 0.304786 t
. (19)

This result yields a good RRMF approximant as can
be seen by Figure 1 which shows the error of the RMF
condition (7).

3.2 Minimax Rational Approximation of Profile
Surfaces

Rational approximation of RMF can be used to gen-
erate profile surfaces with rational representation. If
the profile curve c(s) is chosen to be a straight line
then the rational approximation to the profile surface
is expected to have Gauss curvature close to zero val-
ues.

Example: Consider two sweep surfaces,

S1(s, t) = r(t) + (� 1
5 s+ 5)˜f1 + (10 s� 1

2)
˜

f2,

S2(s, t) = r(t) + (� 1
5 s+ 5)n+ (10 s� 1

2)b,
(20)

generated by the rational approximation to the RMF
(left) and by the FSF (right) of the monotone-helical
PH quintic given in (5), see Figure 2. The Gaussian
curvature K̃ can be used as an accuracy criterion.
Since the cross-section curve

c(s) = (�1
5 s+ 5, 10 s� 1

2)
T (21)

in this example is a straight line, the Gauss curvature
of a profile surface is vanishing. For profile surface
S1(s, t), minimum and maximum values of the Gauss
curvature are

K̃

min

(0.899997, 1) =� 9.76359⇥ 10�11
,

K̃

max

(0.899992, 14.7928) =� 1.11723⇥ 10�11
.

(22)

19

29th European Workshop on Computational Geometry, 2013

Figure 2: Sweep surfaces S1(s, t) and S2(s, t), gener-
ated by the rational approximation to the RMF (left)
and by the FSF (right).

Figure 3: Rigid Body with initial configuration on a
monotone-helical PH quintic curve r(t) (left) and the
same curve with rigid body motion (right).

Our approximation K̃ is between the values K̃
min

and
K̃

max

which are close to zero. Therefore this criterion
shows us that our approximation gives good results.

4 Rigid Body Motion Design

A rigid body motion can be modeled as the motion
of an adapted frame. As they make minimum twist,
RMFs are very useful in rigid body motion design,
however computation of these frames requires to in-
tegrate complicates functions. For PH curves the in-
tegral in (1) is known to be integrated by elementary
functions [2]. We can further see by (18) that this in-
tegration is very useful from a computational point of
view. This considerable feature of monotone-helical
PH quintics can be employed in the following.
Assume that an initial point p0 and a final point p1,

and an initial frame at p0 are given. We illustrate that
rigid body motion design problem in Figure 3. To find
a trajectory satisfying these initial data, a monotone-
helical PH quintic can be obtained under some more
suitable conditions, then it is an easy task to compute
an RMF which aligns with the initial frame at p0.
For this purpose interpolation method for monotone-
helical PH quintics given in [7] can be used.

5 Conclusions and Future Work

Rational approximation of RMFs on monotone-helical
PH quintics is studied. It is observed in this work that

the integrand (1) which is used to compute RMFs is
a rational function of degree (0,2). This leads to a
simplification in rational approximation to RMFs as
we touch upon in this work. Moreover, it is pointed
out that several applications can be done to modeling
problems such as sweep surfaces and rigid body de-
sign. It is worth to mention here that this distinctive
feature is special for monotone-helical PH quintics.
Future work will be to improve and apply the obser-

vations outlined above. One concrete question arising
is the following. When we are modeling rigid body
motion, there exist singular points on the monotone
curve. We will search for a method to remove these
singularities of monotone-helical PH quintics.

References

[1] H.I. Choi, S.H. Kwon, and N.S. We, Almost rotation
- minimizing rational parameterization of canal sur-
faces, Comput. Aided Geom. Design, 21, 859–881,
2004.

[2] R.T. Farouki, Pythagorean-Hodograph Curves: Al-
gebra and Geometry Inseparable, (Berlin: Springer,
2008).

[3] R.T. Farouki, G. Farin, J. Hoschek, and M-S. Kim,
Pythagorean-hodograph curves, Handbook of Com-
puter Aided Geometric Design, North Holland, 405–
427, 2002.

[4] R.T. Farouki, C. Giannelli and A. Sestini, He-
lical polynomial curves and double Pythagorean
hodographs. I. Quaternion and Hopf map represen-
tations, J. Symbolic Comput., 44(2), 161–179, 2009.

[5] R.T. Farouki and C.Y. Han, Rational approxi-
mation schemes for rotation-minimizing frames on
Pythagorean-hodograph curves, Comput. Aided
Geom. Design, 20, 435–454, 2003.

[6] R.T. Farouki, Y-F. Tsai and B. Feldman, Per-
formance analysis of CNC interpolators for time-
dependent feedrates along PH curves, Comput. Aided
Geom. Design, 18, 245–265, 2001.

[7] C.Y. Han, Geometric Hermite interpolation by mono-
tone helical quintics, Comput. Aided Geom. Design,
27, 713–719, 2010.

[8] C.Y. Han, Nonexistence of rational rotation-
minimizing frames on cubic curves, Comput. Aided
Geom. Design, 25, 298–304, 2008.

[9] B. Jüttler, and C. Mäurer, Rational approximation
of rotation minimizing frames using Pythagorean-
hodograph cubics, Journal for Geometry and Graph-
ics, 3, 141–159, 1999.

[10] F. Klok, Two moving coordinate frames for sweeping
along a 3D trajectory, Comput. Aided Geom. Design,
3, 217–229, 1986.

[11] F. Şengüler-Çiftçi and G. Vegter, Nonexistence of
Rational Rotation Minimizing Frames on Quintic He-
lices, Computer Graphics and Imaging, Innsbruck,
Austria, 123–128, 2013.

20

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Layered Reeb Graphs of a Spatial Domain

⇤

B. Strodtho↵

†
, B. Jüttler

†

Abstract

We introduce layered Reeb graphs as a representation

for the topological structure of Reeb spaces and sketch

a boundary-based algorithm for computing them.

1 Introduction

Reeb graphs are topological graphs originating in

Morse theory, which represent the topological struc-

ture of a Riemannian manifold based on a scalar-

valued, su�ciently smooth function defined on it (see

[1] for an introduction). The use of more than one

function leads to Reeb spaces, which are thus able

to capture more features of an object. Reeb spaces

were considered in 2008 [4], but appear to be little

researched by now, especially Reeb spaces for mani-

folds with boundary. In the first part of this work, we

introduce the layered Reeb graph as a discrete repre-

sentation for Reeb spaces of 3-manifolds with respect

to two scalar-valued functions. After that we present

a restricted class of defining functions, for which the

layered Reeb graph can be computed from a bound-

ary representation of the spatial domain of interest.

This leads to substantial computational advantages if

the manifold is given in a boundary description, since

no volumetric description has to be constructed.

2 Definition of the layered Reeb graph

After defining Reeb graphs and -spaces, we present an

approach for computing Reeb graphs or -spaces by a

sweep algorithm. This motivates the definition of the

layered Reeb graph.

2.1 Reeb graphs and -spaces

Consider n scalar-valued functions f1, . . . , fn defined

on a d-manifold (or manifold with boundary) M . Any

subset of these functions defines level sets, where all

these functions have constant values. Connected parts

of M on the same level set are called level set compo-

nents.

Definition 1 Points where level set components of

all functions f1, . . . , fn or components of their bound-

ary meet or disappear are called critical, all other

⇤
Supported by ESF Programme EuroGIGA-Voronoi

†
Johannes Kepler University, Linz, Austria

points are regular. Contracting every level set com-

ponent to a point gives the Reeb space of M with

respect to f1, . . . , fn. In the special case of n = 1 we

speak of a Reeb graph.

In the following, we will only consider three special

cases of this definition:

• Reeb graph of a 2-manifold (Figures 1 and 2b),

• Reeb graph of a 3-manifold (Figures 2c-d), and

• Reeb space of a 3-manifold with respect to two

functions (Figure 3).

Figure 1: Reeb graph of a 2-manifold with boundary

in the plane with respect to the height function, which

maps each point to its last Cartesian coordinate.

(a) (b) (c) (d)

z

Figure 2: Reeb graphs of manifolds in space with re-

spect to the height function. (a) The object: sphere

with a bowl-shaped void. (b) Reeb graph of the sur-

face considered as 2-manifold in space. (c) Reeb graph

of the object. (d) Reeb graph of the air-volume sur-

rounding the object.

x

y

z

Figure 3: Reeb space of a vertical pipe with respect

to the z and y- coordinate. Middle: Lines in the hor-

izontal cut show common level sets. Right: Structure

of the resulting Reeb space.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

21

29th European Workshop on Computational Geometry, 2013

2.2 Sweep algorithm for computing Reeb spaces

In the remainder of this paper, we consider two suf-

ficiently smooth, scalar-valued functions f and g on

R3
, and a 3-manifold M with boundary embedded in

R3
. We are interested in the Reeb space with respect

to (f1, f2) with f1 = f |M and f2 = g|M .

Consider a level set of f at function value f = c,

and the restriction gc of g onto this level set. The

Reeb graph of the level set f = c (considered as a 2-

manifold with boundary) with respect to gc contracts

all those points of the level set with the same gc-value.

We denote these Reeb graphs as level set Reeb graphs.

A point of a level set Reeb graph thus represents

a connected component of points of M which are

mapped to the same value both by f and g. Sweeping

through the level sets of f and continually connecting

subsequent level set Reeb graphs gives the Reeb space

of M with respect to (f, g).

This motivates the following algorithm for the com-

putation of Reeb spaces: First, identify those points of

M where changes occur in the structure of level sets of

f or of their level set Reeb graphs. We will call these

points events in the following. Then, sweep through

the level sets of f . At each event, find the level set

components in which changes occur, and update their

level set Reeb graphs. These can be computed by a

sweep inside the level set.

2.3 The layered Reeb graph

Consider the Reeb graph of M with respect to f . An

arc of this graph represents an evolving level set com-

ponent of f . This component’s level set Reeb graph

goes through structural changes only at certain event

points. In the layered Reeb graph, the original Reeb

graph arc is divided at these events, and each part

stores its level set Reeb graph, see Figure 4.

Figure 4: Layered Reeb graph. Left: vertical cut

through a 3-manifold. Middle: level sets of f . Right:

layered Reeb graph.

Definition 2 The layered Reeb graph of a 3-

manifold M with boundary with respect to two suf-

ficiently smooth, scalar-valued functions f and g is

obtained as follows. Take the Reeb graph with re-

spect to the first function f and subdivide each arc

into parts of level set Reeb graphs with equivalent

topological structure. Then enhance these parts by

adding their level set’s Reeb graphs with respect to g

as a secondary structure.

3 Boundary-based computation of layered Reeb

graphs

Several algorithms are described in the literature

which compute the Reeb graph of a surface for a

given surface description or the Reeb graph of a three-

dimensional domain for a given volumetric descrip-

tion (like e.g. [8, 2, 6]). These algorithms typically

allow for a rather general choice of defining functions.

In this section we will restrict the defining functions

such that the layered Reeb graph of a 3-manifold with

boundary can be computed using only a boundary

description of this manifold. This leads to computa-

tional advantages if the manifold is given in a bound-

ary description, since no volumetric description has

to be constructed. Additionally, it is thus possible

to compute the layered Reeb graph of an unbounded

manifold, for which the construction of a volumetric

description may impose problems.

3.1 Feasible functions

The defining function for a Reeb graph has to meet

two basic requirements:

(i) Firstly, it has to be possible to identify all the

critical points, where structural changes in the

level sets occur, using only function values on the

boundary. This excludes the existence of local

extrema or saddle points inside the considered

manifold, see Figure 5.

(ii) Secondly, it should be possible to reconstruct the

full structure of a level set knowing only the inter-

section of the level set with the manifold’s bound-

ary. This will become clearer in the following

sections.

â

â â

â

â

HaL

â

â

â

â

â

HbL

â â

â

â

â

â

HcL

Figure 5: Contours of the function (x, y) ! xy consid-

ered on planar 2-manifoldsM with boundary. Critical

points are marked by crosses. (a) forbidden: the ori-

gin is a critical point inside M . (b) forbidden: the

origin is a critical point, but a regular point on the

boundary. (c) allowed: all critical points on M are

local minima or maxima on the boundary.

22

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Feasibility of the first function

The first function f has to allow the computation of

a Reeb graph of the 3-manifold M . For the Reeb

graph of a 3-manifold, the considered level sets are,

in general, surfaces.

Critical points (or curves) that are not induced by

the boundary may occur where these level set sur-

faces touch each other or contract to a point. Since

these cases are characterized by a zero gradient, we

prescribe rf 6= 0 to meet requirement (i).

The intersection of the level set surface with the

manifold’s boundary consists, in general, of closed

curves. For requirement (ii), we need to be able

to identify the relative positions of such boundary

curves. Additionally, we need to know whether the in-

side or outside of such a curve is part of the considered

level set. This can be deduced from the curve’s ori-

entation, provided that the boundary curves be com-

puted in a certain orientation derived from the man-

ifold’s surface orientation. Using these two basic op-

erations, the full structure of a level set can be recon-

structed from the computed boundary curves. This

is also a prerequisite of computing the Reeb graph

of a level set component with respect to the second

function.

This second requirement is fulfilled by functions for

whose level sets a regular parametrization is known.

Then, the two basic operations mentioned in the

last paragraph can be reduced to operations in the

level set’s parameter domain. For instance, if an-

other su�ciently smooth functions h is given such

that rg ⇥ rh = � rf for some scalar field � > 0,

then g and h can be used as parameter functions on

any level set of f , see Figure 6a.

Feasibility of the second function

The second function g is used to compute the Reeb

graph of a level set surface of f . So, for every value c of

f , the restriction gc of g to the level set f = c needs to

meet the two basic requirements for the computation

of a Reeb graph.

Consider requirement (i), i.e., that critical points

are determined by the function values on the mani-

fold’s boundary. The level sets of gc are now, in gen-

eral, curves. They are formed by the intersection of

level set surfaces of f and g, and thus have the tan-

gential direction rf ⇥rg. Critical points inside the

manifold occur if these level set curves touch or col-

lapse to a point, which may happen only if the gradi-

ents of f and g are linearly dependent. So in order to

meet the first requirement, we assume rf ⇥rg 6= 0.

For requirement (ii), we need to be able to recon-

struct the structure of a level set from its boundary,

e.g. in order to determine which level set component

a critical point belongs to, while sweeping through

the level sets of gc. The level sets of gc consist of

segments on a curve, and their boundaries are simply

points. We consider again the auxiliary function h,

which is then monotonic along the level set of gc, see

Figure 6b. Then the curve endpoints can be sorted by

their h-values, and intervals between them form level

set components.

g|{f=c}const

h{f = c}

{f = c}

g

h

(a) (b)

Figure 6: (a) Parametrization (g, h) of f -level sets.

(b) Monotonic function h on level sets of g|{f=c}.

Summary

Summing up we arrive at the following observation.

Lemma 1 Assume rf ⇥ rg 6= 0. Additionally, as-

sume that another function h is available such that

rh ⇥rg = � rf for some scalar field � > 0. Then,

the layered Reeb graph with respect to f and g is

determined by function values of f, g and h on the

boundary of M .

Proof. According to the observations in the previous

sections, critical points of f and gc on M that are not

determined by function values on the boundary are

excluded by rf 6= 0 and rf ⇥ rg 6= 0, respectively.

Using the additional function h, the level sets of f

can be equipped with a regular parametrization (g, h).

Additionally, h is monotonic along the level sets of gc.

So all in all, requirements (i) and (ii) are met both for

f and g|{f=c} ⇤

3.2 Relation to Jacobi sets

Consider the critical points induced by the boundary.

A boundary point p can only cause a change in the

level set component if the functions’ common level set

touches the boundary in p without intersection. With

N denoting the surface normal vector of M , these

points are characterized by (rf ⇥rg) ·N = 0, since

rf ⇥rg is the tangent direction of the level set of f

and g. This leads to a connection to the Jacobi set of

the functions’ restrictions to the manifold’s surface,

as defined in [3].

Definition 3 ([3]) The Jacobi set of two smooth

functions ' and on a surface consists of all points

with r' ⇥ r = 0, with r denoting the gradient

operator on the surface.

23

29th European Workshop on Computational Geometry, 2013

We get the following relation between Reeb spaces

and Jacobi sets.

Lemma 2 Let

¯

f and ḡ denote the restrictions of f

and g to the boundary of M . Then, the critical points

of (f, g) which are induced by the boundary ofM form

the Jacobi set of

¯

f and ḡ.

Proof. Let

¯r denote the gradient operator with re-

spect to the boundary surface. For points on the Ja-

cobi set, the gradients

¯r ¯

f and

¯rḡ are linearly depen-

dent vectors in the boundary surface’s tangent plane.

Together with the surface normal vector N they de-

fine a plane ✏, see Figure 7. Since rf and rg consist

of

¯rf and

¯rḡ, respectively, and components in the

direction of N , they are also contained in ✏. There-

fore, (rf ⇥rg) ·N = 0, which characterizes a critical

point of (f, g) induced by the boundary of M . The

argumentation works analogously in the other direc-

tion. ⇤

rf

rg

r̄f̄

r̄ḡ

Nrf ⇥rg

Figure 7: In critical points, gradients of f and g are

coplanar with the surface normal vector N .

According to [3], the Jacobi sets of two functions de-

fined on a surface are in general curves, so the critical

points of f and g form curves on the manifold’s sur-

face. While sweeping through level sets of f , changes

in the level set Reeb graphs thus occur at crossing

points of these Jacobi curves, or at local extrema of

the surface, which form monotonicity changes of Ja-

cobi curves with respect to f . So the events to be con-

sidered in the sweep are crossing- and monotonicity-

changing points of the Jacobi curves of f and g.

3.3 Realization

The double-layered sweep algorithm sketched in the

last paragraph of section 2.2 has been implemented

for manifolds given by a triangular surface mesh, ex-

tending the algorithm for Reeb graphs as presented in

[7]. We consider the piecewise linear approximations

of the defining functions, as induced by the triangular

mesh. If the mesh is fine enough compared to curva-

tures of the surface and the defining functions, the

gradients of the piecewise linear approximation will

approximate the smooth gradients su�ciently well.

In this setting, all critical points occur on edges

of the surface mesh, so the Jacobi curves consist of

mesh-edges. Using the criterion presented in [3], each

edge is tested whether it is part of the Jacobi set or

not. Additionally, boundary curves of the level sets of

f are polygons, which can be computed and handled

e�ciently.

Conclusion

We presented a discrete representation for Reeb

spaces of 3-manifolds with boundary with respect to

two scalar-valued functions, the layered Reeb graph.

Furthermore we introduced restrictions on the defin-

ing functions, which allow the layered Reeb graph

to be computed from a boundary description of the

manifold. In the next step, we seek to find a geo-

metrically meaningful embedding of the Reeb space

of a 3-manifold with respect to two functions into

space. This leads to a topological skeleton of the 3-

manifold, which promises to be more e�ciently com-

putable than, for example, the manifold’s medial axis.

The freedom in the choice of defining functions allows

a customization of such a Reeb skeleton to give opti-

mized results for given manifold.

References

[1] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falci-
dieno. Reeb graphs for shape analysis and applica-
tions. Theor. Computer Science, 392(1-3):5–22, 2008.

[2] H. Doraiswamy and V. Natarajan. E�cient algorithms
for computing Reeb graphs. Computational Geometry,
42(6-7):606–616, 2009.

[3] H. Edelsbrunner and J. Harer. Jacobi sets of multi-
ple Morse functions. Foundations of Computational

Mathematics, Minneapolis 2002, pages 35–57, 2004.

[4] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb
spaces of piecewise linear mappings. In Proc. Sympos.

on Comput. Geom., pages 242–250. ACM, 2008.

[5] H. Edelsbrunner and M. Kerber. Alexander duality for
functions: the persistent behavior of land and water
and shore. In Proc. Sympos. on Comput. Geom., pages
249–258. ACM, 2012.

[6] G. Patané, M. Spagnuolo, and B. Falcidieno. A min-
imal contouring approach to the computation of the
Reeb graph. IEEE Transactions on Visualization and

Computer Graphics, 15(4):583–595, 2009.

[7] B. Strodtho↵, M. Schifko, and B. Jüttler. Horizontal
decomposition of triangulated solids for the simula-
tion of dip-coating processes. Computer Aided Design,
43:1891–1901, 2011.

[8] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci.
Loop surgery for volumetric meshes: Reeb graphs re-
duced to contour trees. IEEE Trans. on Visualization

and Computer Graphics, 15(6):1177–1184, 2009.

24

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Collapsing Rips complexes

⇤

Dominique Attali† André Lieutier‡ David Salinas†

Abstract

Given a finite set of points that samples a shape in
Euclidean space, the Rips complex of the points pro-
vides an approximation of the shape which can be
used in manifold learning. Indeed, it su�ces to com-
pute the proximity graph of the points to encode the
whole Rips complex as the latter is an example of
flag completion. Recently, it has been proved that
the Rips complex reflects the homotopy type of the
shape when su�ciently densely sampled by the points.
Unfortunately, the Rips complex is generally high-
dimensional. In this paper, we focus on the simplifi-
cation of Rips complexes that approximate manifolds
with the goal of reducing the dimension of the com-
plex to the one of the manifold. We first propose an
algorithm that iteratively applies elementary opera-
tions that preserve both the homotopy type and the
property of the complex to be a flag completion and
then show how our algorithm performs on real data-
sets.

1 Introduction

Manifold learning aims at recovering low-dimensional
structures hidden in high-dimensional data [7]. An
example of data might be a collection of m by m im-
ages of a rigid body taken under di↵erent poses. The
collection of images can be thought of as a point cloud
in Rm⇥m. Assuming the space of images is equipped
with a reasonable metric (possibly the Euclidean met-
ric), we expect the points to be distributed over a 6-
dimensional manifold corresponding to the group of
rigid displacements (e.g. rotations and translations).
A manifold learning algorithm should be able, given
as input the points, to output a topologically consis-
tent representation of that manifold. Typically, the
representation can encode a simplicial complex which,
in the ideal case, is homeomorphic to the underlying
manifold.
Given a finite set of points that samples a shape

in Euclidean space, a classical approach for building
an approximation of the shape consists in returning

⇤
Research partially supported by the French “Agence na-

tionale pour la Recherche” under grant ANR-09-BLAN-0331-01

“Giga”.

†
Gipsa-lab – CNRS UMR 5216, Grenoble, France.

Firstname.Lastname@gipsa-lab.grenoble-inp.fr

‡
Dassault systèmes, Aix-en-Provence, France.

andre.lieutier@3ds.com

the Rips complex of the points [4]. Formally, the Rips
complex of a set of points P at scale ↵ is the simpli-
cial complex whose simplices are subsets of points in
P with diameter at most 2↵. Recently, it has been
proved that the Rips complex reflects the homotopy
type of the shape, assuming the shape has a positive
reach and is su�ciently densely sampled by the points
[2]. The Rips complex has the computational advan-
tage to be a flag completion: it su�ces to compute
its 1-skeleton to encode the whole complex. Unfortu-
nately, the Rips complex is generally high-dimensional
so that the true dimension of the shape remains elu-
sive in the representation. To retrieve the intrinsic
dimension of the shape, we propose to simplify Rips
complexes by repeatedly applying generalized vertex
and edge collapses (see definition bellow). We pro-
pose and compare several heuristics for finding such
a sequence of collapses.

2 Collapses

Given a simplicial complex K, an elementary col-

lapse is the operation that removes a pair of simplices
(�

min

,�

max

) assuming �

max

is the unique proper co-
face of �

min

. The result is the simplicial complex
K \ {�

min

,�

max

} to which K deformation retracts.
The reverse operation, which adds back the two sim-
plices �

min

and �

max

is called an elementary anti-

collapse and is clearly also a homotopy-preserving op-
eration. A simplicial complex is said to be collapsi-

ble if it can be reduced to a single vertex by a finite
sequence of elementary collapses. For instance, the
closure of a simplex �, Cl(�) =

S
;6=⌧⇢�

{⌧}, is col-
lapsible. Cl(�) is an example of cone. A cone is a
simplicial complex K which contains a vertex o such
that the following implication holds: � 2 K =)
� [{o} 2 K. Cones are also collapsible. Another
elementary operation that we shall use is the edge

contraction. The edge contraction ab 7! c is the op-
eration that identifies the two vertices a 2 K and
b 2 K to the vertex c. It preserves the homotopy-
type whenever Lk

K

(ab) = Lk
K

(a) \ Lk
K

(b) where
Lk

K

(�) = {⌧ 2 K, ⌧ \ � = ; and ⌧ [� 2 K} desig-
nates the link of � in K [1, 5].

We now list several possible generalizations of ele-
mentary collapses. To do so, we call the collection of
simplices of K having � as a face the star of � and
denote it as St

K

(�). Finally, we call the operation
that removes St

K

(�
min

) from K:

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

25

29th European Workshop on Computational Geometry, 2013

• a (classical) collapse: if the star of �
min

has a unique
inclusion-maximal element �

max

6= �

min

; the reverse
operation is called a (classical) anti-collapse.

• an (extended) collapse: if the link of �
min

is a cone
[1]; the reverse operation is called an (extended) anti-

collapse.

• a (generalized) collapse: if the link of �
min

can be
reduced to a point by a sequence of collapses, anti-
collapses and homotopy-preserving edge contractions;
the reverse operation is called a (generalized) anti-

collapse.
All three collapses (classical, extended, generalized)

preserve the homotopy-type. Deciding whether the
operation that removes St

K

(�
min

) from K is a classi-
cal or extended collapse can be done e�cient (i.e. in

polynomial time) using the data structure described in
[1]. We will see shortly that deciding whether the op-
eration that removes St

K

(�
min

) from K is a general-
ized collapse is computationally more involved. Here,
we will focus on Rips complexes which will allow us
to design specific reduction sequence.

3 Simplifying Rips complexes whoses vertices ap-

proximate a manifold

The goal of this section is to present and compare
strategies for simplifying a Rips complex whose ver-
tex set samples a manifold. In the ideal case, we would
like to get a complex homeomorphic to the manifold
or at least whose dimension is as close as possible
to that of the manifold. Throughout the section, we
will assume that P is a point cloud that samples a d-
dimensional manifold A embedded in D-dimensional
Euclidean space and suppose that we can find a value
of ↵ such that Rips(P,↵) and A has the same homo-
topy type.

3.1 Simplification algorithm

The Rips complex is simplified in two stages: the
first stage iteratively collapses vertices and the sec-
ond stage iteratively collapses edges; see Algorithm 1.
During the simplification, the complex remains a flag
completion, since this property is not altered by col-
lapsing vertices and edges. For k 2 {0, 1}, stage k pro-
ceeds as follows. Initially, all k-dimensional simplices
are stored in a priority queue Q. Each k-simplex re-
ceives as priority its diameter. During stage k, we iter-
atively take the k-simplex � with highest priority and
remove it from the current complex K together with
all its cofaces whenever Reducible(Lk

K

(�)) returns
true; see Algorithm 2. Ideally, we would like the func-
tion reducible(Lk

K

(�)) to be true if and only if the
operation that removes � and all its cofaces is a gener-
alized collapse. This means that ideally, we would like
the function reducible to take as input a simplicial

complex L and returns true whenever there exists a se-
quence of homotopy-preserving elementary operations
(collapses, anti-collapses and edge-contractions) that
goes from L to a point and false otherwise. Unfor-
tunately, the problem of deciding whether a complex
L is reducible to a point by a sequence of elemen-
tary operation is NP-complete, even when we limit
ourselves to elementary collapses and 3-dimensional
complexes [6]. Instead, we will propose four more or
less sophisticated heuristics to find such a sequence,
drawing inspiration from the constructive proofs of [3]
and sometimes taking advantage of the fact that L is
a flag complex.

Algorithm 1 Simplify(Simplicial complex K)

Simplify(K,0,true) {Collapse the vertices of K}
Simplify(K,1,false) {Collapse the edges of K }

Algorithm 2 Simplify(Simplicial complex K, inte-
ger k, boolean reinsert)

Q = K

(k) \K(k�1)

while Q 6= ; do

Remove the simplex � from Q with highest pri-
ority
if reducible (Lk

K

(�)) then
K = K \ St

K

(�)
if reinsert then
Insert in Q the k-dimensional simplices
whose link have changed

end if

end if

end while

Observe that the only di↵erence between the two
stages is that at stage 0, when we collapse a vertex,
we reintroduce the vertices of its link in the priority
queue. We do not do the same at stage 1 because, in
our experiments, it slows the computation and does
not improve the number of times we get a complex
either homeomorphic to or with the same dimension
as the manifold A.

3.2 Finding reduction sequences

We present four possible procedures that can be
used in place of Reducible in Algorithm 2. Each
procedure takes as input a simplicial complex L.
The third strategy is the only one that requires its
input to be a flag completion. The pseudo-code for
each procedure can be found either in [1] or [3]. For
later reference, strategies are numbered from (S1)
to (S4). The intuition behind strategies (S2) and
(S3) is that if the vertices of L sample a convex set
densely enough then results in [3] ensure that those
two strategies will succeed.

26

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

(S1) iscone: returns true if and only if L is a cone.

(S2) reducible by sweep: starts by picking a
vertex o of L and tries to apply vertex and edge
extended collapses to reduce L to o. To do so, the
strategy computes a priority ' which is evaluated
to '(a) = d(o, a) � ↵ for each vertex a of L and
'(ab) = d(o,B(a,↵) \B(b,↵)) for each edge ab of L.
Then, we put all vertices of L except o in a priority
queue Q and put all edges ab of L in Q i↵ the priority
of ab is greater than the priority of its vertices a

and b that is '(ab) > min{'(a),'(b)}. Finally
the strategy tries to reduce L to o by performing
extended collapses of all simplices in Q in the order
of decreasing priority '. The strategy returns true i↵
it manages to do so.

(S3) reducible by completion: applies a se-
quence of edge extended anti-collapses in the order
of increasing length. If at some point, the result is a
cone, returns true. If at some point, an edge could
not be inserted, returns false.

(S4) reducible by edge contractions: simplify
L by applying a sequence of edge contractions
ab 7! a+b

2

in the order of increasing length assuming
Lk

L

(ab) = Lk
L

(a) \ Lk
L

(b) as explained in [5, 1].
Returns true i↵ the simplex L after simplification
consists of a single vertex.

If we assume that P is initially a dense sampling
of A, the vertices in the link of a simplex are likely
to be close to a convex (at least at the beginning of
the simplification). In this situation, it is proved that
the complex is always reduced to a point with the
two strategies (S2) and (S3) [3]. We now describe
various computational experiments and the results we
obtained.

4 Experiments

4.1 Data-sets

We present the four data-sets used in our experiments.

Cat. A collection of 72 images of a toy cat placed
on a turntable and observed by a fixed camera. Each
image has size 1282 = 16384 and can be thought of
as a point-cloud that samples a 1-manifold in R16384.
For this data-set, d = 1 and D = 16384.

Sphere. A sampling of a 2-sphere with 2646 points
corrupted by noise. In this case, d = 2 and D = 3.

Ramses. A 3D scan data consisting of 193252 points
measured on the surface of a statue representing Ram-
ses II. The surface of the statue is homeomorphic to
S2. For this data-set, d = 2 and D = 3.

SO3. A point set SO3 ⇢ R9 with size 10000 that
samples the special orthogonal group. Recall that
this group is di↵eomorphic to RP3 which is a 3-
dimensional manifold that can be embedded in R9

P]P size of dimension of
Rips(P,↵) Rips(P,↵)

Cat 72 > 106 19
Sphere 2646 > 2⇥ 109 > 12
Ramses 193, 252 > 6⇥ 106 14
SO3 10, 000 > 2.8⇥ 108 16

Table 1: For each data-set P , we indicate the number
of points in P , the number of simplices in Rips(P,↵)
and the dimension of Rips(P,↵).

by representing each rotation in 3D by a 3⇥3 matrix.
We have d = 3 and D = 9.
Table 1 gives for each data-set the number of points,

the number of simplices in Rips(P,↵) and the dimen-
sion of Rips(P,↵).

4.2 Results

To compare our four strategies, we first perform the
following experiment. We apply our simplification al-
gorithm (Algorithm 2), using for reducible the func-
tion which returns true i↵ one of the four strategies
returns true. Let �

j

be the k-simplex removed at step
j during the simplification. Let sx

k

(i) be the number of
times (Sx) returns false when applied to �

j

for j rang-
ing over {1, . . . , i}. In other words, sx

k

(i) counts the
number of times the strategy (Sx) has failed to find
a sequence of reduction while another strategy had
succeeded during the i first steps of the simplification
process. In Figure 1, we plot sx

0

for x 2 [1, 4] (that is
for all strategies), and for all data-sets. When collaps-
ing edges, all strategies give the same answer for all
data-sets except for Ramses and SO3 thus we plot s

x

1

only for these two data-sets, see Figure 1. We observe
that (S4) seems to be the most e�cient strategy : it
finds a sequence of reduction whenever another strat-
egy finds one when simplifying our four data-sets.
We now use our simplification algorithm with a

fixed strategy for finding reduction sequences. In Ta-
ble 2, we describe the complex K

out

obtained after
simplification using each of our 4 strategies in turn
to find reduction sequences. As suggested by the pre-
vious experiment, the best results are obtained when
using (S4). Indeed, using (S4), the result of the sim-
plification K

out

is a flag complex homeomorphic to
the sampled manifold A, except for the data-set SO3.
Still, in that case, we get a complex with the correct
dimension. Future work will include a better under-
standing of the performances of strategy (S4) together
with the search of a condition ensuring that our algo-
rithm outputs a complex homeomorphic to A.

27

29th European Workshop on Computational Geometry, 2013

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60

N
um

be
r o

f t
im

es
 a

 s
tra

te
gy

 fa
ils

i-th vertex collapse of Cat

ISCONE
REDUCIBLE BY SWEEP

REDUCIBLE BY EDGE CONTRACTION
REDUCIBLE BY COMPLETION

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 500 1000 1500 2000 2500

N
um

be
r o

f t
im

es
 a

 s
tra

te
gy

 fa
ils

i-th vertex collapse of Sphere

ISCONE
REDUCIBLE BY SWEEP

REDUCIBLE BY EDGE CONTRACTION
REDUCIBLE BY COMPLETION

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 20000 40000 60000 80000

N
um

be
r o

f t
im

es
 a

 s
tra

te
gy

 fa
ils

i-th vertex collapse of Ramses

ISCONE
REDUCIBLE BY SWEEP

REDUCIBLE BY EDGE CONTRACTION
REDUCIBLE BY COMPLETION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000

N
um

be
r o

f t
im

es
 a

 s
tra

te
gy

 fa
ils

i-th vertex collapse of SO3

ISCONE
REDUCIBLE BY SWEEP

REDUCIBLE BY EDGE CONTRACTION
REDUCIBLE BY COMPLETION

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 10000 20000 30000 40000

N
um

be
r o

f t
im

es
 a

 s
tra

te
gy

 fa
ils

i-th edge collapse of Ramses

ISCONE
REDUCIBLE BY SWEEP

REDUCIBLE BY EDGE CONTRACTION
REDUCIBLE BY COMPLETION

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 2000 4000 6000 8000 10000 12000

N
um

be
r o

f t
im

es
 a

 s
tra

te
gy

 fa
ils

i-th edge collapse of SO3

ISCONE
REDUCIBLE BY SWEEP

REDUCIBLE BY EDGE CONTRACTION
REDUCIBLE BY COMPLETION

Figure 1: Number of failures for each strategy while
performing vertex collapse (first four figures) and edge
collapse (last two figures).

(S1) dim(K
out

) K

out

⇡ A running time
Cat 1 YES 1 s

Sphere 5 NO 1 min
Ramses 3 NO 25 min

SO3 6 NO 94 s

(S2) dim(K
out

) K

out

⇡ A running time
Cat 2 NO 3 min

Sphere 3 NO 6 min
Ramses 3 NO 180 min

SO3 4 NO 10 min

(S3) dim(K
out

) K

out

⇡ A running time
Cat 1 YES 1 s

Sphere 2 YES 2 min
Ramses 2 NO 160 min

SO3 4 NO 33 min

(S4) dim(K
out

) K

out

⇡ A running time
Cat 1 YES 2 s

Sphere 2 YES 2 min
Ramses 2 YES 150 min

SO3 3 NO 7 min

Table 2: Description of the simplicial complex output
K

out

when using each of the four strategies for finding
sequences of reductions. We indicate the dimension of
K

out

together with the fact that it is homeomorphic or
not to A and the computation time. All computation
are done with a 2.8 GHz processor and 8 GB RAM.

References

[1] D. Attali, A. Lieutier, and D. Salinas. E�cient
data structure for representing and simplifying sim-
plicial complexes in high dimensions. International

Journal of Computational Geometry and Applications

(IJCGA), 22(4):279–303, 2012.

[2] D. Attali, A. Lieutier, and D. Salinas. Vietoris-Rips
complexes also provide topologically correct recon-
structions of sampled shapes. Computational Geom-

etry: Theory and Applications (CGTA), 2012.

[3] D. Attali, A. Lieutier, and D. Salinas. Collapsing rips
complexes. In 29th Ann. Sympos. Comput. Geom., Rio
de Janeiro, Brazil, 2013. Submitted.

[4] V. de Silva and R. Ghrist. Coverage in sensor net-
works via persistent homology. Algebraic & Geometric

Topology, 7:339–358, 2007.

[5] T. K. Dey, H. Edelsbrunner, and S. Guha. Computa-
tional topology. In B. Chazelle, J. E. Goodman, and
R. Pollack, editors, Advances in Discrete and Compu-

tational Geometry, volume 223 of Contemporary Math-

ematics. AMS, Providence, 1999.

[6] M. Tancer. Recognition of collapsible complexes is np-
complete. CoRR, abs/1211.6254, 2012.

[7] J. Tenenbaum, V. De Silva, and J. Langford. A global
geometric framework for nonlinear dimensionality re-
duction. Science, 290(5500):2319–2323, 2000.

28

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Constructing Complicated Spheres

Mimi Tsuruga⇤ Frank H. Lutz⇤

Abstract

Fast and e�cient homology algorithms are in demand
in the applied sciences for analyzing solid materials
and proteins, processing digital imaging data, or pat-
tern classification among others. Recent advances em-
ploy discrete Morse theory as a preprocessor. Re-
search in this area has lead to the need to find com-
plicated test examples. We present an infinite series of
examples that have been constructed to test some of
the latest algorithms under development. This family
of 4-spheres (known as the Akbulut–Kirby spheres) is
based on a handlebody construction via finitely pre-
sented groups.

1 Motivation

1.1 Homology Algorithms

Computing the homology of simplicial or more general
cell complexes can quickly become too cumbersome
by hand. Today, however, computers can be used to
analyze even amazingly large complexes [5, 6]. Speed-
ing up homology calculations is now an active field of
research in computational topology.
Computing homology involves the computation of

the Smith normal form of matrices that encode geo-
metric information about the complex. Current algo-
rithms for computing the Smith normal form, though
polynomial [13], are too slow for explicit computa-
tions on large examples. However, computation time
can be dramatically improved by employing a topo-
logical preprocessor.
Discrete Morse theory provides an excellent founda-

tion for reducing a large complex to a simplified com-
plex of the same topological (PL) type [10, 12]. We
can then replace the matrix for which we want to find
the Smith normal form with a much smaller one. The
problem of finding an optimal discrete Morse function,
however, is NP-hard [11, 14].
Benedetti and Lutz [3] propose using random dis-

crete Morse theory to search for discrete Morse func-
tions with few critical cells. Surprisingly, this ap-
proach frequently finds the optimum even for large
examples. In fact, it has been di�cult to provide
complicated examples on which the random heuris-
tics performs poorly.

⇤
Technische Universität Berlin

The aim of this article is to provide an infinite series
of such examples.

1.2 Complicated Spheres

Simplicial complexes can pose challenges for discrete
Morse algorithms for various reasons. For example, if
the underlying topological space is complicated or if
the triangulation itself is complicated. Here we look
at the latter case and construct a series of triangula-
tions of the 4-dimensional sphere S4, which has trivial
topology.1 The examples in the series, however, are
composed in a rather non-trivial manner.

2 Akbulut–Kirby Spheres

2.1 Background

Topologists in recent years have been working on find-
ing counterexamples for the smooth Poincaré conjec-
ture in dimension 4. These so-called exotic spheres
are smooth manifolds that are homeomorphic, but
not di↵eomorphic to the standard sphere S4, i.e., the
round sphere with the usual di↵erentiable structure.
Various candidates have been introduced, many of
which were later shown to be standard.
We have built explicit triangulations of one such

candidate series proposed by Akbulut and Kirby [2],
which goes back to an example by Cappell and Shane-
son. Gompf [9] showed that one sphere from the se-
ries is standard, i.e., di↵eomorphic to S4. Akbulut [1]
later proved that all examples in the whole infinite
series are standard.
In the following section, we will give a detailed de-

scription of our construction of triangulations of the
Akbulut–Kirby spheres.

2.2 Construction

Before going into the details of our construction of
triangulations for the Akbulut–Kirby spheres, let us
start with a quick overview of what’s to come. The
main idea for the spheres begins with finitely pre-
sented groups

G = hg1, . . . , gl | r1, . . . , rmi ,

where gi are generators and ri are relators in the gi’s.
It is undecidable whether a given finitely presented

1
We study spheres because spheres can admit perfect Morse

functions, i.e., with only two critical cells.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

29

29th European Workshop on Computational Geometry, 2013

group is the trivial group [16]. In fact, there are even
group presentations with only two generators and two
relators that are not obviously trivial.
Let G =

⌦
x, y | xyx = yxy;xr = yr�1

↵
. To see that

this group is trivial, rearrange the first relator to get

y = x�1y�1xyx.

Then yr = x�1y�1xryx = x�1yr�1x = xr by substi-
tuting the second relator twice. This yields yr = yr�1

or y = e and hence x = e. Thus G is the trivial group.
Next, take a 5-ball and attach two 1-handles repre-

senting each of the generators x and y. Then glue in
two 2-handles along thickened curves representing the
relators xyx = yxy, xr = yr�1. The resulting object
is a topological 5-ball.
Gompf [9] proved that for all the presentations G =⌦

x, y | xyx = yxy, xr = yr�1
↵
the resulting boundary

4-spheres are, in fact, standard 4-spheres.
We built simplicial complexes following this recipe.

But we begin our construction in dimension 3.
Start with a 3-ball and attach two 1-handles. Then

choose two curves in the resulting handlebody that
represent the relators. Next we take the product of
the 3-dimensional handlebody H3 with an interval I
twice. We then find (copies of) the two curves in the
boundary of the 5-dimensional handlebodyH3⇥I⇥I.

Consider Fig. 1 in which the red curve lies in
the interior of the handlebody H3. After taking

9
>>=

>>;
I

H3

Figure 1: The red
curve in the interior of
H3 is on the bound-
ary of H3 ⇥ I.

the product H3⇥ I, we find
(a copy of) the red curve on
the boundary of H3⇥I. On
the boundary of H3 ⇥ I ⇥ I
we thicken each of the two
curves representing the gen-
erators xyx = yxy, xr =
yr�1 to a solid 4-torus along
which the two 2-handles are
glued in. While the two
curves are twisted in H3,
the two solid 4-tori untwist

in the boundary of H3 ⇥ I ⇥ I.
By gluing in the two 2-handles, we end up with

a topological 5-ball whose boundary (if smoothed
appropriately) is a homotopy 4-sphere [2]. For 4-
manifolds, the categories DIFF (di↵erentiable) and
PL (piecewise linear) coincide, so our triangulations
provide model spaces for the smooth setting.

Step 1: The Space.

We begin in dimension 3. In particular, we want to
have a 3-ball with two 1-handles which represent our
two generators x and y, see Fig. 2.
Notice that we have used three colors to distinguish

the di↵erent parts of our space. Keep this picture in
mind when we move on to the next steps. The green
section in the center is our 3-ball. To this 3-ball we

x

y

Figure 2: The handlebody H3 consisting of a 3-ball
(in green) with two 1-handles (purple for the genera-
tor x and orange for the generator y).

attach one 1-handle which we label x (in purple) and
another 1-handle which we label y (in orange).
We will choose two curves that represent the two

relators inside this space.

Step 2: Planning the Curves.

We draw the two curves which represent the relators.
The two curves are xyx = yxy, which we call the blue
curve, and xr = yr�1, which we call the red curve (see
Fig. 3 for the Akbulut–Kirby sphere with r = 5).

x

y

Figure 3: The two curves of the Akbulut–Kirby sphere
xyx = yxy (blue) and x5 = y4 (red) in dimension 3.

The crossings indicate which sections of the curves
run over or under. The embedding of the curves can
be arbitrarily chosen as long as they run over the two
1-handles x and y as specified by the relators. When
we move up in dimension in Step 6, the thickened
curves will untangle no matter how twisted or knotted
they were in dimension 3. The particular arrangement
shown in Fig. 3 was chosen to simplify the construc-
tion in Step 5.
To understand Fig. 3, begin with the blue curve

read as xyxy�1x�1y�1 = e. Remember that we are
on a 3-ball with two 1-handles x and y. These handles
are oriented as indicated by the black arrows.
For the blue curve, we begin at the blue crossing in

the center of Fig. 3. Follow the bottom curve at the
crossing and go up (and left) towards the x-handle.
Then along x, back through the ball, then y, then x,
then all the way across to the far bottom left, along

30

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

y in the reverse direction, then x in reverse, then y in
reverse and then finally return to our starting point
to close the curve. The red curve x5y�4 = e is repre-
sented similarly.

Step 3: Thickening of the Curves to Solid Tori.

Fig. 3 displays the blue and red curves in H3 which
will be thickened to solid 3-tori. We choose triangular
prisms to compose the solid 3-tori. In Fig. 4, we have

1

2

3

4

5

6

7

8

9

34

35

36

1

2

3

Figure 4: The blue curve in Fig. 3 is thickened to a
chain of triangular prisms.

the prisms for the blue curve for the Akbulut–Kirby
sphere with r = 5 (Fig. 3). The vertex labels repeat
at the ends as they are identified to form a loop.
Notice that the blue curve in Fig. 3 can be cut up

into 12 strands (3 on the x-handle, 3 on the y-handle,
and 6 inside the middle ball) every time the curve
crosses into a di↵erent section of the handlebody (re-
call Fig. 2). One triangular prism is used for each of
these strands. So we used (12 ⇥ 3 =)36 vertices to
build the blue solid torus as indicated in Fig. 4.
We can systematically and coherently break down

these prisms into tetrahedra by using product trian-
gulations as described in [15] and references therein.
This method guarantees that neighboring simplices
match up nicely. For example, we do not want to in-
troduce di↵erent diagonals for a rectangular face of
one of the prisms.

Step 4: Fill the Handles.

The construction of the 1-handles is simple since they
only have triangular prisms that run parallel along
each other. However, we want to avoid having any
unwanted identifications along the handles. So we add
bu↵ers between neighboring triangular prisms using
rectangular prisms. Fig. 5 gives a front view of the

Figure 5: Filling the x-handle of Fig. 3.

x-handle. The three blue triangles on the two ends
are part of the blue solid 3-torus running over the x-
handle in Fig. 3. The rectangular prisms between the
triangular prisms are white. We need 7 rectangular
bu↵er prisms for the x-handle and 6 rectangular bu↵er
prisms for the y-handle.

Step 5: Fill the Ball.

First we explain the reason for choosing the particular
arrangement of the curves in Fig. 3. Let’s look only
at the rectangular area representing what will become
our 3-ball, see Fig. 6.

Figure 6: The portion that will be filled to become
the 3-ball. The three colored lines go above or below.

The (curves that represent) prisms in the middle
ball section are not all parallel and some cross each
other. The gray lines have no crossings and we place
them in, say, Level 0. We then let the pink line go
above (Level +1), green goes below (Level -1) and
orange further below (Level -2).
To fill the floors, we first glue in rectangular bu↵er

prisms between the parallel strands of the ground
floor. Then we glue in 2-dimensional (triangulated)
membranes to close the holes between the remaining
strands of the ground floor, then two additional mem-
branes to close an upper cupula including the pink
strand and further membranes to obtain another two
cavities for the two lower floors. The three cavities
are then closed by filling in three cones.
The main part of our construction is now complete.

Step 6: Go Up In Dimension.

Having composed H3, we can now take a direct prod-
uct of it with the unit interval I = [0, 1] once to
go to 4-dimensions. In this step, we thicken the 3-
dimensional solid tori to 4-dimensional solid tori. We
then take the direct product again to go to 5 dimen-
sions. This time, we keep the solid 4-tori in one of
the two boundary components. The product triangu-
lation procedure [15] is used each time.

Step 7: Glue In the 2-Handles.

We glue in the two 2-handles along the two solid 4-tori
in a canonical way by using four additional vertices
each.
Now we have a 5-dimensional ball.

Step 8: Take Its Boundary.

Finally, we take the boundary to obtain our (homo-
topy) 4-sphere. Notice that all the vertices have been
pushed out onto the boundary at Step 6.

31

29th European Workshop on Computational Geometry, 2013

The final steps use techniques that are mostly
canonical and will be described in more detail in a
full version of this article (in preparation).

3 Results

Theorem 1 The series of Akbulut–Kirby spheres

can be triangulated with face vectors f = (176 + 64 r,
2390 + 1120 r, 7820 + 3840 r, 9340 + 4640 r,
3736 + 1856 r) for r � 3, where the triangulations re-
spect the defining handlebody decompositions as de-

scribed in the above construction.

As we hoped, these triangulated spheres have
shown to be substantially complicated. For exam-
ple for r = 5, the best discrete Morse vector found,
(1, 2, 4, 2, 1), was reached only 5 times out of 1,000
random runs. On average, we certainly need more
than just two critical cells; see Table 1.

r c⌧ r c⌧

5 29.26 8 40.07
6 33.124 9 42.432
7 37.026 10 46.946

Table 1: Average number of critical cells c⌧ needed
for r = 5, . . . , 10 in 1,000 runs.

It is important to note that there does not exist
an algorithm that can determine whether a (trian-
gulated) manifold of dimension d > 4 is a sphere
and existence of such an algorithm is still open for
d = 4. One heuristic way, however, is to perform
(random) bistellar flips, or Pachner moves [4, 17] to
show that a given triangulation is PL-equivalent to
the boundary of a (d + 1)-simplex. We have shown
using polymake [8] that at least for r = 3 the corre-
sponding Akbulut–Kirby sphere is standard thus re-
confirming the statement in this case experimentally.
Another remarkable result of our experiments is

that the initial nontrivial group presentation can show
up when we compute the fundamental group as the
edge-path group according to Seifert and Threlfall [19]
and then simplifying the presentation using GAP [7].
In fact, we found that the fundamental group of the
complex for r = 5 after some bistellar and (FP) group
simplification had two generators x and y and two re-
lators xyx = yxy and x5 = y4. This is exactly the
presentation with which we started!
These spheres have recently been used as test ex-

amples for the Perseus homology algorithm by Mis-
chaikow and Nanda [18]. The techniques designed to
generate these spheres will also be used to construct
other PL versions of topologically interesting objects.

Acknowledgments

Many thanks to John M. Sullivan for helpful discus-
sions and remarks. We are grateful to Joel Hass
and to William P. Thurston for directing us to the

Akublut–Kirby spheres as non-trivial constructions of
4-spheres.

References

[1] S. Akbulut. Cappell-Shaneson homotopy spheres are
standard. Ann. Math. (2), 171:2171–2175, 2010.

[2] S. Akbulut and R. Kirby. A potential smooth coun-
terexample in dimension 4 to the Poincaré conjecture,
the Schoenflies conjecture, and the Andrews–Curtis
conjecture. Topology, 24:375–390, 1985.

[3] B. Benedetti and F. Lutz. Random discrete Morse
theory I: Complicatedness of triangulations. In prepa-
ration.

[4] A. Björner and F. H. Lutz. Simplicial manifolds,
bistellar flips and a 16-vertex triangulation of the
Poincaré homology 3-sphere. Exp. Math., 9:275–289,
2000.

[5] CAPD::RedHom. http://redhom.ii.uj.edu.pl.

[6] CHomP. http://chomp.rutgers.edu.

[7] The GAP Group. GAP – Groups, Algorithms, and
Programming, Version 4.4.12, 2008. http://www.

gap-system.org.

[8] E. Gawrilow and M. Joswig. polymake: a frame-
work for analyzing convex polytopes. In G. Kalai
and G. Ziegler, editors, Polytopes — Combinatorics
and Computation, pages 43–74. Birkhäuser, 2000.

[9] R. Gompf. Killing the Akbulut–Kirby 4-sphere,
with relevance to the Andrews–Curtis and Schoen-
flies problems. Topology, 30:97–115, 1991.

[10] M. Joswig. Computing invariants of simplicial mani-
folds. arXiv:math.AT/0401176, 2004, 13 pages.

[11] M. Joswig and M. Pfetsch. Computing optimal Morse
matchings. SIAM J. Discr. Math., 20:11–25, 2006.

[12] T. Kaczynski, K. Mischaikow, and M. Mrozek. Com-
putational Homology. Applied Mathematical Sciences
vol. 157. Springer-Verlag, New York, NY, 2004.

[13] R. Kannan and A. Bachem. Polynomial algorithms
for computing the Smith and Hermite normal forms
of an integer matrix. SIAM J. Comput., 8:499–507,
1979.

[14] T. Lewiner, H. Lopes, and G. Tavares. Optimal
discrete Morse functions for 2-manifolds. Comput.
Geom., 26:221–233, 2003.

[15] F. Lutz. Triangulated Manifolds with Few Vertices:
Geometric 3-Manifolds. arXiv:math.GT/0311116,
2003, 48 pages.

[16] P. S. Novikov. On the algorithmic unsolvability of the
word problem in group theory, volume 44 of Trudy
Matematicheskogo Instituta imeni V. A. Steklova. Iz-
datel’stvo Akademii Nauk SSSR, Moscow, 1955.

[17] U. Pachner. P.L. homeomorphic manifolds are equiv-
alent by elementary shellings. Eur. J. Comb., 12:129–
145, 1991.

[18] Perseus. http://www.math.rutgers.edu/⇠vidit/

perseus.html.

[19] H. Seifert and W. Threlfall. Lehrbuch der Topologie.
BG Teubner, 1934.

32

http://redhom.ii.uj.edu.pl
http://chomp.rutgers.edu
http://www.gap-system.org
http://www.gap-system.org
arXiv:math.AT/0401176
arXiv:math.GT/0311116

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Selecting a Small Covering from a Double Covering

Peter Brass∗

Abstract

The main result is that from any double covering of
the plane by unit discs we can select a subset using
at most 3/4 of the discs that still forms a covering.

1 Introduction

A k-fold covering of the plane is a family of sets such
that each point of the plane belongs to at least k of
the sets. Such multiple coverings have been studied
in discrete geometry at least since 1962 [7], see [5]
section 2.1, and recently also found interest in the
theory of sensor- and ad-hoc networks [2, 3, 8, 10,
11, 17, 18]. Reduction of multiple coverings of the
plane by unit discs, or more generally by translates
of a convex body, has up to now been studied only as
a decomposition problem: Given a multiple covering,
of sufficiently high multiplicity, can it be decomposed
into two subfamilies which are still coverings? This
problem has been answered for some classes of convex
sets, most recently in [15] (improving [13, 14, 1, 16]),
where it is showed that for any convex polygon P
there is a k(P) such that any k(P)-fold covering by
translates of P can be decomposed in two coverings
(the multiplicity depends on the shape of P , and is not
even known to be bounded for, e.g., all fourgons). But
the most natural case of the circle must be considered
still open, for the much-cited manuscript [12] is still
unpublished. It is the aim of this note to analyze
selection instead of decomposition: Given a multiple
covering, how small a subset can we select that is still
a covering. We give bounds for double coverings and a
corresponding result for double packings of unit discs.

2 Results

Theorem 1 From any given family of unit discs that
is a double covering of the plane, we can select a sub-
family using at most 3

4
of the discs that is still a cov-

ering.

To prove this theorem, we dualize the setting and con-
sider the set C of centers of the unit discs of the double
covering. This is then a set of points such that each
unit disc around any point p in the plane contains

∗Author’s address: Department of Computer Science, City
College of New York, 160 Convent Ave, New York, NY 10031,
USA, e-mail peter@cs.ccny.cuny.edu. Supported by NSF
award 1017539

at least two points of C. We consider the Delaunay-
Triangulation of DT (C). Since each unit disc con-
tains at least two points, we can shrink that disc until
it contains exactly two points of C, which define a
Delaunay-edge. So each unit disc in the plane con-
tains an edge of DT (C). Since DT (C) is planar, we
can four-color it, and remove the largest color-class.
By this we remove at most one of the two endpoints
of each edge; so each unit disc still contains at least
one of the remaining points. Thus we found a subset
of C, so that the unit discs around that subset still
cover the plane, and the subset contains at most 3

4
of

the original points.

A concept related to multiple coverings are multiple
packings: a k-fold packing in the plane is a family of
sets such that no point of the plane belongs to more
than k sets of the family. The double covering result
has a ‘dual’ for double packings.

Theorem 2 From any given family of unit discs that
is a double packing in the plane, we can select a sub-
family using at least 1

4
of the discs that is still a pack-

ing.

The proof is similar: the set of centers C of the unit
discs in a double packing is a set of points with the
property that any unit disc in the plane contains at
most two points of C. We again use the Delaunay-
Triangulation; if a disc contains two points of C, these
are joined by a Delaunay-edge. So if we four-color the
planar graph given by the Delaunay-Triangulation,
and select one color-class, we have at most one point
in each circle. So the unit discs around these centers
generate a packing.

These theorems suggests two families of related
questions:

• What is the smallest ak such that we can select
from any k-fold covering a subfamily of at most
an ak fraction of the discs that is still a covering?

• What is the largest bk such that we can select
from any k-fold packing a subfamily of at least a
bk fraction of the discs that is a packing?

Clearly ak ≥ 1
k

and bk ≤ 1
k
, since the k-fold covering

or packing could be a union of k normal coverings
or packings. We showed a2 ≤ 3

4
and b2 ≥ 1

4
. It

is known that the thinnest double covering by unit
discs is thinner than a union of two coverings, and the

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

33

29th European Workshop on Computational Geometry, 2013

same for double packings [6, 9]; these examples show
that a2 > 1

2
and b2 < 1

2
; but I have no construction

giving an interesting bound. Indeed, double coverings
are somewhat mysterious, and there is no conjectured
structure for the thinnest double covering of the plane
by unit discs (see also [5] Section 2.1 Problem 1).

The method does not extend in any simple way
to higher multiplicities of coverings: there are point
sets such that each unit disc contains k points, but
for some discs, the graph induced by the Delaunay-
Triangulation is a star K1,k−1. In that case, it is pos-
sible that in a four-coloring of this planar graph all
but one points are in the same color class.

We can replace the Delaunay-Triangulation by any
other triangulation, but we need the property that
any unit disc which contains k points has a nontrivial
subgraph induced on these points. The minimum-
weight triangulation is not useful here: there are
examples in which the k points in a unit disc in-
duce an independent set in the triangulation. For
the Delaunay-Triangulation, the induced graph on the
points in a disc is always connected. If there were a
triangulation for which the induced graph always con-
tained a triangle, this would answer also the partition
problem: choosing two color classes of a four-coloring
would then guarantee at least one point in each disc.

References

[1] G. Aloupis, J. Cardinal, S. Collette, S. Langer-
man, D. Orden, P. Ramos: Decomposition of Mul-
tiple Coverings into More Parts, Discrete & Com-
putational Geometry 44 (2010) 706–723.

[2] X. Bai, Z. Yun, D. Xuan, B. Chen, W. Zhao:
Optimal Multiple-Coverage of Sensor Networks,
in: IEEE International Conference on Computer
Communications (INFOCOM) (2011) 2498–2506.

[3] J. Beaudaux, A. Gallais, T. Razafindralambo:
Multiple Coverage with Controlled Connectivity
in Wireless Sensor Networks, PE-WASUN 2010,
9–16

[4] P. Brass: Optimal Relations between Coverage,
Connectivity, Radius Ratio, and Region Size,
manuscript 2012.

[5] P. Brass, W. Moser, J. Pach: Research Problems
in Discrete Geometry, Springer, 2005.

[6] L. Danzer: Drei Beispiele zu Lagerungsproblemen,
Arch. Math. 11 (1960) 159–165.

[7] P. Erdős, C.A. Rogers: Covering Space with Con-
vex Bodies, Acta Arithmetica 7 (1962) 281–285.

[8] M.Hefeeda, M.Bagheri: Randomized k-Coverage
Algorithms For Dense Sensor Networks, in: IEEE

International Conference on Computer Communi-
cations (INFOCOM) (2007), 2376–2380.

[9] A. Heppes: Über mehrfache Kreislagerungen, El-
emente Math. 10 (1955) 125–127.

[10] W. Jianzhen, G. Zhiyan: Research on Multiple
Coverage and Connectivity for Wireless Sensor
Network, in: ICCSE 2011, 1058–1062.

[11] S. Kumar, T.H.Lai, J.Balogh: On k-coverage in
a mostly sleeping sensor network, Wireless Net-
works, 14(2008), 277–294.

[12] P. Mani-Levitska, J. Pach: Decomposition Prob-
lems for Multiple Coverings with Unit Balls,
manuscript 1986.

[13] J. Pach: Covering the Plane with Convex Poly-
gons, Discrete & Computational Geometry 1
(1986) 73–81.

[14] J. Pach, G. Tóth: Decomposition of Multiple
Coverings in Many Parts, in: SoCG 07 (ACM
Symposium on Computational Geometry 2007)
133–137.

[15] D. Pálvölgyi, G. Tóth: Convex Polygons are
Cover-Decomposable, Discrete & Computational
Geometry 43 (2010) 483–496.

[16] G. Tardos, G. Tóth: Multiple Coverings of the
Plane with Triangles, Discrete & Computational
Geometry 38 (2007) 443–450.

[17] B. Wang: Coverage Problems in Sensor Net-
works: A Survey, ACM Computing Surveys 43
(2011) Article 32, 53 pages.

[18] S.Yang, F.Dai, M.Cardei, J.Wu: On Connected
Multiple Point Coverage in Wireless Sensor Net-
works, International Journal of Wireless Informa-
tion Networks, 13(4)(2006), 289–301.

34

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Smart-grid Electricity Allocation via Strip Packing with Slicing

⇤

(Extended Abstract)

Soroush Alamdari† Therese Biedl† Timothy M. Chan† Elyot Grant‡ Krishnam Raju Jampani§

S. Keshav† Anna Lubiw† Vinayak Pathak†

Abstract

One advantage of smart grids is that they can reduce
the peak load by distributing electricity-demands over
multiple short intervals. Finding a schedule that min-
imizes the peak load corresponds to a variant of a
strip packing problem. Normally, for strip packing

problems, a given set of axis-aligned rectangles must
be packed into a fixed-width strip, and the goal is
to minimize the height of the strip. The electricity-
allocation application can be modelled as strip pack-

ing with slicing: each rectangle may be cut vertically
into multiple slices and the slices may be packed into
the strip as individual pieces. The stacking constraint

forbids solutions in which a vertical line intersects two
slices of the same rectangle.
We give a fully polynomial time approximation

scheme for this problem, as well as a practical polyno-
mial algorithm that slices each rectangle at most once
and yields a solution of height at most 5/3 times the
optimal height.

1 Introduction

The conventional approach to generating and dis-
tributing electricity relies on sizing infrastructure to
support the peak load, when demand for electricity
is highest. However, this peak is rarely reached, so
much of the expensive infrastructure is idle most of
the time. For example, in 2009, 15% of the genera-
tion capacity in Massachusetts was used less than 88
hours per year [5]. Reducing the infrastructure size
is not practical since unsupported demand can cause
blackouts. Therefore, there is considerable benefit to
reducing the peak load itself.
Peak load occurs when many consumers use power-

hungry appliances simultaneously. However, there is

⇤

This work was done as part of an Algorithms Problem Ses-

sion at the University of Waterloo. Research of TB, TC, SK

and AL supported by NSERC.

†

Cheriton School of Computer Science, University of Wa-

terloo, Waterloo, Canada {s26hosse,biedl,tmchan,alubiw,
keshav,vpathak}@uwaterloo.ca

‡

Massachusetts Institute of Technology, Cambridge, USA,

elyot@mit.edu

§

University of Guelph, Guelph, Canada,

rjampani@uoguelph.ca

often flexibility in scheduling the use of particular ap-
pliances. For example, a water heater requires a cer-
tain amount of electricity to heat the water, but can
equally well heat the water in one continuous interval
or in multiple short intervals.1 It is anticipated that
future smart grids would obtain (at each substation)
daily “demand schedules” for appliance use from the
consumers in its local area, and then automatically
re-schedule appliance use to minimize peak load [14].
The demand schedule can be modelled as a set

of rectangles, one for each appliance, with power
consumption as height, and desired running time as
width. The re-scheduling should cover a given length
of time, which corresponds to a strip of given width.
The objective is then to pack slices of the rectangles
into the strip so as to minimize the maximum power
consumption, i.e., the maximum height of the pack-
ing. Because appliances cannot be powered at double
the usual power, we have the additional stacking con-

straint requiring that no vertical line may intersect
two slices from the same rectangle. Slicing with the
stacking constraint is new, but strip packing has been
well-studied, as we review in the following section.

Strip packing problems. In the two-dimensional

strip packing problem (abbreviated 2SP), a set of axis-
aligned rectangles of specified dimensions must be
packed, without rotation, into a rectangular strip of
fixed width, with the goal of minimizing the height of
the strip. The 2SP problem is very well-studied [11],
and generalizes the bin packing problem, which is
equivalent to the case in which all rectangles have unit
height. The current best approximation algorithm for
2SP has an approximation factor of 5/3 + " for any
" > 0 [7], and was achieved after a long sequence
of successive improvements [1, 3, 12, 13, 15]. Many
other authors have proposed algorithms with additive

approximation guarantees [10, 8].
Motivated by the electricity-allocation problem, we

study a variant called two-dimensional strip packing

with slicing (hereafter 2SP-S). In 2SP-S, we are al-
lowed to cut each rectangle vertically into multiple
slices, which may be packed into the strip as indi-
vidual rectangles. Formally, the input consists of a
number W and a set of rectangles r1, r2, . . . , rn. Here

1
To simplify the modelling we presume that no extra elec-

tricity is needed for re-starting the appliance.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

35

29th European Workshop on Computational Geometry, 2013

W is the width of the strip, which consists of two ver-
tical sides at x = 0 and x = W , and the “base” at
y = 0. Rectangle ri has width wi and height hi; let
hmax = maxni=1 hi be the maximum height. A solu-
tion to 2SP-S consists of a partition of each rectangle
ri into vertical slices and an assignment of positions to
the slices so that the interiors of the slices are pairwise
disjoint. Slices must not be rotated. The height of a
solution, denoted by H, is the minimum y-coordinate
above which the strip is empty.

Existing results: Strip packing with slicing has been
studied for a variant in which the width of each rectan-
gle represents a demand for a number of concurrently
running processors [2]. However, this problem di↵ers
substantially from 2SP-S because the slices must have
integer widths and must be horizontally aligned due
to concurrency, and results for it do not carry over.
2SP-S also relates to the minimum makespan schedul-
ing problem on m parallel machines, if we slice each
rectangle into strips of width W/m. Unfortunately
we must make m big to approximate well if rectangles
have uneven widths, which makes the many existing
algorithms for this scheduling problem too slow.
A second reason that existing results do not apply

to electricity-allocation (at least not as far as we can
prove) is that in our application we have the addi-
tional stacking constraint requiring that no vertical
line may intersect two slices from the same rectangle.
The version of 2SP-S with the stacking constraint is
denoted by 2SP-SSC.

Results for 2SP-S and 2SP-SSC. The freedom
to slice rectangles can be highly beneficial. It is easy
to construct an example where slicing reduces the re-
quired height by a factor of 2� ". Slicing also makes
a di↵erence in the complexity of the problem. Stan-
dard 2SP generalizes bin packing and is thus strongly
NP-complete. Also, a simple reduction from the Par-
tition problem [4] shows that 2SP admits no (3/2�")-
approximation for any " > 0 unless P=NP. In con-
trast, 2SP-S and 2SP-SSC are NP-hard (we omit de-
tails of the reduction from Partition), but not hard
to approximate: we will give a fully polynomial-time
approximation scheme (FPTAS) for these problems.
The FPTAS is based on solving a linear program

with exponentially many constraints, and hence is
mostly of theoretical interest. We also develop sim-
pler, more practical algorithms, and also limit the
number of times a rectangle may be sliced (which
is of interest in the electricity-allocation problem to
avoid start-up costs for the appliance.) We give two
simple 2-approximation algorithms based on the well-
known First Fit and Shelf paradigms. Then, building
on these algorithms, and splitting the problem into
two halves, we give two practical polynomial-time al-
gorithms, one with approximation factor 3/2, and one
that uses at most one cut per rectangle and has ap-

proximation factor 5/3.
Our paper is organized as follows. The First Fit

and Shelf algorithms are in Section 2. Section 3 con-
tains the FPTAS, and Section 4 develops practical al-
gorithms. We only have space to describe/sketch the
algorithms, leaving analyses and proofs of correctness
to the long version.

2 Basic Algorithms

This section describes the First Fit and Shelf heuris-
tics for 2SP-S and 2SP-SSC. Both algorithms achieve
an approximation factor of 2, which is notewor-
thy given that, for the standard strip packing prob-
lem, 2-approximation algorithms are di�cult to ob-
tain [12, 15]. Both algorithms in fact achieve a height
of HOPT + hmax, and hence are asymptotically opti-
mal if hmax is considered an additive constant.

First Fit Algorithm Given a list of rectangles
r1, r2, . . . , rn, the First Fit algorithm processes them
in order, repeatedly finds the lowest point in the cur-
rent solution where a slice of ri can be placed, and
places the widest possible slice of ri there, breaking
ties arbitrarily. Repeat with the remainder of ri, and
continue until all rectangles have been processed. In
the case of 2SP-SSC, the stacking constraint must be
respected when placing slices. See Figure 1.

0 1 2 3 4
0

1

2

3

4

5

6

r1

r2

r3

r3

r3 F

H

Figure 1: An execution of the First Fit algorithm on a
2SP-SSC instance. Note that r3 is being sliced twice,
and a smaller height would be achieved without the
stacking constraint.

It is not hard to show that after placing each rect-
angle, the di↵erence between the maximum height H
and the floor F (the maximum height to which the
entire strip is filled) is at most hmax. Since by area-
consideration HOPT � F , First Fit achieves height at
most HOPT + hmax.

Shelf Algorithm Given a set of rectangles, the Shelf
algorithm for strip packing with slicing works as fol-
lows. Sort the rectangles by decreasing height so that
h1 � h2 � . . . � hn. Pack the rectangles in this order
on “shelves”. The first shelf is the base of the strip.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

36

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Place rectangles on the current shelf from left to right.
When we reach a rectangle ri that is too wide for the
remaining space, we pack the widest possible slice of
ri. The rest of ri goes back in the list of remaining
rectangles. Then we place a horizontal line across the
strip to form a new shelf at the current maximum
height of the packing, and continue on the new shelf
with the remaining rectangles. See Figure 2. Note
that the stacking constraint is automatically satisfied,
and each rectangle is sliced at most once.

0 1 2 3 4
0

1

2

3

4

5

6

r3

r1

r2

r2

H

S

Figure 2: An execution of the Shelf algorithm on the
same instance as Figure 1 (but rectangles have been
sorted by height.)

Observe that (with hn+1 := 0) the empty space be-
low height H has area are most

Pn
i=1(hi � hi+1) ·W .

To see this, partition the empty space into rectan-
gles by cutting it horizontally, and assign each empty
rectangle to the ri that has a slice below it in the
same shelf. Therefore, the empty space is at most
h1 · W = hmax · W , which proves that the Shelf-
algorithm achieves height at most HOPT + hmax.

3 Approximation Schemes

In this section, we sketch the FPTAS for 2SP-S and
2SP-SSC. The approach uses a linear programming
relaxation and is relatively standard in the literature;
in particular it resembles the classic work of Kar-
markar and Karp concerning the bin-packing problem
[9]. The main steps are as follows:

1. Guess the height HOPT of an optimal solution
(using, for example, binary search).

2. Round the height of each rectangle down to the
nearest multiple of some small value (dependent
on ", n, and our guess for HOPT).

3. Formulate the rounded problem as a linear pro-
gram, with one variable for each possible con-
figuration of rectangles in a vertical slice of the
packing. There are exponentially many variables,
but only polynomially many constraints.

4. The dual program of this has polynomially many
variables and exponentially many constraints.

Solve it using the ellipsoid method, without ex-
plicitly listing the constraints, but instead solving
in each iteration a Knapsack-problem (in polyno-
mial time since we rounded the heights) to con-
firm feasibility or find a violated constraint.

5. From the solution of the dual problem, obtain a
solution of the primal, reconstruct a packing of
the original problem, and argue that its height is
at most (1 + ")HOPT.

The linear program we solve is similar to the one used
to obtain fractional strip packings in [10], though our
full algorithm requires di↵erent searching and round-
ing routines since the variables in our linear program
must correspond to vertical configurations rather than
horizontal ones.

4 2SP-SSC with Limited Cuts

Although the approximation scheme from the pre-
vious section may be more practical if the simplex
method is used, it is still unsuitable for electricity-
allocation applications both due to its runtime and
because it may result in rectangles that have been
sliced numerous times. We hence developed other al-
gorithms that are simple to implement, run quickly,
have decent approximation guarantees, and do not
slice rectangles too often.
The approach is to partition the bin vertically, slice

each rectangle once, and pack the two slices in the
two parts with either First Fit or Shelf. With a ju-
dicious choice of where to partition and slice, this
gives a 3/2-approximation if we use First Fit and a
5/3-approximation that slices each rectangle at most
once if we use Shelf. (We note that both results are
achieved without any partitioning if hmax 1

2HOPT

(resp. hmax 2
3HOPT).)

These algorithms work as follows:

1. Guess the height HOPT of an optimal solution
(using, for example, binary search).

2. Sort the rectangles by decreasing height.

3. Fix a value t � HOPT/2.

4. Find all rectangles r1, . . . , rj with height > t.

5. Let ↵W be the total width of r1, . . . , rj ; by t �
HOPT/2 we know ↵ 1.

6. Divide the strip into two parts: the left side has
width ↵W and the right side has width (1�↵)W .

7. Split each rectangle into a left piece and a right

piece as follows.

(a) Each of r1, . . . , rj obtains only a left piece
(the right piece is empty.)

(b) For i = n, n� 1, . . . , the right piece of rect-
angle ri has width min{wi, (1� ↵)W}, i.e.,
we add as much as possible of ri to the right
piece. This continues until i = j or until we

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

37

29th European Workshop on Computational Geometry, 2013

reach a rectangle rx such that the total area
of the right pieces exceeds (1� ↵)WHOPT.

(c) If rx exists, slice it so that the total area of
the right pieces is exactly (1� ↵)WHOPT.

8. Apply one of the basic algorithms in Section 2 to
pack the left (resp. right) pieces in the left (resp.
right) side of the strip.

Theorem 1 There exists a 3/2-approximation for

2SP-SSC that runs in O(n2) time.

There exists a 5/3-approximation for 2SP-SSC that

slices every rectangle at most three times and runs in

time O(n log (nM)), where M is an upper bound on

the integer heights of the rectangles.

There exists a 5/3-approximation for 2SP-SSC that

slices every rectangle at most once and runs in time

O(n log2 n log(nM)/ log logn).

Proof. [Sketch] Since r1, . . . , rj have total width ↵W
and are packed in the left strip of width ↵W , the left
strip has no empty space below height t. In the right
strip, all rectangles have height at most t. Using this,
and the bound on the area in the right strip, we can
show that the right strip has height at most HOPT+t.
If we use First Fit in Step 8, then the left strip has
height at most HOPT+ t and using t = HOPT/2 gives
the first result. If we use Shelf, then the left strip
can be shown to have height at most 3HOPT � 2t.
Notice that using Shelf on both sides gives a packing
with at most 3 cuts (one to cut into the left and right
piece, and one by each application of Shelf), and the
only rectangle that may have 3 cuts is rx. So using
t = 2HOPT/3 gives the second result, and the third
result is obtained from the second by doing some extra
work to align the pieces on the shelves. ⇤

5 Conclusions

Motivated by an application in electricity allocation,
this paper explored variants of the strip packing prob-
lem in which rectangles could be sliced vertically as
long as no two slices of the same rectangle are stacked
atop each other. We provided simple 2-approximation
algorithms, an FPTAS of mostly theoretical inter-
est, and practical approximation algorithms that slice
rectangles only a few times.
The main remaining open problem is to find prac-

tical algorithms with better approximation factors.
For example we conjecture that First Fit Decreas-
ing, i.e., First Fit applied to rectangles in decreas-
ing height, is a 4/3-approximation. Without the
stacking constraint, this follows from Graham’s 4/3-
approximation bounds for multiprocessor scheduling
[6], but with the stacking constraint the best bound
we can prove is 3/2 (details of this will be in the full
paper.) Also, is there a simple PTAS for strip-packing
with slicing (with or without stacking constraint)?

References

[1] B. S. Baker, E. G. Co↵man, and R. L. Rivest. Or-
thogonal packings in two dimensions. SIAM Journal
on Computing, 9(4):846–855, 1980.

[2] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and
D. Trystram. Approximating the non-contiguous
multiple organization packing problem. In IFIP TCS,
pages 316–327, 2010.

[3] E. G. Co↵man, Jr., M. R. Garey, D. S. Johnson, and
R. E. Tarjan. Performance bounds for level-oriented
two-dimensional packing algorithms. SIAM J. Com-
put., 9(4):808–826, 1980.

[4] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. Freeman & Co Ltd, 1979.

[5] P. Giudice. Our energy future and smart grid
communications. Testimony before the FCC
Field Hearing on Energy and Environment.
www.broadband.gov/fieldevents/fh_energy_

environment/giudice.pdf, 2009.

[6] R. Graham. Bounds on multiprocessing timing
anomalies. SIAM J. Appl. Math, 17:416–429, 1969.

[7] R. Harren, K. Jansen, L. Prädel, and R. van Stee. A
(5/3 + ")-approximation for strip packing. In Algo-
rithms and Data Structures Symposium, WADS 2011,
volume 6844 of Lecture Notes in Computer Science,
pages 475–487. Springer, August 2011.

[8] K. Jansen and R. Solis-Oba. New approximability
results for 2-dimensional packing problems. In Math-
ematical Foundations of Computer Science 2007, vol-
ume 4708 of Lecture Notes in Computer Science,
pages 103–114. Springer, 2007.

[9] N. Karmarkar and R. M. Karp. An e�cient approx-
imation scheme for the one-dimensional bin-packing
problem. In Symposium on Foundations of Computer
Science, pages 312–320. IEEE, 1982.

[10] C. Kenyon and E. Rémila. A near-optimal solution
to a two-dimensional cutting stock problem. Math.
Oper. Res., 25(4):645–656, 2000.

[11] A. Lodi, S. Martello, and M. Monaci. Two-
dimensional packing problems: A survey. European
Journal of Operational Research, 141(2):241 – 252,
2002.

[12] I. Schiermeyer. Reverse-Fit: A 2-optimal algorithm
for packing rectangles. In European Symp. Algo-
rithms, volume 855 of Lecture Notes in Computer Sci-
ence, pages 290–299. Springer, 1994.

[13] D. D. Sleator. A 2.5 times optimal algorithm for
packing in two dimensions. Information Processing
Letters, 10(1):37–40, Feb. 1980.

[14] P. Srikantha, C. Rosenberg, and S. Keshav. An anal-
ysis of peak demand reductions due to elasticity of
domestic appliances. In Proc. Energy-E�cient Com-
puting and Networking (e-Energy ’12), number 28.
ACM, 2012.

[15] A. Steinberg. A strip-packing algorithm with abso-
lute performance bound 2. SIAM Journal on Com-
puting, 26(2):401–409, 1997.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

38

www.broadband.gov/fieldevents/fh_energy_environment/giudice.pdf
www.broadband.gov/fieldevents/fh_energy_environment/giudice.pdf

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Packing Identical Simply Polygons of Constant Size is NP-hard∗

Ning Xu†

1 Introduction

The decision version of the identical simple polygon
packing problem can be described as: given a small
simple polygon S, a large simple polygon P , and a
positive integer k, can one place k copies of S inside
P with translation and rotation and without overlap?
If S is nonconvex and polynomial in size, this de-

cision problem is NP-hard even if both S and P are
orthogonal [1].
This decision problem is related to the problem 56

in the Open Problems Project [2], in which S is re-
stricted to an axis-parallel unit square (rotation is for-
bidded). In a variation of the problem 56, P may con-
tain holes. The decision problem for this variation is
NP-complete [3, 4] even if P is an orthogonal polygon
with all coordinates being multiples of 1/2.

In this paper, we improve the result in [2] by re-
stricting S in constant size.

Theorem 1 The decision version of the identical
simple polygon packing problem is NP-hard, even if
only translation is permitted, S has constant size, and
both S and P are orthogonal.

2 Proof

We reduce an instance of a known NP-hard problem,
the 0-1 knapsack problem [5], to an instance of our
problem. The decision version of the 0-1 knapsack
problem is: given n items I1, . . . , In, in which the
item Ii has value Vi ∈ Z+ and the weight Wi ∈ Z+,
and a total weight limit W ∈ Z+ and a desired value
V ∈ Z+, can one carry some items with value at least
V and total weight at most W , that is, does there ex-
ist a sequence {b1, . . . , bn} with bi ∈ {0, 1} such that
∑n

i=1 wibi ≤ W and
∑n

i=1 vibi ≥ V ? Here we assume
thatW <

∑n
i=1 wi; otherwise, one can carry all items.

2.1 The identical simple polygon S

Figure 1 shows the small identical simple polygon S.
This identical polygon is formed by two rectangles of
width 1 and height H, a rectangle of width X and
height 1, and a rectangle of width L and height 1.

∗The research is funded by the NSF grant CCF-1017539
†The Graduate Center, The City University of New York,

New York, USA, nxu@gc.cuny.edu

Here H, X and L are positive integers whose value
will be discussed later.

L

HX

H

1

Figure 1: Identical simple polygon S

2.2 The gadget

A gadget Gi(1 ≤ i ≤ n), showed in Figure 2, is a
simple polygon corresponding to the item Ii in the 0-
1 knapsack problem. The gadget can be decomposed
into two components: the red one is called the handle,
and has width vi; the blue one is called the body. The
left bottom corner of the body, the point r, is called
the root point.
If X is sufficient large, one can place at most vi

identical polygons in the gadget Gi. Here c and di
are positive integers, whose value will be discussed
later.

cw

H

L
X
X

H

H

d

v

1

r
i

i

i

Figure 2: Gadget Gi.

2.3 Reduction

As illustrated in Figure 3, we construct a large simple
polygon P by mounting n gadgets G1, . . . , Gn on the

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

39

29th European Workshop on Computational Geometry, 2013

top of another simple polygon called the base. The
base consists of a rectangle of width X and height
T , a rectangle of width X and height H + T and a
rectangle of width L and height T . Here T is a positive
integers whose value will be discussed later. Without
loss of generality, we set the point o to be the origin
on the plane and set the top side of the base to be
the x-axis. The gadget Gi is mounted on the base
such that the root point of Gi locates at the point
((i− 1)(L+ c+ 1), 0).

X X

L
T

H
T

G G

o

... ...
1 n

Figure 3: Large simple polygon P , constructed by
reduction

Now, we discuss the values used in the reduction.
The horizontal distance between two neighbor gad-

gets is L+ c+ 1. We set

c = max{v1, . . . , vn}+ 1 (1)

H > T (2)

X = (L+ c+ 1)n (3)

such that there are only two ways to place an identical
polygon S, as illustrated in Figure 4.

• Place S in Gi. We say S is private in Gi.

• Place a part of S in Gi and place the other part
of S in the base. We say S is shared in Gi.

... ...

Figure 4: The two ways to place an identical polygon.
The red one on left is a private identical polygon, and
the blue one on right is a shared identical polygon.

We set

di =

{

1 i = 1
di−1 + vi−1 + 1 i > 1

(4)

to let P be a simple polygon. From the reduction,
all gadgets are mounted on the base, and the body
of any two gadgets are separated. For a gadget Gi,
because di > 0 and c = max{v1, . . . , vn}+1 > vi, the

handle of Gi is separated from the body of any other
gadget. When i > 1, because di > di−1 + vi−1, the
handle of Gi is separated from Gi−1 by translating
to upper-right. This implies that the handle of any
two gadgets are separated. From the reduction, P is
a simple polygon.
Since the gadget Gi corresponds to the item Ii, we

assume that a private identical polygon and a shared
identical polygon cannot both exist in the same gad-
get in any packing. This corresponds that one can
either choose or not choose an item. To valid this
assumption, we set H and L as:

H = T + dn + vn + 1 (5)

L = c(max{w1, . . . , wn}+ 1) + 2 (6)

Note that (5) satisfies (2). In any gadget Gi, if one
places a shared identical polygon, because H − T >
dn + vn ≥ di + vi, no private identical polygon can
be placed in Gi. On the other hand, if one places a
private identical polygon, because L−vi−1 > L−c−
1 > cwi, no shared identical polygon can be placed in
Gi.
Finally, we set

T = c(
n
∑

i=1

wi −W) (7)

All values used in the reduction can be calculated in
O(n) time. Each gadget has O(1) vertices. Because
there are n gadgets. The reduction can be done in
O(n) time.
For any gadget Gi, there are at most cwi shared

identical polygons in Gi. For any packing, if there is
no shared identical polygon in Gi, Gi is unoccupied ;
if there are cwi shared identical polygons in Gi, Gi

is occupied ; otherwise, Gi is partially occupied. One
can place a private identical polygon in Gi if and only
if Gi is unoccupied. Observing the base, the total
number of shared identical polygons is at most T .

The packing number of a given packing is the num-
ber of identical polygons placed inside P . We will
show that there exists a packing with packing num-
ber at least V + T if and only if there is a sequence
b1, . . . , bn with bi ∈ {0, 1} such that

∑n
i=1 wkbk ≤ W

and
∑n

i=1 vkbk ≥ V . Note that T is a function of
v1, . . . , vn, w1, . . . , wn and W .

We first prove the “if” part. Suppose such a se-
quence b1, . . . , bn exists. We place identical polygons
for gadgets in the order G1, . . . , Gn. If bi = 1, we
place vi private identical polygons in Gi. If bi = 0, we
try to place cwi shared identical polygons in Gi com-
pactly from left bottom. If the space in the base is
insufficient for cwi shared identical polygons, we place
as many shared identical polygons as possible.
Because

∑n
i=1 vibi ≥ V , the number of private iden-

40

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

tical polygons is at least V . Because
∑n

i=1 wibi ≤ W ,

n
∑

i=1

cwi(1− bi)

=c(
n
∑

i=1

wi −
n
∑

i=1

wibi)

≥c(
n
∑

i=1

wi −W)

=T

(8)

Thus, the number of shared identical polygons in this
packing is exact T . Therefore, the packing number is
at least V + T .
Then, we prove the “only if” part. Suppose that

there exists a packing with packing number at least
V + T .

Lemma 2 If there are at least two partially occu-
pied gadgets in a packing, then there exists another
packing with same packing number, same number of
shared identical polygons, and at most one partially
occupied gadget.

Proof. Suppose Gi and Gj are two partially occu-
pied gadgets. One can obtain another packing with
the same packing number by moving one shared iden-
tical polygon from Gi to Gj . Continue this operation
until one of Gi and Gj is either unoccupied or occu-
pied. This decreases the number of partially occupied
gadgets by at least 1. Note that the total number of
shared identical polygons does not change.
Recursively eliminating partially occupied gadgets,

one can finally obtain a packing with at most one
partially occupied gadget. !

Lemma 3 If there are less than T shared identical
polygons in a packing, there exists another packing
with larger or equal packing number having exact T
shared identical polygons.

Proof. Suppose the packing contains m < T shared
identical polygons.
By Lemma 2, we first obtain a packing with same

packing number, m shared identical polygons, and at
most one partially occupied gadget.
If the packing number is at most T , one can obtain

another packing by only placing T shared identical
polygons, then we are done.
If m = 0, all gadgets are unoccupied. Because

T = c(
∑n

i=1 wi − W) > c > v1, we can obtain a
new packing with larger packing number by remov-
ing all private identical polygons from G1 and add c
shared identical polygons in G1. Thus, we can assume
m > 0.
If there is one partially occupied gadget Gi, which

contains mi shared identical polygons, one can add

more shared identical polygons. If cwi − mi ≥ T −
m, one can add T − m shared identical polygons in
the gadget Gi. The new packing has larger packing
number and T shared identical polygons, and we are
done. If cwi − mi < T − m, one can add cwi − mi

shared identical polygons in the gadget Gi, letting Gi

become occupied.
If there is no partially occupied gadget, because ev-

ery gadget is either unoccupied or occupied now, the
total number of shared identical polygons can be di-
vided by c. Because T can also be divided by c, there
is still some space in the base for at least c shared iden-
tical polygons. One can choose an unoccupied gadget,
say Gj , remove all vj private identical polygons, and
add c shared identical polygons. Because vj < c, the
new packing has larger packing number, and Gj is a
partially occupied or occupied gadget now.
We can recursively add shared identical polygons,

until we obtain a packing with exact T shared identi-
cal polygons. !

By Lemma 2 and Lemma 3, we can assume that
there is at most one partially occupied gadget and
exact T shared identical polygons in the packing. We
obtain a sequence b1, . . . , bn by setting bi = 1 if the
gadget Gi is unoccupied, or bi = 0 otherwise.
Suppose Gj is the partially occupied gadget which

has mj ≤ cwj shared identical polygons (If there is
no partially occupied gadget, we select an arbitrary
occupied gadget). Because the packing has exact T
shared identical polygons, we have:

n
∑

i=1

cwi(1− bi)− cwj +mj = T

⇒(
n
∑

i=1

cwi(1− bi) ≥ T

⇒c(
n
∑

i=1

wi −
n
∑

i=1

wibi) ≥ c(
n
∑

i=1

wi −W)

⇒
n
∑

1=1

wibi ≤ W

(9)

The total number of private identical polygons is
∑n

i=1 vibi. Because the packing number is at least
V + T , the number of private identical polygons is at
least V , i.e.,

∑n
i=1 vibi ≥ V holds.

This completes the proof of the Theorem 1.

3 Conclusion

We proved that it is NP-hard to determine whether a
given number of simple identical polygons of constant
size can be packed into a simple polygon.
However, there is still a gap between our problem

and the problem 56 in the Open Problem Project. If

41

29th European Workshop on Computational Geometry, 2013

we further restrict S to be convex, the complexity of
our problem is still unknown.
Acknowledgment
The author thanks Peter Brass for his valuable com-

ments and helpful suggestions related to the paper.

References

[1] S.R. Allen and J. Iacono. Packing identical simple
polygons is np-hard. In Fall Workshop on Com-
putational Geometry, pages 19–20, 2012.

[2] Mitchell J.S.B Demaine, E.D. and O’Rourke J.
The open problems project. http://cs.smith.edu/
orourke/TOPP/Welcome.html.

[3] El-Khechen D. Iacono J. Dulieu, M. and N. van
Omme. Packing 2× 2 unit squares into grid poly-
gons is np-complete. In the Canadian Conference
on Computational Geometry, pages 33–36, 2009.

[4] Paterson M.S. Fowler, R.J. and Tanimoto S.L.
Optimal packing and covering in the plane are np-
complete. Information Processing Letters, 12(3),
1981.

[5] M.R. Garey and Johnson D.S. Computers and
Intractability: A Guide to the Theory of NPCom-
pleteness. W.H. Freeman, 1979.

42

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Computing the Fréchet distance with shortcuts is NP-hard

Maike Buchin⇤ Anne Driemel† Bettina Speckmann⇤

Abstract

We study the shortcut Fréchet distance, a natural
variant of the Fréchet distance that allows us to take
shortcuts from and to any point along one of the
curves. We show that, surprisingly, the problem of
computing the shortcut Fréchet distance exactly is
NP-hard. Furthermore, we give a 3-approximation
algorithm for the decision version of the problem.

1 Introduction

Measuring the similarity of two curves is an important
problem which occurs in many applications. A popu-
lar distance measure, that takes into account the con-
tinuity of the curves, is the Fréchet distance. Imagine
walking forwards along the two curves simultaneously.
At any point in time, the two positions have to stay
within distance ". The minimal " for which such a
traversal is possible is the Fréchet distance. In gen-
eral, the Fréchet distance can be computed by the
algorithm of Alt and Godau [1] in O(n2 logn) time.
Despite its versatility, the Fréchet distance has one
serious drawback: it is a bottleneck distance. Hence
it is quite sensitive to outliers, which are frequent in
real world data sets. To remedy this Driemel and
Har-Peled [3] introduced a variant of the Fréchet dis-
tance, namely the shortcut Fréchet distance, that al-
lows shortcuts from and to any point along one of the
curves. The shortcut Fréchet distance is then defined
as the minimal Fréchet distance over all possible such
shortcut curves.
The shortcut Fréchet distance automatically cuts

across outliers and allows us to ignore data specific
“detours” in one of the curves. Hence it produces
significantly more meaningful results when dealing
with real world data than the classic Fréchet distance.
Consider the following example. Birds are known to
use coastlines for navigation, e.g., the Atlantic flyway
for migration. However, when the coastline takes a
“detour”, like a harbor or the mouth of a river, the

⇤Department of Mathematics and Computer Science,
TU Eindhoven, the Netherlands, m.e.buchin@tue.nl and
speckman@win.tue.nl. Supported by the Netherlands Or-
ganisation for Scientific Research (NWO) under project no.
612.001.106. and 639.022.707.

†Department of Information and Computing Sciences
Utrecht University, the Netherlands, a.driemel@uu.nl. Sup-
ported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 612.065.823.

bird ignores this detour, and instead follows a short-
cut across. See the example of a seagull in the figure,
navigating along the coastline of Zeeland while tak-
ing shortcuts between the islands. Using the shortcut
Fréchet distance, we can detect if the trajectory of the
bird is similar to the coastline. The shortcut Fréchet
distance can be interpreted as a partial distance mea-
sure. Note that a di↵erent notion of a partial Fréchet
distance was developed by Buchin et al. [2].

Definitions. A curve T is a continuous mapping
from [0, 1] to IR2, where T (t) denotes the point on the
curve parameterized by t 2 [0, 1]. Given two curves T
and B in IR2, the Fréchet distance between them is

dF(T,B) = min
f :[0,1]![0,1]

max
↵2[0,1]

kT (f(↵))�B(↵)k ,

where f is an orientation-preserving reparameteriza-
tion of T . We call the line segment between two
arbitrary points B(y) and B(y0) on B a shortcut

on B. Replacing a number of subcurves of B by
the shortcuts connecting their endpoints results in
a shortcut curve of B. Thus, a shortcut curve is
an order-preserving concatenation of non-overlapping
subcurves of B that has straight line segments con-
necting the endpoints of the subcurves. Our input
are two polygonal curves: the target curve T and
the base curve B. The shortcut Fréchet distance
dS(T,B) is now defined as the minimal Fréchet dis-
tance between the target curve T and any shortcut
curve of the base curve B.

Results. In this paper we study the complexity of
computing the shortcut Fréchet distance. Driemel
and Har-Peled [3] described approximation algorithms
for the shortcut Fréchet distance in the restricted case
where shortcuts have to start and end at input ver-
tices. Specifically, they gave a (3 + ")-approximation
algorithm for the vertex-restricted shortcut Fréchet
distance between c-packed polygonal curves that runs

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

43

29th European Workshop on Computational Geometry, 2013

in O(c2n log3 n) time for two c-packed polygonal
curves of complexity n. Firstly, we outline how to
combine the algorithmic layout of Driemel and Har-
Peled [3] with a line stabbing algorithm of Guibas et
al. [4] to obtain a 3-approximation algorithm for the
decision version of the general shortcut Fréchet dis-
tance which runs in O(n3 logn) time. This result is
described in the full version of this paper.
Secondly, we show that, surprisingly, in the gen-

eral case, where shortcuts can be taken at any point
along a curve, the problem of computing the short-
cut Fréchet distance exactly is NP-hard. An impor-
tant observation is that the reachable free space of the
matchings may fragment into an exponential number
of components. We use this fact in our reduction to-
gether with a mechanism that controls the sequence
of free space components that may be visited. In this
abstract we describe the construction, we prove the
correctness in the full version.

2 NP-Hardness

Assume an instance of SUBSET-SUM is given to us
as n positive integers S = {s1, s2, . . . , sn} and a pos-
itive integer �. Recall that the problem is to de-
cide whether there exists an index set I, such thatP

i2I si = �. We now describe a construction of a
target curve T and base curve B such that there ex-
ists a shortcut curve of the base curve that is within
Fréchet distance 1 to the target curve if and only if
there exists a subset of S of which the total sum is �.

Basic Idea. The base curve has several horizontal
edges within distance 1 of the target curve. A feasi-
ble shortcut curve has to visit a well-defined subse-
quence of these edges. Any possible visiting sequence
will encode a di↵erent subset of S. Let I be an in-
dex set which defines such a subset S0 ✓ S, we call
si =

P
1ji,j2I sj the ith partial sum of S0. The

incremental partial sums encoded by a shortcut curve
are encoded on certain edges of the base curve by the
particular point where the shortcut visits the edge.
We can restrict the solutions to the Fréchet problem
to have this specific form by using what we call pro-
jection centers. These are certain points on the target
curve, which have to be visited by any curve that is
within Fréchet distance 1 to the target curve. Intu-
itively a shortcut of a feasible shortcut curve has to
start and end at particular edges of the base curve and
intersect a projection center in between. Hence we can
think of the shortcut as a projection. The construc-
tion is such that a shortcut that enters a gadget will
have two edges of the base curve available as possible
destinations. The corresponding projections will then
cascade through the projection centers of the gadget
and are bundled again on the last edge of the gad-
get, where they have a certain distance to each other,
which encodes one of the input values.

General layout and notation. We denote with
H0, H1, H�1 and H↵ the horizontal lines at 0, 1,�1
and ↵. All relevant vertices of the construction lie on
these lines (see Figure 1) and hence it is usually su�-
cient to specify their x-coordinates. We slightly abuse
notation by denoting the x-coordinate of a point and
the point itself with the same variable, albeit using a
di↵erent font.
The target curve consists entirely of edges that lie

on the x-axis. In Figure 1, the curve drawn below
the x-axis illustrates the topology of the target curve.
Clearly all feasible shortcut curves have to lie within
the hippodrome of radius 1 around the target curve.
The ith gadget defines a subcurve Ti. The vertices of
Ti, except for the initialization and the terminal gad-

get, are defined by the parameters c(i)j for 1 j 4.

These are (c(i)1 + 1, 0), (c(i)1 � 1, 0), (c(i)2 + 1, 0), (c(i)2 �
1, 0), (c(i)3 + 1, 0), (c(i)3 � 1, 0), (c(i)4 + 1, 0), (c(i)4 � 1, 0)
in this order. Thus, the edges of the target curve
are generally running in positive x-direction, except
for some edges of length two, which are centered at

the points (c(i)j , 0). We call these points projection

centers. The construction of the base curve is such
that any feasible shortcut curve has to go through the
projection centers. In particular, this is enforced by
the fact that we place all edges of the base curve at
distance at least 2 away from the projection centers.

The base curve has relevant edges e(i)j , for 1 j 7
and 0 i n, where j defines the order along the
base curve. These edges lie on the horizontal lines H1,
H�1 and H↵ at 1,�1 and ↵ 2 (0, 1). We call these
edges docking edges , since they are the edges visited
by the feasible shortcut curves. The docking edges
run in negative x-direction. The remaining edges of
the base curve are outside the hippodrome, except for
connector edges , which vertically connect to dock-
ing edges on H↵ and run in positive y-direction.

Global variables. The construction uses four global
variables ↵ 2 (0, 1),� > 0, and � > 0. The param-
eter ↵ is besides 1 and �1 the y-coordinate of the
horizontal lines that support the docking edges. The
parameter � controls the minimal horizontal distance
between docking edges that lie in between two con-
secutive zones. The function of the parameter � is
two-fold. Firstly, it is the minimum di↵erence of two
partial sums. This can be ensured by scaling the in-
stance by �, such that si/� � 1 for 1 i n and
�/� � 1. Secondly, we choose � su�ciently large to
ensure that a feasible shortcut curve cannot visit any
edges other than docking edges and only in the pre-
scribed visiting order.

Encoding of a solution. A shortcut curve B⌃ of
the base curve encodes a subset S0 ✓ S as follows:
The value si is included in S0 if and only if B⌃ visits

e

(i)
1 . Any feasible shortcut curve B⌃ also encodes an

44

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

approximation of its incremental partial sums in the
distance between the point where B⌃ visits the edge

e

(i)
7 to the endpoint of this edge a

(i)
7 . By choosing the

global parameter � carefully, we can ensure that two
distinct partial sums have a minimum di↵erence that
exceeds the approximation error. By construction of
the terminal gadget any feasible shortcut curve has to

visit e

(n)
7 at a point that is in distance � + � to the

point a(i)7 . This implies that only shortcut curves that
encode a subset that sums to � can be feasible.

Construction of the gadgets. We now describe the
part of the construction of the gadgets that is specific
to the instance of the problem. That is, we give exact
choices of the coordinates of the two curves. The con-
struction is incremental. Given the endpoints of edge

e

(i�1)
7 , as defined by the (i�1)th gadget and the value
si, we describe how to construct the subcurves of the
intermediate gadget Gi. We describe the initialization
and the terminal gadget afterwards. Since all relevant
vertices of the base and target curve lie on horizontal
lines as indicated in Figure 1, we need to choose only
their x-coordinates. The construction goes through
several rounds of fixing the position of the next pro-

jection center and then projecting an endpoint a(i)j of

one edge to obtain the endpoint a

(i)
j+1, a

(i)
j+2, or a

(i)
j+3

of another edge. The endpoint b(i)j is projected in the
same way. Thus, we obtain the first point of one edge
by projecting the last point of another and the other
way around.
The detailed construction is described in the full

version of the paper. Here, we only describe how to
pick the first and the last projection center. From

Gi�1, we are given the values of a(i�1)
7 and b(i�1)

7 .

Let ` = b(i�1)
7 � a(i�1)

7 and let hi = b(i�1)
7 +�+ `. We

choose ci1 as the x-coordinate where the line through

(hi,�↵) and (b(i�1)
7 ,�1) passes through H0. We ob-

tain a(i)j and b(i)j for 1 j 6 from the subsequent
projections through the constructed projection cen-

ters as shown in the figure. Now, Let pi = a(i)6 �si. We

choose c(i)4 as the x-coordinate where the line through

(pi, 1) and a

(i)
5 passes through H0. And finally we

project the points a

(i)
5 , b(i)5 , a(i)6 and b

(i)
6 through the

last projection center c

i
4 onto H�1. We then choose

a(i)7 as the minimum of the obtained x-coordinates and

b(i)7 as the maximum of the obtained x-coordinates.

In this manner we obtain the docking edges e(i)j for

1 j 7. We connect e(i�1)
7 to e

(i)
1 using edges that

lie outside the hippodrome. Similarly we connect the
remaining edges in the order of j using vertical con-
nector edges for the edges lying on H↵ and otherwise
edges that lie outside the hippodrome.

Initialization. We place the first vertex of the target

curve at (a(0)0 , 0) = (0, 0) and the first vertex of the

base curve at (a(0)0 , 1) = (0, 1). The base curve then
continues to the left on H1 while the target curve
continues to the right on H0. G0 has one projection

center (c(0)1 , 0), we define it by c(0)1 = � + 2. Then we

define e

(0)
7 such that a

(0)
0 projects onto the center of

this edge and such that the projection is in distance �

to both endpoints. That is, we define a(0)7 = c(0)1 + 2

and b(0)7 = c(0)1 +2�+2. Now, the next gadget G1 can
be constructed as described above.

Terminal gadget. We choose the very last pro-

jection center by setting c(n+1)
1 = b(n)7 + 2. Let

p� = (a(n)7 + � + �) and project the point (p�,�1)
through this projection center onto H1 to obtain a
point (a�, 1). We finish the construction by letting
both the target curve and the base curve end on a
vertical line at a�. The target curve ends on H0 ap-
proaching from the left, while the base curve ends on
H1 approaching from the right.

Proof Idea. Consider the following construction of
a shortcut curve that encodes a given subset S0 ✓ S.
We start in B(0), and subsequently project through
all projection centers. In the intermediate gadget for

si, we visit e(i)1 if si 2 S0, otherwise we visit e(i)2 . Fi-
nally, we choose B(1) as the last vertex of our short-
cut curve. We claim that this curve is feasible if and
only if S0 is a solution. This can be proven by a
repeated application of the intercept theorem. Note
that this curve visits any edge of the base curve in
at most one point. Clearly not all feasible shortcut
curves have this property. However, they have to be
approximately monotone by the construction of the
target curve. This helps us to bound the error in the
encoding of the partial sums.

Acknowledgements. We thank Maarten Lö✏er for
insightful discussions on the topic of this paper.

References

[1] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. of Comp.

Geometry & Applications, 5:75–91, 1995.

[2] K. Buchin, M. Buchin, and Y. Wang. Exact algorithm
for partial curve matching via the Fréchet distance. In
Proc. 20th ACM-SIAM Symp. on Discrete Algorithms,
pages 645–654, 2009.

[3] A. Driemel and S. Har-Peled. Jaywalking your dog
– computing the Fréchet distance with shortcuts. In
Proc. 23rd ACM-SIAM Symp. on Discrete Algorithms,
pages 318–337, 2011.

[4] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and
J. Snoeyink. Approximating polygons and subdivi-
sions with minimum link paths. In Proc. 2nd Int.

Symp. on Algorithms, pages 151–162, 1991.

45

29th European Workshop on Computational Geometry, 2013

↵ 01

�
1

a(
i�

1
)

7
b(

i�
1
)

7
b(

i) 2
a(

i) 2
b(

i) 1
a(

i) 1
a(

i) 4
b(

i) 3
b(

i) 6
a(

i) 6
b(

i) 5
a(

i) 5
a(

i) 7
b(

i) 7

c(
i) 2

c(
i) 1

c(
i) 3

c(
i) 4

b(
i) 4

a(
i) 3

e

(i
�
1
)

7
e

(i
)

2
e

(i
)

1
e

(i
)

4
e

(i
)

6
e

(i
)

5
e

(i
)

7

�
�

�
�

↵ 01

�
1

a(
n
)

7
b(

n
)

7

e

(n
)

7

c(
n
+
1
)

1
a �

↵ 01

�
1

e

(0
)

7

a(
0
)

7
b(

0
)

7
c(

0
)

1
a(

0
)

0

e

(i
)

3

B
(0
)

B
(1
)

T
(0
)

�

T
(1
)

�
�

F
ig
u
re

1:
In
it
ia
li
za
ti
on

ga
d
ge
t,

T
er
m
in
al

ga
d
ge
t
an

d
in
te
rm

ed
ia
te

ga
d
ge
ts

G
i
w
it
h
gl
ob

al
p
ar
am

et
er
s
↵
an

d
�
.
T
h
e
ta
rg
et

cu
rv
e
is

sh
ow

n
in

gr
ee
n
,
th
e
b
as
e

cu
rv
e
in

b
lu
e.

F
or

th
e
sa
ke

of
p
re
se
nt
at
io
n
th
e
le
n
gt
h
s
of

th
e
d
oc
ki
n
g
ed
ge
s
h
av
e
b
ee
n
as
su
m
ed

sm
al
le
r.

46

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Parallel computation of the Hausdor↵ distance between shapes ⇤

Helmut Alt† Ludmila Scharf†

Abstract

We show that the Hausdor↵ distance for two two-
dimansional shapes, modeled as sets of n non-
intersecting line segments, can be computed in par-
allel performing O(n log2 n) total work, even in time
O(log2 n) on n processors. We discuss how some parts
of the sequential algorithm can be performed in par-
allel using previously known parallel algorithms; and
identify the so-far least e�ciently solved part of the
problem, which is the following: Given two sets of x-
monotone, non-intersecting curve segments, red and
blue, for each red segment find its extremal intersec-
tion points with the blue set, i.e. points with the
minimal and maximal x-coordinate. The algorithm
presented here improves the best known theoretical
time and space performance while still being practi-
cally feasible.

1 Introduction

Evaluating the similarity of two geometric shapes is
an important problem in di↵erent fields of computer
science including computer vision and pattern recog-
nition. One of the most natural similarity measures
is the Hausdor↵ distance which is defined for any two
compact sets. The directed Hausdor↵ distance be-
tween two compact point sets P and Q is defined as
dH(P,Q) = maxp2P minq2Q d(p, q), where d(p, q) de-
notes the Euclidean distance between the points p and
q. The (undirected) Hausdor↵ distance DH(P,Q) is
defined as maximum of the two directed distances:
DH(P,Q) = max {dH(P,Q), dH(Q,P)}. E�cient se-
quential algorithms are known for the Hausdor↵ dis-
tance computation for P and Q being discrete point
sets, sets of non-intersecting straight line segments [2]
and for algebraic parameterized curve segments [3].

In this paper we show that the Hausdor↵ distance
for two sets of non-intersecting line segments can be
computed e�ciently in parallel within O(log2 n) time
using O(n) processors in the CREW-PRAM compu-
tation model.

Due to the current trend in hardware development,
where the performance increase is achieved through

⇤
This research was performed in scope of the DFG-project

“Parallel algorithms in computational geometry with focus on

shape matching” under the contract number AL 253/7-1.

†
Institute of Computer Science, Freie Universität Berlin,

{alt,scharf}@mi.fu-berlin.de

additional computing units (processor kernels) in-
stead of increase in CPU speed, parallel algorithms
have gained new popularity in the algorithm devel-
opment. Some graphic cards support general compu-
tations on graphics hardware (GPGPU) which com-
prises up to several hundreds of parallel processing
units, which even more motivates for development of
parallel algorithms.

In this paper we use the PRAM as model of com-
putation for evaluating the theoretical performance
of the algorithm, since it exposes the principal par-
allelism of the problem instead of concentrating on
specific technical details of some hardware. The main
contribution of this paper – the algorithm for the red-
blue segment intersection problem – can be e�ciently
implemented on most of the currently available paral-
lel hardware platforms, such as GPGPU or multicore
CPUs. Section 3 gives a brief note on practical as-
pects of the algorithm.

We briefly recapitulate here the key steps of the se-
quential algorithm for computing the directed Haus-
dor↵ distance between two sets P and Q of non-
intersecting line segments from [2]: (1) Construct the
Voronoi diagram V D(Q) of the set Q; (2) For each
endpoint p of a segment in P find its closest segment
in Q using V D(Q) and compute the distance from p
to that segment; (3) Determine the so-called “critical
points” on the edges of V D(Q); (4) For each critical
point q compute the distance from q to its nearest
segment in Q; (5) Return the maximal distance of
endpoints and critical points.

The authors show that the critical points, i.e.,
the points where the directed Hausdor↵ distance
dH(P,Q) can be attained, besides the endpoints of
the segments in P , are the intersection points of P
with the Voronoi edges of Q. Furthermore, they prove
that for each edge of V D(Q) only the extreme in-
tersection points, i.e., the first and the last intersec-
tion point along the curve segment, are critical points
(s. Figure 1), thus reducing the total number of crit-
ical points to O(n). For x-monotone curves the ex-
treme intersection points are the points with the min-
imal and maximal x-coordinate. A non-x-monotone
parabola segment can be split into two x-monotone
segments at the point with the vertical tangent. Thus,
in the following we can assume that all Voronoi edges
are x-monotone.

Considering the steps of the sequential algorithm
we observe that the parallelization of steps (4) and

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

47

29th European Workshop on Computational Geometry, 2013

P

Q Q

P
V D(Q)

dH(P, Q)

Figure 1: Two sets of line segments representing
trademark images. The Hausdor↵ distance is attained
at a critical point on a Voronoi edge.

(5) is straightforward. A parallel algorithm for com-
puting the Voronoi diagram of a set of line segments
(Step (1) of the algorithm) is given in [9]. It runs in
O(log2 n) time on a O(n) processor CREW-PRAM
and uses the divide-and-conquer technique. For a
given planar subdivision with n vertices a point loca-
tion data structure supporting O(log n)-time queries
can be constructed in O(log n) time on an EREW-
PRAM with O(n) processors [11]. Thus, step (2) can
be performed e�ciently in parallel.

For determining the critical points, i.e., intersec-
tion points between segments and Voronoi edges, in
Step (3) the sequential algorithm uses the plane sweep
technique. Clearly, the plane sweep technique is in-
herently sequential, and we therefore need di↵erent
tools to compute the critical points in parallel. For
the related intersection detection and intersection re-
porting problems, i.e., given n line segments in the
plane, determine if any two of them intersect, or find
all pairwise intersections, there exist e�cient parallel
algorithms see e.g., [5, 8, 10].

We call the intersection problem arising in the
Hausdor↵ distance computation, which also may be of
independent interest, the first-last intersection prob-
lem (defined below). Since Voronoi edges of a set of
line segments can be line or parabola segments, we
want our algorithm for this intersection problem to
work for more general sets of curve segments:
Definition 1 Two sets of curve segments A and B
are called well-behaved if every segment in A [B is
x-monotone; no two segments of the same set have
a common point except possibly common endpoints;
any two segments from di↵erent sets intersect at most
twice; all intersections between any two segments can
be computed in constant time; and for every seg-
ment we can compute in constant time for a given
x-coordinate the corresponding y-coordinate.

Observe that the set P of line segments and the
possibly split Voronoi edges of Q are two well-behaved
sets. The problem of finding critical points for the
Hausdor↵ distance can then be formulated as:
Problem 1 (First-Last Intersection Problem)

Given two well-behaved sets A and B of curve
segments in the plane, for each segment a 2 A find
the intersection points of a with the segments from

the set B with the smallest and with the largest
x-coordinate.

All above mentioned line segment intersection par-
allel algorithms utilize the segment tree data structure
(see e.g. [1]), which is also used in this paper.

The first-last intersection problem arises also as a
part of Hausdor↵ Voronoi Diagrams computation for
non-crossing objects. Dehne et al. present in [7] a par-
allel algorithm for this sub-problem for coarse grained
parallel architectures with total work of O(n log3 n)
and memory requirement of O(n log2 n). Their algo-
rithm works with segment trees and builds addition-
ally a secondary segment tree structure.

Here we present an algorithm with a total work of
O(n log2 n) and a memory requirement of O(n log n)
on an arbitrary number of processors. Our algorithm
utilizes a di↵erent secondary data structure – the in-
terval tree, which allows us to save a O(log n) factor
in memory and time bounds. We can show that for
a given set of n intervals an interval tree can be con-
structed in O(log n) time on O(n) processors in the
CREW-PRAM model using an e�cient sorting algo-
rithm.

The theoretical analysis of our algorithm is summa-
rized in the following theorem:

Theorem 1 Let A and B be two well-behaved sets
of curve segments in the plane with |A| + |B| = n.
The first-last intersection problem for A and B can
be solved on a CREW-PRAM using O(log n) time,
O(n log2 n) operations, and O(n log n) space.

Clearly, the total work of O(n log2 n) claimed in The-
orem 1 can alternatively be performed in O(log2 n)
time on O(n) processors, which corresponds to pro-
cessor and time requirements for the Voronoi diagram
computation. Thus, Theorem 1 together with the
above mentioned previous work completes the proof
of Theorem 2:

Theorem 2 Given two sets P and Q of n line
segments, such that no two segments of the same
set intersect, except possibly at the endpoints, the
Hausdor↵ distance DH(P,Q) can be computed on a
CREW-PRAM using O(log2 n) time, O(n log2 n) op-
erations, and O(n log n) space.

2 A Parallel Algorithm for the First-Last-Inter-
section Problem

Let A and B be two well-behaved sets (red and blue
resp.) of curve segments in the plane with |A|+ |B| =
n. Here we describe how to find for each segment
a 2 A the intersection point with B with the minimal
x-coordinate, the intersections with the maximal x-
coordinate can be determined symmetrically.

Our algorithm begins with the construction of a
segment tree T for the set A[B. Recall that each node

48

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

v of a segment tree represents a horizontal interval
and stores a so-called cover-list – the list of segments
that cover completely the interval of v but not the
interval of the parent of v; and an end-list – the list of
segments that have an endpoint in the interval of v.
Step 1. Build a segment tree T for A [B.
For each node v of T construct separate cover-lists
CA(v), CB(v) for the sets A and B respectively, and
separate end-lists EA(v), EB(v). Sort CA(v) and
CB(v) by y-coordinate for all nodes v in parallel.

Since the initial sets are intersection free, the y-
order within the cover-lists of each color is well-
defined.

Chazelle showed in [6] that if two line segments of a
set intersect, then in the corresponding segment tree
there must be a node v such that either both segments
are in C(v) or one is in C(v) and the other in E(v).
It is easy to see that a similar statement holds for
well-behaved curves as defined in Section 1.

In the two-set setting this means that if a red seg-
ment a and a blue segment b intersect, then there
must be a node v in T such that either (1) a 2 CA(v)
and b 2 CB(v), (2) a 2 EA(v) and b 2 CB(v), or
(3) a 2 CA(v) and b 2 EB(v). The following steps
of the algorithm deal with each of these three cases.
Whereas the handling of the first two cases (Step 2)
is a modification of the corresponding steps of the
algorithm in [10], the third case demands additional
processing (Step 3).
Step 2. For each node v of T and each segment
a 2 CA(v) [EA(v) do in parallel: Find the neigh-
bors of a in CB(v) with respect to the y-order at the
x-coordinate of the leftmost point of a within the in-
terval of v. Compute the intersections of a with its
neighbors, if any exist, and record the one with the
minimum x-coordinate.

For type (3) of intersections we observe that for
a given segment b 2 EB(v) we can easily determine
the lowest, a1, and the highest, a2, red segment in
CA(v) intersected by b within the interval of v, using
binary search on CA(v). Clearly, all red segments
in CA(v) between a1 and a2 are also intersected by
b forming a set of consecutive ranks in CA(v) with
respect to its ascending order in y-direction. This set
we call the rank interval of b, which has a constant
size representation by a1, a2.

In the following we are going to find for each node v
of T the set I(v) of the rank intervals for all b 2 EB(v).
Then we process and narrow the rank intervals in I(v)
with the purpose to avoid multiple intersections of a
blue segment with a red one, and thus, to include at
most O(log n) intersection points for each a 2 CA(v).
A detailed consideration shows that all possible con-
figurations between b and its rank interval are the ones
shown in Figure 2.
Step 3.1. For each node v in T and each b 2 EB(v)
do in parallel: Find the rank interval of CA(v) inter-

v
a1

a2

b

(a)

va1

a2

b

(b)

v

a1

a2

b

(c)

va1

a2

b

(d)

Figure 2: Configurations of the intersection points of b
with the first and last red segments of its rank interval.

sected by b. Split b if necessary, so that each red seg-
ment is intersected at most once by each subsegment
of b. Record the resulting interval(s) in the interval
set I(v).
Step 3.2.For each node v 2 T in parallel construct an
interval tree TI(v) for the set of rank intervals I(v).

The blue segments whose rank intervals are stored
in the same node u of TI(v) all intersect the same red
segment a 2 CA(v) – the segment with the reference
rank of u, hereafter called the reference segment of u.
Thus, we can order them by the x-coordinate of their
intersection with a. If two blue segments b1, b2 inter-
sect some red segments the order of the intersection
points will be the same on all of these red segments.
Therefore, if b1’s intersection with a has a lower x-
coordinate than that of b2, we can remove from the
rank interval of b2 those elements that are in the inter-
val of b1 without losing significant intersection points.
Thus, by sorting the rank intervals with respect to
the reference segment and computing prefix-minima
and maxima, we can prune the blue rank intervals so
that the remaining intervals have the following prop-
erties: The rank intervals stored in one node of TI(v)
are disjoint, i.e., the rank of every segment a 2 CA(v)
is contained in at most one interval of a single node.
The number of intervals in TI(v) is at most twice the
original number. The rank of every a 2 CA(v) is con-
tained in at most O(log n) intervals in TI(v).
Step 3.3. For each node v in T and each node u in
TI(v) in parallel prune the rank intervals in u.

Finally, we can reorganize TI(v) and compute the
intersection points:
Step 3.4. For each node v 2 T in parallel rebuild
the interval tree TI(v) for the new intervals.
Step 3.5. For each red segment a 2 CA(v) in paral-
lel find all b 2 EB(v) whose intervals in TI(v) contain
the rank of a. Record the intersection point with the
minimal x-coordinate.

The last step is to select the intersection points to
report from the candidate intersections:
Step 4. For each a 2 A in parallel find the inter-
section point with the minimal x-coordinate from the
candidate points computed in Steps 2 and 3.

Concerning the proof of Theorem 1: The correct-
ness of the algorithm is already explained along the
description of the algorithm. A segment tree uses

49

29th European Workshop on Computational Geometry, 2013

O(n log n) space and the total size of all interval trees
is O(n). Step 1 can be performed in O(log n) time on
an O(n) processor CREW-PRAM, see [1]. In Step 2
we assign a processor to each occurrence of a segment
a in cover- and end-lists of T and find all candidates
of type (1) and (2) in O(log n) time with O(n log n)
processors using binary search. Similarly, we can show
that Steps 3.1 – 3.5 can be performed within the same
time and processor bounds, where the construction of
all interval trees is performed in parallel. Finally, find-
ing the maximum of the O(n log n) candidate values
in Step 4 can clearly be performed within the claimed
resource bounds.

3 Practical Notes

The algorithm described in Section 2 breaks down to
the following basic (global) operations on arrays: sort-
ing, prefix minimum and maximum computation (also
known as scan operation), and a so-called compact
operation, which is used to remove elements (e.g., in-
tervals). Additionally, for each segment the following
(local) operations are performed independently and
conflict free: binary search and arithmetic computa-
tions of constant complexity.

All of these operations can be e�ciently imple-
mented for the following currently available parallel
architectures with shared memory: GPGPU – paral-
lel computations on graphics hardware, and the par-
allel external memory model (PEM) [4] – one of the
models attempting to reflect the demands of modern
parallel multicore CPUs. Thus, our algorithm can be
directly implemented e�ciently for both of these ar-
chitectures.

Another popular parallel architecture is cluster
computing, usually modeled by the coarse grained
multicomputer (CGM) model (as in [7]). In this
model the communication between processors is as-
sumed to be very expensive and the communication
cost is typically expressed in the number of global sort
operations performed by the algorithm. We can show
that the data structure used by our algorithm can be
distributed over p processors in a similar manner as
it is done in [7]. Thus, our algorithm performs a total
work of O(n log2 n) and has O(1) global communica-
tion rounds in the CGM model.

4 Concluding Remarks

The algorithm for the first-last intersection problem
presented here can further be accelerated to perform
Step 2 in O(log n) time using O(n) processors by ap-
plying the fractional cascading technique [5]. This
technique simplifies the iterative search for a key in
multiple ordered lists and allows to perform the search
of a segment a in all CB-lists of T in O(log n) time,
i.e., taking O(log n) time on O(n) processors for Step

2. Steps 1 and 4 have already these time and processor
bounds. But it is not clear whether the performance
of Steps 3.1 to 3.5, i.e., finding the first intersection
of a red sub-segment from a cover-list with blue sub-
segments from an end-list in a node of the segment
tree, can be improved.

A further interesting related problem is matching
geometric shapes under transformations (e.g., trans-
lations, rotations, scalings) with respect to the Haus-
dor↵ distance, i.e., find a transformation of one of the
shapes such that the Hausdor↵ distance is minimized,
for sequential algorithms see [2].

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing,
and C. Yap. Parallel computational geometry. Algo-
rithmica, 3(1):293–327, 1988.

[2] H. Alt, B. Behrends, and J. Blömer. Approximate
matching of polygonal shapes. Annals of Mathemat-
ics and Artificial Intelligence, 13:251–265, 1995.

[3] H. Alt and L. Scharf. Computing the Hausdor↵ dis-
tance between curved objects. Int. J. Comput. Ge-
ometry Appl., 18(4):307–320, August 2008.

[4] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchi-
nava. Fundamental parallel algorithms for private-
cache chip multiprocessors. In Proc. 20th sympo-
sium on Parallelism in algorithms and architectures,
SPAA’08, pages 197–206, 2008.

[5] M. J. Atallah, R. Cole, and M. T. Goodrich. Cas-
cading divide-and-conquer: a technique for designing
parallel algorithms. SIAM J. Comput., 18(3):499–
532, 1989.

[6] B. Chazelle. Intersecting is easier than sorting. In
STOC’84: Proc. 16th annual ACM symposium on
Theory of computing, pages 125–134, 1984.

[7] F. Dehne, A. Maheshwari, and R. Taylor. A coarse
grained parallel algorithm for Hausdor↵ Voronoi dia-
grams. In Int. Conf. on Parallel Processing (ICPP),
pages 497–504, 2006.

[8] M. T. Goodrich. Intersecting line segments in parallel
with an output-sensitive number of processors. In
Proc. 1st ACM symposium on Parallel algorithms and
architectures, SPAA ’89, pages 127–137, 1989.

[9] M. T. Goodrich, C. Ó’Dúnlaing, and C.-K. Yap. Con-
structing the Voronoi diagram of a set of line seg-
ments in parallel. Algorithmica, 9(2):128–141, 1993.

[10] M. T. Goodrich, S. B. Shauck, and S. Guha. Paral-
lel methods for visibility and shortest path problems
in simple polygons (preliminary version). In Proc.
6th symposium on Computational geometry, SCG ’90,
pages 73–82, 1990.

[11] R. Tamassia and J. S. Vitter. Optimal parallel algo-
rithms for transitive closure and point location in pla-
nar structures. In Proc. 1st ACM symposium on Par-
allel algorithms and architectures, SPAA’89, pages
399–408, 1989.

50

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Hardness Results on Curve/Point Set Matching with Fréchet Distance

Paul Accisano⇤ Alper Üngör ⇤

Abstract

Let P be a polygonal curve in Rd of size n, and S be a
point set of size k. We consider the problem of finding
a polygonal curve Q on S such that all points in S are
visited and the Fréchet distance from P is less than
a given ". We show that two versions of this problem
are NP-complete: one in which points of S are allowed
to be revisited and one in which they are not.

1 Introduction and Background

We consider the problem of finding a polygonal curve
Q on a point set S such that all points in S are visited
and the Fréchet distance from a given polygonal curve
P is less than a given ". Figure 1 shows an example
problem instance and its solution.

The Fréchet distance problem has been well studied.
Alt and Godau [1] showed that, given two polygonal
curves of length n and m, deciding whether they have
Fréchet distance less than a given " can be accom-
plished in O(nm) time. They also showed that finding
the exact Fréchet distance between the two curves can
be done in O(nm log(nm)) time.

Maheshwari et al. [5] examined the following variant
of the Fréchet distance problem, which we refer to
as the Curve/Point Set Matching (CPSM) problem.
Given a polygonal curve P of length n, a point set
S of size k, and a number " > 0, determine whether
there exists a polygonal curve Q on a subset of the
points of S such that �

F

(P,Q) ". They gave an
algorithm that decides this problem in time O(nk2),
as well as an algorithm to compute the curve of min-
imal Fréchet distance in time O(nk2 log(nk)) using
parametric search.
Wylie and Zhu [6] also explored the CPSM prob-

lem from the perspective of discrete Fréchet distance,
which only takes into account the distance at the ver-
tices along the curves. They formulated four versions
of the CPSM problem depending on whether or not
points in S were allowed to be visited more than once
(Unique vs. Non-unique) and whether or not Q was re-
quired to visit all points in S at least once (All-Points
vs. Subset). They showed that, under the discrete
Fréchet distance metric, both non-unique versions were
solvable in O(nk) time, and both unique versions were
NP-complete.

⇤
Dept. of Computer & Info. Sci. & Eng., University of

Florida, {accisano, ungor}@cise.ufl.edu

"

Figure 1: A problem instance and its solution. The
input is the solid line and the circle points, and the
solution is the dotted line.

Driemel and Har-Peled [3] studied a similar problem
in which two curves are given, and the goal is to
find an optimal set of “shortcuts” that minimize the
Fréchet distance. Our problem di↵ers from theirs in
that points of S can be visited in any order, whereas
in their problem, the order is prescribed.
In this paper, we show that the Continuous All-

Points versions of the CPSM problem, both Unique
and Non-unique, are NP-complete (Table 1).

Discrete Continuous

Subset Unique NP-C [6] Open
Non-Unique P [6] P [5]

All-Pts Unique NP-C [6] NP-C*
Non-Unique P [6] NP-C*

Table 1: Eight versions of the CPSM problem and
their complexity classes. New results are starred.

2 Preliminaries

Given two curves P,Q : [0, 1] ! Rd, the
Fréchet distance between P and Q is defined as
�
F

(P,Q) = inf
�,⌧

max
t2[0,1] kP (�(t)), Q(⌧(t))k, where

�, ⌧ : [0, 1] ! [0, 1] range over all continuous non-
decreasing surjective functions [4].

For a given point p 2 Rd and a real number " > 0, let
B(p, ") ⌘ {q 2 Rd : kpqk " denote the ball of radius
" centered at p, where k·k denotes Euclidean distance.
For a line segment L ⇢ Rd, let C(L, ") ⌘

S
p2L

B(p, ")

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

51

29th European Workshop on Computational Geometry, 2013

denote the cylinder of radius " around L. Note that a
necessary condition for two curves P and Q to have
Fréchet distance at most " is that the vertices of Q
must all lie within the cylinder of some segment of P .

Our NP-completeness result is obtained via a reduc-
tion from a restricted version of the well-known 3SAT
problem. The 3SAT problem takes as input a boolean
formula with clauses of size 3, and asks whether there
exists an assignment to the variables that makes the
formula evaluate to TRUE. If we restrict the input
to formulas in which each literal occurs exactly twice,
the problem becomes the (3,B2)-SAT problem. Fur-
thermore, we make the restriction that no two clauses
have two literals in common. The problem was shown
to be NP-complete in [2].

3 The Reduction

Let � be a formula given as input to the (3,B2)-SAT
problem. We construct a polygonal curve P and a
point set S such that � is satisfiable if and only if there
exists polygonal curve Q whose vertices are exactly S
with Fréchet distance at most " from P .

First, we construct a gadget consisting of compo-
nents of P and S that will force any algorithm to
choose between two possible polygonal paths. The
gadget is constructed in such a way that these two
choices are the only possible polygonal paths along
the gadget’s component of S with Fréchet distance
at most " from P . Then, we create a series of points
in S to represent the clauses in �, one point for each
clause. For each variable, a gadget will be placed that
goes through four points, which represent the four
clauses in which the variable appears. The gadget
will be placed such that only the clauses in which
the variable’s positive or negative instances occur are
reachable, but not both. Once this has been done for

each variable in �, any polygonal curve Q whose ver-
tices are exactly S with �

F

(P,Q) " will correspond
to an assignment to the variables of � in which every
clause is satisfied, thus making the formula evaluate
to TRUE. Furthermore, if no such curve exists, then
there can be no such satisfying assignment for �.

3.1 Separation Gadget

We begin the description of our main gadget with an
example, which we later generalize. Consider the prob-
lem instance shown in Figure 2a, with S = {a, b, c, d}.
It is clear that the answer to this instance is “no”; no
polygonal curve on S with �

F

(P,Q) " can visit both
b and c. However, suppose this P and S were part of
a larger problem instance. Then suppose that other
segments of P come within " of b and c. The answer
to the problem instance is no longer so obvious. Even
if both points cannot be reached the first time they are
encountered, it is possible that whichever point was
skipped could be covered in the future. This creates
the fundamental di�culty that leads to our reduction.
Figure 2b shows an extension of the previous con-

figuration, with more corners, all symmetrically the
same as the first. Note how we have not increased the
number of options; there are still only two possible
paths to take. We can add as many of these corners
as we like without breaking this property, as long as
they all bend in the same direction.
The corner points must be placed very precisely

to ensure the above properties hold. Because their
position is so constrained, using them to represent
elements of � in our construction would be di�cult.
At each corner, the two path possibilities alternate
between the boundary of the cylinders and the interior.
As shown in Figure 2b, extra points in the cylinder
interior are still only visible from the other interior
points, and therefore we can add as many as we like

a

b

c

d

(a) The two dashed curves are the

only possible curves on S with

Fréchet distance at most 1 from the

given (solid) curve.

(b) More corners have been added.

The two interior points are only reach-

able on di↵erent curve possibilities.

(c) All except one of the two inte-

rior points are covered, regardless of

which path is chosen.

Figure 2: The separation gadget, step by step.

52

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

without a↵ecting the path possibilities. Thus, by ex-
tending the segments between the corners, we can
create large regions in which we can place points that
are only reachable along one of the two possibilities.
These points will represent clauses in our construction.

There is still a problem to be addressed; as more
corners are added, more points are created that would
be skipped by the chosen path. We would like to create
a construction that forces a choice among only the
points in the cylinder interiors and that ensures all the
corner points will be visited regardless of which path
is chosen. To accomplish this, after the last corner of
the gadget, we can have P loop back around along
the outer edge, covering all the corner points without
covering any of the interior points (Figure 2c.)

Figure 3 shows an example usage of the gadget. The
points in the cylinder interiors represent the clauses
in which the variable appears. Only one set of clause
points, either the clauses in which the positive or neg-
ative literals appear, can be reached. However, all
the corner points will always be covered. The full
construction will include one of these gadgets for every
variable, with each one passing through the points cor-
responding to clauses containing the variable’s positive
and negative literals. Note that, while our initial con-
struction used only right angles, our corner constructs
can be modified to bend at any non-acute angle ↵. In
the following sections, we refer to these constructs as
↵-corners. In our full paper, we give a more precise
definition of the construct.

3.2 Construction

We begin by adding an initial set of points to S which
we refer to as “clause points” C1, . . . , Cn

, one for each
clause in �. We position these points so that they
lie on a circle, equally spaced. We then perform the
following procedure for each variable v

i

in �, building
the construction incrementally. Let x and y be the
clauses in which the positive literals of v

i

occur, and
z and w be the clauses in which the negative literals
occur. We begin by positioning an ↵-corner so that
the extension of the last segment of the forward path
passes through C

x

and C
y

. An extra point, which we
refer to as a split point, is added on the boundary of
the first forward path segment to allow the splitting of
the two possible paths. From there, both the forward
and return paths are extended through the clause ring,
with the forward path crossing through C

x

and C
y

.
On the opposite side, outside the convex hull of all

points in S so far, another ↵-corner is added, bending
the path toward C

z

C
w

. More ↵-corners, all bending in
the same direction, are added as needed until one can
be placed such that the forward path passes through
C

z

and C
w

. Note that there must be an odd number
of ↵-corners in order to ensure that C

x

, C
y

and C
w

,
C

z

are reachable on di↵erent curve possibilities. Once

x

x

x

x

Figure 3: A partial construction for a formula with 12
clauses, showing the gadget for a single variable. The
only two valid paths visit either the positive literal’s
clauses or the negative literal’s clauses.

the paths have been extended through the clause ring
and outside the convex hull, another split point is
added on the boundary to collapse the curve possibili-
ties. Finally, the forward path is linked to the return
path, and the joint is added to S. At the end of the
return path, more segments of P are added, with each
joint being added to S, in order to move to the next
variable’s clause points. To avoid interfering with pre-
viously placed gadgets, we place all new segments and
points outside the convex hull of all previously placed
points in S. Figure 4 shows a completed construction
for a simple formula.
To ensure our construction is always possible, we

must enforce certain properties. First, the circle on
which the clause points are placed must have a radius
of at least n2". Let the clause strip along clauses i
and j denote the region within 7" of the line C

i

C
j

.
Our choice of radius ensures that, if two clause strips
are parallel, ↵-corners placed inside will not interfere
with each other.

We also require that, with the exception of those
directly adjacent to clause points, all ↵-corners are
placed entirely outside all strips along all clause pairs,
so as not to block future pieces. Those ↵-corners that
are adjacent to clause points will lie entirely inside
the corresponding clause strip, but must be placed
outside all other clause strips. Note that this is always
possible; beyond 4n2" units from the center of the
clause ring, no clause strip intersects any other. Strips
of di↵erent angles will grow further and further apart,
creating regions of arbitrary size between them.

4 Result

Lemma 1 There exists a polygonal path Q on S with

�
F

(P,Q) " that visits every point in S if and only

53

29th European Workshop on Computational Geometry, 2013

if � is satisfiable.

Proof. For the forward direction, assume � has a
satisfying assignment. It is easy to see that our con-
struction always has a polygonal path Q on S with
�
F

(P,Q) " that will visit every non-clause point;
↵-corners are constructed specifically to ensure this.
If � has a satisfying assignment, then one of the two
path possibilities in each variable construct will cover
the clause points corresponding to the clauses satisfied
by that variable, resulting in all clause points being
visited.

For the backward direction, let Q be a polygonal
path whose vertices are exactly S with �

F

(P,Q) ".
By constructing each variable construct completely
outside the convex hull of all previously placed points
of S, we have ensured that any Q with �

F

(P,Q) "
must follow the path we have laid out. Each variable
construct forces a choice between two paths, represent-
ing a true or false value for that variable. Since Q
visits each clause point, the path taken in each variable
construct represents an assignment to the variables
that satisfies �. ⇤

It is straightforward to show that five ↵-corners are
su�cient to move between any two strips, which means
the construction is of polynomial size. This leads to
the following result.

Theorem 2 The Non-unique All-points Continuous

CPSM Problem is NP-complete.

In the construction, the only points that occur more
than once are the clause points and the inner ↵-corner
points. In all occurrences of both cases, the next point
is always reachable from the previous point. Thus, for
this class of problem instances, any solution to the
Non-unique version of this problem can be converted
to a solution to the Unique version by simply skipping
the points that have already been visited. This shows
that the same reduction applies to the Unique version.

Corollary 3 The Unique All-points Continuous

CPSM Problem is NP-complete.

5 Approximation Algorithm

We have recently developed a 3-approximation algo-
rithm for the Non-unique All-points Continuous CPSM
problem. However, due to space limitations, that algo-
rithm will be presented elsewhere. Our approximation
algorithm relies on an O(nk2) time algorithm that
solves the following restricted version of the problem:
Given a polygonal curve P and a point set S, find the
curve of minimal Fréchet distance whose vertices are
exactly S, with the additional restriction that each
point s 2 S is visited at its closest segment (as well as
possibly at other segments).

12

3 4

Figure 4: A completed construction for the formula
� = (x_y_z)^(x_y_z)^(x_y_z)^(x_y_z). The
upper right clause point represents the first clause, and
the second, third, and fourth follow counterclockwise.

References

[1] H. Alt and M. Godau. Computing the Fréchet
distance between two polygonal curves. Int. J. of
Comp. Geom. & Appl., 5(01n02):75–91, 1995.

[2] P. Berman, M. Karpinski, and A. Scott. Approxi-
mation hardness of short symmetric instances of
MAX-3SAT. El. Coll. on Comp. Complex., (049),
2003.

[3] A. Driemel and S. Har-Peled. Jaywalking your dog:
computing the fréchet distance with shortcuts. In
Proc. of Symp. on Disc. Alg., pages 318–337, 2012.

[4] George Ewing. Calculus of variations with appli-

cations. Dover Publications, New York, 1985.

[5] A. Maheshwari, J. Sack, K. Shahbaz, and
H. Zarrabi-Zadeh. Staying close to a curve. In
Canadian Conf. on Comp. Geom., pages 55–58,
2011.

[6] T. Wylie and B. Zhu. Discretely following a curve
(short abstract). In Computational Geometry:

Young Researchers Forum (CG:YRF), 2012.

54

⇤

⇤

55

56

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

New Results on Convex Stabbers

Lena Schlipf⇤

Abstract

In this paper, we prove the problem of stabbing a
set of disjoint bends by a convex stabber to be NP-
hard. We also consider the optimization version of
the convex stabber problem and prove this problem
to be APX-hard for sets of line segments.

1 Introduction

Consider a finite set of geometric objects in the plane.
We call this set stabbable if there exists a convex
polygon whose boundary intersects every object. The
boundary is then called convex stabber.

The problem of finding a convex stabber was orig-
inally proposed by Tamir in 1987 [5]. Arkin et al. [1]
proved this problem to be NP-hard when the geo-
metric objects are line segments or similar copies of
a given convex polygon. This paper, in fact, can be
considered as a continuation of the paper of Arkin et
al. We will show that the problem of finding a con-
vex stabber for a set of disjoint simple polygons is
NP-hard. Actually, we even show that it is already
hard to stab a set of disjoint bends. Additionally,
we study the optimization version: Given a finite set
of geometric objects in the plane, compute the maxi-
mum number of objects that can be stabbed with the
boundary of a convex polygon. We prove this problem
to be APX-hard when the objects are line segments.

Notation. Two line segments with a common end-
point are called a bend. We say that a convex stabber
stabs or traverses the given objects.

2 Convex Stabbers for Disjoint Polygons

We consider the following problem: Given a set of
disjoint bends in the plane, is there a convex stabber
that intersects every bend of the set?
We prove this problem to be NP-hard. We reduce

from planar, monotone 3SAT which was shown to be
NP-hard by de Berg and Khosravi [2]. A monotone

instance of 3SAT is an instance where each clause has
either only positive or only negative variables. In the
following we call a clause that contains only positive

⇤
Institute of Computer Science, Freie Universität Berlin,

Germany. schlipf@mi.fu-berlin.de. This research was sup-

ported by the DFG within the Priority Programme 1307 Algo-

rithm Engineering.

variables a positive clause and a clause that contains
only negative variables a negative clause. Planar,
monotone 3SAT remains NP-hard even when a mono-
tone rectilinear representation is given. In a monotone
rectilinear representation the variable and clause gad-
gets are represented as rectangles. All variable rect-
angles lie on a horizontal line. The edges connecting
the clause gadgets to the variable gadgets are verti-
cal line segments and no two edges cross. All positive
clauses lie above the variables and all negative clauses
lie below the variables.

x1 x2 x3 x4 x5

C1

C2 C3

C4

C5

Figure 1: A monotone rectilinear representation of
the 3SAT instance C = C1 ^C2 ^C3 ^C4 ^C5 where
C1 = x1_x3_x5, C2 = x1_x2_x3, C3 = x3_x4_x5,
C4 = x2 _ x3 _ x4, and C5 = x1 _ x4 _ x5.

Given a monotone rectilinear representation � of a
3SAT instance, we construct a set of bends B such
that there exists a convex stabber for B if and only
if � is satisfiable. Let m be the number of clauses
and n be the number of variables. Let the number of
positive clauses and negative clauses be m1 and m2,
respectively. (The variable and the clause gadgets are
basically constructed in the same way as in [1].)

Variable gadgets. A variable gadget consists of a
line segment and three points (degenerate bends), see
Fig. 2.

FT

Figure 2: A variable gadget. (The dashed and the
dashed-dotted segments and the dotted circular arc
are not part of the construction.)

There are two ways to traverse these points and the
segment depending on the order in which the mid-
dle point is traversed: one corresponds to setting the

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

57

29th European Workshop on Computational Geometry, 2013

variable to True (the dashed-dotted one), the other to
setting the variable to False (the dashed one).

The variable gadgets are fitted into a circular arc by
putting the non-middle points on the arc; the middle
point and the segment lie inside the circle. Each pos-
itive variable gadget is placed into an arc of 1/(16m1)
of a unit circle. Each negative variable gadgets is
placed into an arc of 1/(16m2) of a unit circle.

Clause gadgets. A clause gadget consists of a line
segment and two points. Similarly to the variable
gadgets the clause gadgets are fit into a circular arc.
The points are put on the arc and the segment lies
inside the circle. The positive clause gadgets are fit
into an arc of 1/(16m1) of a unit circle; the negative
variable gadgets are fit into an arc of 1/(16m2) of a
unit circle.

Positive arc. We place the gadgets representing a
positive variable or a positive clause next to each other
on an arc of a unit circle. Since any positive variable
and any positive clause gadget is fit into an arc of
1/(16m1), they occupy an arc of one quarter of a unit
circle. The gadgets have to be placed in a specific
order. Consider the monotone rectilinear representa-
tion; the clauses and their corresponding variables are
connected via edges. We place a gadget for each edge,
representing the variable that this edge connects with
a clause. These edges are ordered from left to right
and the gadgets are ordered in the same way. Thus, a
gadget is placed for every occurrence of a variable in
a clause. The clause gadgets are placed to the right
of the gadget representing their middle variable.

x1

x1

x2

C2

x3

x3

C1

x3

x4
C3

x5 x5 x5
C5

x4

x4

C4

x3

x2

x1

positive arc

negative arc

Figure 3: The placement of the gadgets for the in-
stance in Fig. 1 is shown.

Negative arc. We place the gadgets representing a
negative variable or a negative clause next to each
other on an arc of one quarter of a unit circle. The
gadgets are ordered in the same way as for the positive
arc, but this time from right to left. The negative and
the positive arc are placed next to each other (Fig. 3).

Variable connectors. To ensure that a stabber tra-
verses all gadgets representing the same variable in
the same way, we place 3m variable connectors. All
gadgets that represent the same variable are con-
nected via segments in a circular manner. The seg-
ment touches the True path of one gadget and the
False path of the next gadget (Fig. 4). Since on both
the positive and the negative arc all variable gadgets
representing the same variable lie next to each other,
these segments do not intersect anything else. In to-
tal, we place one segment for each variable gadget.

x

i

T

F

x

i

T

F

x

i

T

F

Figure 4: The variable connectors ensure that each
variable gadget that represents the same variable is
traversed in the same way: either the stabber tra-
verses the True path or the False path.

Clause connectors. We place 3m more bends in or-
der to connect a clause gadget with its variables. Note
that there is a variable gadget for each occurrence of
a variable in a clause. The connectors either lie inside
the circle or outside. We call them inner connectors
and outer connectors, respectively. An inner connec-
tor can be a straight line segment whereas an outer
connector has to be a bend.

x

3

C

1

x

1

x

5

T

F

T

F

T

F

Figure 5: The clause connectors are shown. There are
three ways to traverse the clause gadget; each path
stabs two out of the three connectors.

The remaining parts of the construction are ex-
plained for positive clauses. Negative clauses can be
handled similarly. Each clause gadget has two outer

58

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

connectors and one inner connector. The inner con-
nector connects the clause gadget to the gadget rep-
resenting its middle variable. Note that this gadget is
placed next to the clause gadget in the construction.
The other two variables that occur in this clause are
connected via outer connectors. One endpoint of each
connector lies within the variable gadget as follows:
the segment touches the True path through the gad-
get and does not intersect the False subpath. In every
clause gadget, the endpoints of these connectors look
the same, see Fig. 5. It can easily be checked that
a convex stabber can intersect any two of the three
bends but never all three of them. It follows imme-
diately from the monotone rectilinear representation
that our construction can be drawn crossing-free; the
bends and segments are all pairwise disjoint.

Correctness. Assume there exists a satisfying as-
signment for the 3SAT formula. The convex stabber
traverses the variable gadgets according to this as-
signment. In each clause gadget the stabber can stab
two connector bends. Since at least one variable is
satisfied in each clause, the stabber can omit the con-
nector connecting the satisfied variable to the clause
and stab the other two connectors. Hence, the stabber
stabs all bends.
Conversely, assume there is a convex stabber that

stabs all bends. Set the variables True or False de-
pending on how the stabber traverse the variable gad-
get. This is a satisfying assignment for the 3SAT in-
stance: The setting is consistent since the stabber has
to omit at least one connector in each clause gadget.
These omitted bends have to be stabbed in the vari-
able gadgets; there the stabber can either take the
True path or the False path, but not both.

x

1

x

1

x

2

C

2

x

3

C

1

x

4

C

3

x

5

x

5

C

5

x

4

C

4

x

3

x

1

x

3

x

3

x

5

x

4

x

2

Figure 6: A sketch of the construction for the instance
in Fig. 1 is shown.

Theorem 1 Let B a set of disjoint bends in the

plane. It is NP-hard to decide whether there exists

a convex stabber for B.

3 APX-Hardness

In this section we consider the maximum convex stab-

ber problem: Given a set of geometric objects in the

plane, compute a convex stabber that stabs the max-
imum number of these objects.
We prove this problem to be APX-hard if the geo-

metric objects are line segments. We use a reduc-
tion from MAX-E3SAT(5) which is a special version
of MAX-3SAT where each clause contains exactly 3
literals and every variable occurs in exactly 5 clauses
and a variable does not appear in a clause more than
once. It is known to be NP-hard to approximate
MAX-E3SAT(5) within a factor of (1�✏) for any ✏ > 0
[3]. We first start by reducing MAX-E3SAT(5) to the
decision version of the problem (Given a set of line
segments and an integer s, does there exists a convex
stabber that stabs s segments?). The reduction is ba-
sically the same as the reduction for the problem of
finding a convex stabber for line segments in [1].
We show how to build a set of line segments L,

for a 3SAT formula �, such that there exists a convex
stabber for L if and only if � is satisfiable. We use n,m
to denote the number of the variables and clauses.

Variable gadgets. For each variable we have a gad-
get that consists of 6 line segments and 18 points.
The segments are stacked on top of each other. The
18 points are partitioned into 3 sets of equal size; the
points of each set are stacked on top of each other.
The stack of segments and the 3 stacks of points are
arranged in the same way as in Fig. 2. There are two
ways to traverse the gadget (and to stab all segments
in the gadget) depending on the order in which the
middle stack of points is traversed. One way corre-
sponds to setting the variable to True, the other to
setting the variable to False. Thus, a stabber travers-
ing the True or the False path of a gadget stabs at
least 6 segments more than any other stabber.
We fit the variable gadget into a circular arc by

putting the two non-middle stack of points on the arc.
The middle stack of points and the stack of segments
lie inside the circle. Each variable gadget is fit into
an arc of 1/(4n) of a unit circle. The variable gadgets
are placed next to each other on an arc of one quarter
of a unit circle. We call this arc the variable arc.

Clause gadgets. Each clause gadget consists of 4
segments and 8 points. The points are partitioned
into two sets of equal size. The segments and the
points of a set are stacked on top of each other. The
stacks are arranged in the same way as in the hard-
ness proof for bends; each clause gadget is fit into an
arc by putting the stacks of points on the arc and the
stack of segments lies inside the circle. Each clause
gadget is fit into an arc of 1/(4m) of a unit circle. The
clause gadgets are placed next to each other on an arc
of one quarter of a unit circle. We call this the clause
arc. The clause arc is placed next to the variable arc.
Both arcs together occupy one half of a unit circle.

59

29th European Workshop on Computational Geometry, 2013

Connector segments. We now place 3m connector
segments, connecting a variable gadget to a clause
gadget whenever the variable appears in the clause.
The placement of the endpoints of the connector seg-
ments within the variable gadgets is as follows: Sup-
pose the variable appears unnegated in the clause.
Then the connector segment touches the True path of
the gadget and it does not intersect the False path.
If the variable appears negated in the clause the seg-
ment touches the False path and not the True path.
The placement of the endpoints of the connector seg-
ments within the clause gadgets is as follows: We have
to ensure that a convex stabber can stab any two of
these connector segments in each clause gadget, but
not all three. Fig. 7 shows the placement of the seg-
ments endpoints and the three possible ways to tra-
verse the gadget. It can be easily checked that any
two of these segments are stabbed by one of the three
possible ways. All other possibilities to traverse the
gadget stab less than two of the connector segments.
Hence there is no way to stab all three connector seg-
ments within the clause gadget.

C

x1

x2

x3

Figure 7: Example for a clause C = x1 _ x2 _ x3.

Observe that there exists a convex stabber that
stabs all segments of the variable and clause gadgets
and at least 2 out of the 3 connector segments of each
clause gadget. Thus, there always exists a stabber
that stabs at least 24n+ 14m segments.

Lemma 2 There is a convex stabber stabbing 24n+
14m+k segments if and only if there is an assignment

satisfying k clauses.

Proof. If there is an assignment that satisfies k

clauses, the stabber traverses the variable gadgets ac-
cording to the assignment. In each satisfied clause
at least one of the connectors is already stabbed,
hence the stabber stabs the other two connector seg-
ments. Thus, it stabs 3 connector segments for each
of the k satisfied clauses and 2 connector segments for
each of the (m � k) not satisfied clauses and in total
24n+12m+3k+2(m�k) = 24n+14m+k segments.
On the other hand, if there is a stabber stabbing

24n+14m+ k segments, the stabber is forced to tra-
verse the gadgets in the right order meaning it either
takes the True or False path at each variable gadget
and stabs at least two connector segments at each
clause gadget. Any stabber traversing the gadgets in

any other way stabs less than 24n + 14m segments.
Thus, a stabber stabs already 24n+14m segments by
traversing the gadgets in the right order and the k ad-
ditional segments have to be stabbed in the variable
gadgets. Hence, we set the variables according to the
stabber traversing these gadgets and so the formula
has k satisfied clauses. ⇤

Theorem 3 Let L be a set of line segments in the

plane. It is APX-hard to compute a convex stabber

that stabs the maximum number of segments of L.

Proof. We use a PTAS-reduction from MAX-
E3SAT(5). Let n be the number of variables andm be
the number of clauses. We reduce the problem to the
convex stabber problem as explained before. Let k be
the maximum number of satisfied clauses. Since there
always exists an assignment satisfying at least 7/8 of
the clauses, we conclude that k � 7/8m. Assume
there exists a polynomial-time algorithm for the max-
imum convex stabber problem that returns a solution
that is at least (1� ✏) times the value of the optimal
solution. Then we can approximate MAX-E3SAT(5)
by subtracting 24n+ 14m (note that 3m = 5n):

(1� ✏)(24n+ 14m+ k)� 24n� 14m

= k � ✏k � 142/5m✏ k � ✏k � 1136/35✏k

 (1� ✏

0)k

⇤

Since there exists a PTAS for planar MAX-SAT [4],
we cannot use these ideas to show APX-hardness for
a set of disjoint bends.

Acknowledgment

I thank Esther M. Arkin and Joseph S. B. Mitchell
for pointing out the convex stabber problem for dis-
joint objects and Wolfgang Mulzer for mentioning the
optimization problem.

References

[1] E. M. Arkin, C. Dieckmann, C. Knauer, J. S. B.
Mitchell, V. Polishchuk, L. Schlipf, and S. Yang. Con-
vex transversals. In WADS, pages 49–60, 2011.

[2] M. de Berg and A. Khosravi. Optimal binary space
partitions in the plane. In COCOON, pages 216–225,
2010.

[3] U. Feige. A threshold of ln n for approximating set
cover. J. ACM, 45(4):634–652, 1998.

[4] S. Khanna and R. Motwani. Towards a syntactic char-
acterization of PTAS. In STOC, pages 329–337, 1996.

[5] A. Tamir. Problem 4-2 (New York University, Dept.
of Statistics and Operations Research), Problems Pre-
sented at the Fourth NYU Computational Geometry
Day (3/13/87).

60

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Unions of Onions

Maarten Lö✏er⇤ Wolfgang Mulzer†

Abstract

Let D be a set of n pairwise disjoint unit disks in the
plane. We describe how to build a data structure for
D so that for any point set P containing exactly one
point from each disk, we can quickly find the onion
decomposition (convex layers) of P .
Our data structure can be built in O(n logn) ex-

pected time and has linear size. Given P , we can find
its onion decomposition in O(n log k) time, where k is
the number of layers. We also provide a lower bound
showing that the running time must depend on k.
Our solution is based on a recursive space decom-

position, combined with a fast algorithm to compute
the union of two disjoint onion decompositions.

1 Introduction

Let P be a planar n-point set. Take the convex hull
of P and remove it; repeat until P becomes empty.
This process is called onion peeling, and the result-
ing decomposition of P into convex polygons is the
onion decomposition, or onion for short, of P . It can
be computed in O(n logn) time [4]. Onions provide
a natural, more robust, generalization of the convex
hull, and they have applications in pattern recogni-
tion, statistics, and planar halfspace range search-
ing [5, 9].
Recently, a new paradigm has emerged for modeling

data imprecision. Suppose we need to compute some
interesting property of a planar point set. Suppose
further that we have some advance knowledge about
the possible locations of the points, e.g., from an im-
precise sensor measurement. We would like to pre-
process this information, so that once the precise in-
puts are available, we can obtain our structure faster.
Many problems have been considered in this model,
e.g., point set triangulation, Voronoi diagrams, and
convex hulls [2, 6–8, 11, 12]. We will study the com-
plexity of computing onions in this framework.

1.1 Results

We begin by showing that the union of two disjoint
onions can be computed in O(n+k2 logn) time, where

⇤Universiteit Utrecht, m.loffler@uu.nl. Funded by Nether-
lands Organisation for Scientific Research (NWO) grant
639.021.123.

†Freie Universität Berlin, mulzer@inf.fu-berlin.de. Sup-
ported in part by DFG project MU/3501/1.

(a) (b)

Figure 1: (a) Two disjoint onions. (b) Their union.

k is the number of layers in the resulting onion.
We apply this algorithm to obtain an e�cient solu-

tion to the onion preprocessing problem mentioned in
the introduction. Given n pairwise disjoint unit disks
that model an imprecise point set, we build a data
structure of size O(n) such that the onion decomposi-
tion of an instance can be retrieved in O(n log k) time,
where k is the number of layers in the resulting onion.
The expected preprocessing time is O(n log n).
We also show that without paramerising by k, it is

not possible to speed up the computation of the onion
decomposition: in the worst case, any algorithm can
be forced to take ⌦(n log n) time on some instances.

2 Preliminaries and Definitions

Let P be a set of n points in R2. The onion de-

composition, or onion, of P , is the sequence (P) of
pairwise disjoint convex polygons with vertices from
P , constructed recursively as follows: if P 6= ;, we set
(P) := {ch(P)} [(P \ ch(P)), where ch(P) is the

convex hull of P ; if P = ;, then (P) := ; [4]. An
element of (P) is called a layer of P .
Let D be a set of disjoint unit disks in R2. We say

a point set P is a sample from D if every disk in D
contains exactly one point from P . We write log for
the logarithm with base 2.

3 The Algorithm

In the following sections, we will describe the individ-
ual pieces required for our result.

3.1 Unions of Onions

Suppose we have two point sets P and Q, together
with their onions. We show how to find (P [Q)

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

61

29th European Workshop on Computational Geometry, 2013

(a) (b)

Figure 2: (a) A half-eaten onion; (b) the restored onion.

quickly, given that (P) and (Q) are disjoint. Delet-
ing points can only decrease the number of layers, so:

Observation 1 Let P,Q ✓ R2

. Then (P) and

(Q) cannot have more layers than (P [Q). ⇤

The following lemma constitutes the main ingredi-
ent of our onion-union algorithm. By a convex chain,
we mean any connected subset of a convex closed
curve.

Lemma 1 Let A and B be two non-crossing convex

chains. We can find ch(A [B) in O(logn) time.

Proof. Since A and B do not cross, the pieces of A
and B that appear on ch(A[B) are both connected:
otherwise, ch(A [B) would contain four points be-
longing to A, B, A, and B, in that order. However,
the points on Amust be connected inside ch(A[B); as
do the points on B. Thus, the chains A and B cross,
which is impossible. Since A and B are convex chains,
we can compute ch(A), ch(B) in O(logn) time. Fur-
thermore, since A and B are disjoint, we can also, in
O(logn) time, make sure that ch(A) \ ch(B) = ;, by
removing parts from A or B, if necessary. Now we can
find the bitangents of ch(A) and ch(B) in logarithmic
time [10]. ⇤

Lemma 2 Suppose (P) has k layers. Let A be the

outer layer of (P), and p, q be two vertices of A. Let

A
1

be the points on A between p and q, going counter-

clockwise. We can find (P \A
1

) in O(k logn) time.

Proof. The points p and q partition A into two
pieces, A

1

and A
2

. Let B be the second layer of
(P). The outer layer of (P \ A

1

) is the convex
hull of P \ A

1

, i.e., the convex hull of A
2

and B.
By Lemma 1, we can find it in O(logn) time. Let
p0, q0 2 P be the points on B where the outer layer
of (P \ A

1

) connects. We remove the part between
p0 and q0from B, and use recursion to compute the
remaining layers of (P \A

1

) in O((k�1) logn) time;
see Figure 2. ⇤

We conclude with the main theorem of this section:

Figure 3: A space decomposition tree for 21 unit disks.

Theorem 3 Let P and Q be two planar point sets of

total size n. Suppose that (P) and (Q) are disjoint.
We can find the onion (P [Q) in O(k2 log n) time,

where k is the resulting number of layers.

Proof. By Observation 1, (P) and (Q) each have
at most k layers. We use Lemma 1 to find ch(P [Q)
in O(log n) time. By Lemma 2, the remainders of
(P) and (Q) can be restored to proper onions in

O(k log n) time. The result follows by induction. ⇤

3.2 Space Decomposition Trees

We now describe how to preprocess the disks in D for
fast divide-and-conquer. A space decomposition tree

T is a rooted binary tree where each node v is associ-
ated with a planar region Rv. The root corresponds
to all of R2; for each leaf v of T , the region Rv inter-
sects at most one disk in D. Furthermore, each inner
node v in T is associated with a directed line `v, so
that if u is the left child and w the right child of v,
then Ru := Rv \ `+v and Rw := Rv \ `�v . Here, `+v is
the halfplane to the left of `v and `�v the halfplane to
the right of `v.
We would like to construct a space decomposition

tree for D whose height is as low as possible. For this,
we use the following lemma, which is a constructive
version of a result by Alon et al. [1, Theorem 1.2].

Lemma 4 There exists a constant c � 0, so that for

any set D of m congruent nonoverlapping disks in the

plane, there is a line ` with at least m/2� c
p
m logm

disks completely to each side of it. We can find ` in

O(m) expected time.

Proof. Our proof closely follows Alon et al. [1, Sec-
tion 2]. Set r := b

p
m/ logmc. Pick a random inte-

ger z between 1 and r/2. Find a line ` whose angle
with the x-axis is (z/r)⇡ and that has bm/2c centers
of disks in D on each side. Given z, we can find `
in O(m) time by a median computation. The proof
by Alon et al. shows that with probability at least
1/2 over the choice of z, the line ` intersects at most

62

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

c
p
m logm disks in D, for some constant c � 0. Thus,

we need two tries in expectation to find a good line `.
The expected total running time is O(m). ⇤

To obtain our space decomposition tree T , we apply
Lemma 4 recursively until the region for each node
intersects at most one disk in D. The next lemma
helps us analyze the complexity of T .

Lemma 5 Let T be a space decomposition tree ob-

tained by recursive application of Lemma 4. For

k = 0, . . . , logn, let dk be the maximum number of

disks that intersect the region for a node in T of depth

k. Then log dk logn� k + O(1). Furthermore, the

tree T has O(n) nodes and height logn+O(1).

Proof. We have d
0

= n. Furthermore, by Lemma 4,

dk/2 dk+1

 dk/2 + c
p

dk log dk.

Define

�k :=
k�1X

i=0

⇣2i

n

⌘
1/3

.

Note that �k 4, for k = 0, . . . , logn. We assume
that n � 212(3c+2)9, and we prove by induction that
log dk logn � k + �k, for k = 0, . . . , logn � 12 �
9 log(3c + 2). For k = 0, this is clear, since �

0

= 0.
Now note that for every k � 0, we have dk n and
dk � n/2k. Thus,

log dk+1

 log(dk/2 + c
p
dk log dk)

= log(dk/2) + log
⇣
1 + 2c

r
log dk
dk

⌘

 log dk � 1 + log
⇣
1 + 2c

r
2k log dk

n

⌘

 logn� (k + 1) + �k +
2c

ln 2

r
2k(logn� k + 4)

n

= logn� (k + 1) + �k+1

,

since for k logn� 12� 9 log(3c+ 2), we have

2c

ln 2

r
2k(logn� k + 4)

n

⇣2k

n

⌘
1/3

.

It follows that after k⇤ := logn� 12� 9 log(3c+2) it-
erations, there are at most 212+9 log(3c+2)+�k⇤ = O(1)
disks per region left. Hence, T has height log n+O(1)
and O(n) nodes. ⇤
By Lemma 5, T induces a planar subdivision GT

with O(n) faces. We add a large enough bounding box
to GT and triangulate the resulting graph. Since GT

is planar, the triangulation has complexity O(n) and
can be computed in the same time (no need for heavy
machinery—all faces of GT are convex). With each
disk in D, we store the list of triangles that intersect it
(recall that each triangle intersects at most one disk).
This again takes O(n) time and space. We conclude
with the main theorem of this section:

Theorem 6 Let D be a set of n disjoint unit disks

in R2

. In O(n log n) expected time, we can construct

a space partition tree T for D with O(n) nodes and

height log n + O(1). Furthermore, for each disk D 2
D, we have a list of triangles TD that cover the leaf

regions of T that intersect D. ⇤

3.3 Processing a Precise Input

Let P be a sample from D. Suppose first that we
know k, the number of layers in (P). For each input
point pi, let Di 2 D be the corresponding disk. We
check all triangles in TDi , until we find the one that
contains pi. Since there are O(n) triangles, this takes
O(n) time. Afterwards, we know for each point in P
the leaf of T that contains it.
The upper tree Tu of T consists of all nodes with

depth at most log n � 2 log k. Each leaf of Tu is the
root of a subtree of T of height at most 2 log k+O(1).
Hence it corresponds to a subset of P with O(k2)
points. For each such subset, we use Chazelle’s algo-
rithm [4] to find its onion decomposition inO(k2 log k)
time. This takes O(n log k) total time. Now, in order
to obtain (P), we perform a postorder traversal of
Tu, using Theorem 3 in each node to unite the onions
of its children.
For a node of depth i, this takes time O(k2 log di) =

O(k2(log n�i+1)), by Lemma 5. Thus, the total work
is proportional to

logn�2 log kX

i=0

2ik2(log n� i+ 1)

= k2
n

k2

log

n
k2X

i=0

2 log k + i+ 1

2i

= O(n log k).

So far, we have assumed that k is given. Using
standard exponential search, this requirement can
be removed. More precisely, let ki = 22

i

, for i =
1, . . . , log log n. Run the algorithm for k

0

, k
1

, If
the algorithm succeeds, report the result. If not, abort
as soon as it turns out that an intermediate onion has
more than ki layers and try ki+1

. The total time is

log log kX

i=0

O(n2i) = O(n log k),

as desired. This finally proves our main result.

Theorem 7 Let D be a set of n disjoint unit disks in

R2

. We can build a data structure that stores D, of

size O(n), in O(n log n) expected time, such that given

a sample P of D, we can compute (P) in O(n log k)
time, where k is the number of layers in (P). ⇤

Remark. Using the same approach, without the ex-
ponential search, we can also compute the outermost

63

29th European Workshop on Computational Geometry, 2013

`+
5

`�
5

Figure 4: The lower bound construction consists of n/3 unit disks centered on a horizontal line (5 in the figure),
and two groups of n/3 points su�ciently far to the left and to the right of the disks. Distances not to scale.

k layers of an onion with arbitrarily many layers in
O(n log k) time, for any k. In order to achieve this,
we simply abort the union algorithm whenever k lay-
ers have been found, and note that the points in P
not on the outermost k layers of (P) will never be
part of the outermost k layers of (Q) for any Q � P .

4 Lower Bounds

We now show that the query time must depend on k
(i.e. for onions with many layers, we cannot hope to
speed up the computation).
Let n be a multiple of 3, and consider the lines

`�n : y = �1/2� 6/n� x/n2;

`+n : y = �1/2� 6/n+ x/n2.

Let Dn consist of n/3 disks centered on the x-axis at
x-coordinates between �n/6 and n/6; a group of n/3
disks centered on `�n at x-coordinates between n2 and
n2+n/3; and a symmetric group of n/3 disks centered
on `+n at x-coordinates between �n2 � n/3 and �n2.
Figure 4 shows D

15

.

Lemma 8 Let ⇡ be a permutation on n/3 elements.

There is a sample P of Dn such that pi (the point for

the ith disk from the left in the main group) lies on

layer ⇡(i) of (P).

Proof. Take P as the n/3 centers of the disks in
D on `�n , the n/3 centers of the disks in D on `+n ,
and for each disk Di 2 D on the x-axis the point
pi = (i� n/6,⇡(i) · 3/n� 1/2). By construction, the
outermost layer of (P) contains at least the leftmost
point on `+n , the rightmost point on `�n , and the high-
est point (with y-coordinate 1/2). However, it does
not contain any more points: the line segments con-
necting these three points have slope at most 2/n2.
The second highest point lies 3/n lower, and at most
n/3 further to the left or the right. The lemma follows
by induction. ⇤

There are (n/3)! = 2⇥(n logn) permutations ⇡; so
any corresponding decision tree has height ⌦(n logn).

Theorem 9 For any n, there is a set D of n disjoint

unit disks in R2

, such that any decision-based algo-

rithm to compute (P) for P a sample of D, based

only on prior knowledge of D, takes ⌦(n logn) time

in the worst case.

We expect that our lower bound can be strength-
ened to ⌦(n log k) and that it also applies to random-
ized algorithms. Details will follow in the full version.

5 Conclusion and Further Work

It would be interesting how much the parameter k
can vary for a set of imprecise bounds and how to es-
timate k e�ciently. Further work includes considering
more general regions, such as overlapping disks, disks
of di↵erent sizes, or fat regions. Furthermore, three-
dimensional onions are not well understood. The best
general algorithm needs O(n log6 n) expected time [3],
giving more room for improvement in our setting.

References

[1] N. Alon, M. Katchalski, and W. Pulleyblank. Cut-
ting disjoint disks by straight lines. DCG, 4:239–243,
1989.

[2] K. Buchin, M. Lö✏er, P. Morin, and W. Mulzer.
Preprocessing imprecise points for Delaunay trian-
gulation: simplified and extended. Algorithmica,
61(3):675–693, 2011.

[3] T. M. Chan. A dynamic data structure for 3-D con-
vex hulls and 2-D nearest neighbor queries. J. ACM,
57(3):Art. 16, 15 pp., 2010.

[4] B. Chazelle. On the convex layers of a planar set.
IEEE Trans. Inform. Theory, 31(4):509–517, 1985.

[5] B. Chazelle, L. J. Guibas, and D. T. Lee. The power
of geometric duality. BIT, 25(1):76–90, 1985.

[6] O. Devillers. Delaunay triangulation of imprecise
points: preprocess and actually get a fast query time.
J. Comput. Geom., 2(1):30–45, 2011.

[7] E. Ezra and W. Mulzer. Convex hull of points lying
on lines in o(n log n) time after preprocessing. Com-

put. Geom., 46(4):417–434, 2013.

[8] M. Held and J. S. B. Mitchell. Triangulating input-
constrained planar point sets. IPL, 109:54–56, 2008.

[9] P. J. Huber. Robust statistics: A review. Ann. Math.

Statist., 43:1041–1067, 1972.

[10] D. Kirkpatrick and J. Snoeyink. Computing com-
mon tangents without a separating line. In Proc. 4th

WADS, pages 183–193, 1995.

[11] M. van Kreveld, M. Lö✏er, and J. S. B. Mitchell.
Preprocessing imprecise points and splitting triangu-
lations. SIAM J. Comput., 39(7):2990–3000, 2010.

[12] M. Lö✏er and J. Snoeyink. Delaunay triangulation
of imprecise points in linear time after preprocessing.
Comput. Geom., 43(3):234–242, 2010.

64

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Finding a largest empty convex subset in space is W[1]-hard

Panos Giannopoulos∗. † Christian Knauer∗

Abstract

We consider the following problem: Given a point set
in space find a largest subset that is in convex position
and whose convex hull is empty. We show that the
(decision version of the) problem is W[1]-hard.

1 Introduction

Problem definition. Let P be a set of n points
in R3 and k ∈ N. In the Largest-Empty-Convex-

Subset problem we want to decide whether there is a
set Q ⊂ P of k points in convex position whose convex
hull does not contain any other point of P .

1.1 Results

We show that Largest-Empty-Convex-Subset is
W[1]-hard with respect to the solution size k, under
the extra condition that the solution set is strictly

convex, i.e., the interior of the convex hull of any of
its subsets is empty. This means that (under standard
complexity-theoretic assumptions) the problem is not
fixed-parameter tractable with respect to k, i.e., it
does not admit an O(f(k) ⋅nc)-time algorithm for any
computable function f and any constant c. See [4] for
basic notions of parameterized complexity theory.

1.2 Related work

Largest-Empty-Convex-Subset has been shown
to be NP-hard in last year’s EuroCG [6]. (In that
paper, NP-hardness has been shown also for the
more general version where the emptiness condition
is dropped.) Several interesting questions were also
raised such as whether the problem is fixed-parameter
tractable with respect to the solution size and whether
it admits a polynomial o((logn)�n)-approximation al-
gorithm. Here, we give a negative answer to the first
question. Note that in the plane, the problem is solv-
able in polynomial time; see, for example, [1], [2].
From a combinatorial point of view, there is a long

history of results starting with the famous Erdös-
Szekeres theorem [3], which states that for every k
there is a number nk such that every planar set of nk

∗
Institut für Informatik, Universität Bayreuth, Universi-

tätsstraße, 30, D-95447 Bayreuth, Germany, {christian.knauer,
panos.giannopoulos}@uni-bayreuth.de

†
Research supported by the German Science Foundation

(DFG) under grant Kn 591/3-1.

1

2

k

1 2 k

Figure 1: High level schematic of the construction.
The zoomed-in area shows points shared among gad-
gets on their common boundaries and some pairs of
points inside each gadget that take part in a choice of
an empty convex set, (partially) marked with dashed
segments.

points in general position contains k points in convex
position. Horton [5] showed that this is not true when
the emptiness condition is imposed: There are arbi-
trarily large sets that do not contain empty 7-gons.
Results of this type exist also for higher dimensions;
see [7].

2 Reduction

We show that Largest-Empty-Convex-Subset is
W[1]-hard by an fpt-reduction from the W[1]-hard k-
Clique problem [4]: Given a graph G([n],E) and
k ∈ N, decide whether G contains a clique of size k.

2.1 High level description

We begin with a high-level description of the construc-
tion, see Fig. 1. Initially, the construction will lie
on the plane; later on, it will be lifted to the elliptic
paraboloid with a (more or less) standard transform.
The construction is organized as the upper diagonal
part of a grid with k rows and k columns. The ith row

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

65

29th European Workshop on Computational Geometry, 2013

and column represent a choice for the ith vertex of a
clique in G and are made of 4i− 2 and 4(k − i+ 1)− 2
gadgets respectively. There are n choices and each
choice is represented by a collection of empty convex
subsets of points – one subset with a constant number
of points from each gadget.
Each gadget consists of ⇥(n) points within a rect-

angular region, which are organized in sets (of pairs)
of collinear points. There is a constant number of
such sets and, since we are looking for strictly con-
vex subsets, only one pair of consecutive points per
set can be chosen at any time. Certain choices are
rendered invalid by additional points. Neighboring
gadgets share the points on their common rectangle
edge, see the zoomed-in area in Fig 1. Through these
common points, the choice of subsets is made con-
sistent among the gadgets. In particular, the choice
in the ith row is made consistent with the choice in
the ith column via the ‘diagonal’, �l gadget in their
intersection corner; consistency here means that they
both correspond to the same choice of a vertex of G.
On the other hand, in the intersection of the ith col-
umn with the jth row, for every j ≥ i + 1, there is
a ‘cross’, ‘ gadget, which ensures that the choice in
the column is propagated independently of the choice
in the row and vice versa. Finally, the jth column is
‘connected’ to the ith row, for every j + 1 ≤ i ≤ k, by
three additional gadgets. One of them, the ‘star’, f

gadget, encodes graph G, i.e., it allows only for com-
binations of choices (in the column and the row) that
are consistent with the edges in G.
Locally, every valid subset from a gadget consists of

points that are in strictly convex position and whose
convex hull is empty. By lifting the whole construc-
tion to the paraboloid appropriately, we make sure
that this property is true globally, i.e., for any set con-
structed from the local choices in a consistant manner.
In total, the construction consists of a set P of

⇥(k2n2) points in R3, such that there exists a set
Q ⊂ P with the desired property and �Q� = f(k), for
some function f(k) ∈ ⇥(k2), if and only if G has a
clique of size k.

2.2 Gadgets

There are five di↵erent types of gadgets, and each type
has a specific function, which is explained below.

a gadget. This gadget propagates a choice of pairs
of points horizontally, see Fig. 2. It has n pairs of
points Li, Ri on the left and right side of its rectan-
gle respectively, which correspond to the vertices of
G; pairs corresponding to the same vertex are aligned
horizontally. It also has n(n− 1)+ 2 points inside the
rectangle on a vertical line ` as follows. For every
two pairs Li and Rj , with i ≠ j, a point is placed
such that it is inside the parallelogram LiRj formed
by the pairs but outside the parallelogram formed by

1 1

2 2

n n

`

Figure 2: The a gadget. Dashed parallelograms rep-
resent choices cancelled by points on `. Parallelo-
grams in full are not cancelled. There are n choices
of convex empty 6-gons.

any other two pairs. E↵ectively, this point cancels a
choice of pairs that correspond to di↵erent vertices of
G. One point is placed above L1R1 on ` and close
to its boundary; similarly one point is placed below
LnRn. Due to the strict convexity condition, at most
one pair per rectangle side and at most one pair on `
can be chosen. Thus, there are nmaximum size empty
convex subsets. Each subset contains six points and
is formed by three pairs: Li, Ri, for some i, and the
pair of points on ` that are closest to the parallelogram
LiRi; this latter pair is formed by the point that can-
cels LiRi−1 and the point that cancels LiRi+1. The a

gadget is just a 90○-rotated copy of the a gadget.

�
l gadget. This gadget has basically the same struc-
ture as the a gadget but propagates information di-
agonally. For completeness, it is shown in Fig 3.

n

n

2

2

1

1`

Figure 3: The �l gadget.

66

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

n

n

2

2

1

1

`

n

2

1

`0

Figure 4: The j gadget. There are n choices of convex
empty 10-gons. An empty convex 6-gon, as described
in the text, is shown only for i = 2.

j gadget. This gadget propagates information both
horizontally and diagonally, see Fig. 4. It has n pairs
of points Li, Ri, and Bi, on the left, right, and bottom
side of its rectangle respectively. As before, an ith pair
corresponds to the ith vertex of G. There will be only
n valid choices and three pairs per choice, namely, the
ith pair from each side. This is enforced by the strict
convexity condition and by placing, for every i, four
additional points on two vertical lines ` and `′ inside
the rectangle. These points are placed outside the
convex 6-gon LiRiBi that is formed by the points in
the corresponding pairs. (The points are also outside
every other 6-gon for j ≠ i.) See the example for i = 2
in Fig. 4. More specifically, looking at the gadget
from top to bottom and from left to right, a point is
placed on the intersection of ` and the line through
the second point of Li and the second point of Bi−1;
for the case of i = 1, the point is placed just below
the 6-gon. A second point is placed on ` just above
the 6-gon. At the right side, two points are placed on
`′ as follows. One point is placed on the intersection
of `′ and the line through the second point of Li and
the first point of Ri+1; for i = 1, the point is placed
just above the 6-gon. A second point is placed on
the intersection of `′ and the line through the second
point of Ri and the first point of Bi+1; for i = n, the
point is placed just below the 6-gon.

There are n maximum size empty convex subsets
with 10 points each. A subset is formed by the points
in the pairs Li, Ri, Bi, and the four points on ` and
`′ that are closest to the corresponding 6-gon.

‘ gadget. This gadget consists of eight subgadgets,
which are very similar to the ones we have already
described above. See Fig. 5. It can be thought of as
having two inputs (at the upper and lower left corner)
and two outputs (at the upper and lower right corner).

ith row

ith row

jth column

jth column

Figure 5: The ‘ gadget: a high level schematic.

It propagates the inputs (choices) independently from
each other, one horizontally and one vertically. The
input subgadgets

o

and oare respectively connected
(through their left and bottom rectangle sides) to the
a and

a

gadgets of the ith row and jth column of the
global construction (Fig. 1). The output subgadgets

o

and o are similarly connected to a a and

a

gadget.
Note that the subgadgets i and h in the middle of
the ‘ gadget (Fig. 5) as well as the subgadgets � l and�l

are not connected directly to any row or column
of the global construction. Roughly speaking, the ‘

gadget has the following function: it multiplexes the
two inputs, then it mirrors them (vertically and hori-
zontally), and then demultiplexes them.

1

2

n

1, 1

1, 2

1, n

2, 1

2, 2

2, n

n, 1

n, 2

n, n

`

Figure 6: The

o

subgadget.

The

o

subgadget is shown in Fig. 6. It is similar
to the previously described a gadget in Fig. 2. It has
again n pairs of points Li on the left side. The dif-
ference now is that there are n2 pairs of points Ri,j ,
1 ≤ i, j ≤ n, on the right side of the gadget. The second
index j basically encodes the choice coming from the

67

29th European Workshop on Computational Geometry, 2013

input subgadget oat the lower left corner, which is
communicated through the i and � l subgadgets inbe-
tween. Only the n2 pairs Li and Ri,j constitute valid
choices. The rest are cancelled by additional points
as usually. Together with pairs of canceling points
(which are also chosen as before) there are exactly n2

empty convex 6-gons, and these are of maximum size.
The input osubgadget propagates information ver-

tically and is defined similarly to the

o

subgadget. It
has n pairs of points Bj on the bottom side and n2

pairs Tij on the top side. The di↵erence now is that
only the n2 pairs Bj and Ti,j are valid.
The output subgadgets

o

and o are just mirrored
images of their input counterparts. The � l and �l

sub-
gadgets are constructed in the same way as the �l
gadget in Fig. 3 but have n2 valid 6-gons, while the
i and h subgadgets are constructed in the same way
as the j gadget in Fig. 4 and have n2 valid 10-gons.

f gadget. This gadget encodes the edges of the input
graph G. See Fig. 7. It is similar to gadget a (Fig. 2)
and allows only combinations of pairs that correspond
to edges of the graph: for every non-edge ij of G, a
point is placed inside the parallelogram LiRj .

1 1

2 2

n n

`

Figure 7: The f gadget. Several examples of can-
celled choices (in dashed) and of empty convex 6-gons
(in bold) are shown.

2.3 Lifting to R3

Every corner of a gadget rectangle is lifted to the
paraboloid with the map (x, y)� (x, y, x2 + y2). The
images of the corners of each rectangle lie on one dis-
tinct plane (since the corners lie on a circle). The
points in a gadget are projected orthogonally on the
corresponding plane. This is an a�ne map and thus
colinearity and convexity within a gadget is preserved.
Each gadget now lies on a distinct facet (a parallelo-
gram) of a convex polyhedron.

2.4 Correctness

The total number of (sub)gadgets of each type to-
gether with the size of a largest valid (i.e., empty and
convex) subset in a gadget of the type is

a : k2, 6;

a

: k(3k − 1)�2, 6;�
l, � l, �l : k(3k − 1)�2, 6;
j, i, h : 2k(k − 1), 10;

o

,

o

, o, o: 2k(k − 1), 6;
f : k(k − 1)�2, 6.

A global valid subset is formed by locally choosing
one valid subset from every gadget in a consistent
manner. When a largest locally possible subset (as
given above) can be chosen, the global subset has size
k(35k − 23). Such a global subset corresponds to a
k-size clique of G.
For suppose there exists a global valid subset of

size k(35k−23). Then, a largest locally possible valid
subset must be chosen from every gadget. Consider
such a choice of subsets and let vi be the vertex of
G corresponding to the choice from the leftmost gad-
get of the ith grid row. By construction, the subset
corresponding to the same vertex vi must be chosen
from every other gadget in this row as well as every
gadget in the ith column. Consider the jth row, for
some j ≠ i. Through the f gadget that connects the
ith column to the jth row, when i + 1 ≤ j, or the jth
column to the ith row, when j < i, the subset chosen
from the jth row must correspond to a vertex vj such
that vivj is an edge of G. Hence {v1, . . . vk} is a clique
in G. The converse is obvious.

Theorem 1 Largest-Empty-Convex-Subset is

W[1]-hard, under the condition of strict convexity.

References

[1] D. Avis and D. Rappaport. Computing the largest
empty convex subset of a set of points. In Proc. of

SCG ’85, 1985. ACM.

[2] D. Dobkin, H. Edelsbrunner, and M. Overmars. Sear-
ching for empty convex polygons. Algorithmica 5,
1990.

[3] P. Erdös and G. Szekeres. A combinatorial problem in
geometry. Compositio Math. 2, 1935.

[4] J. Flum and M. Grohe. Parameterized Complex-

ity Theory. Texts in Theoretical Computer Science.
Springer, 2006.

[5] J. D. Horton. Sets with no empty convex 7-gons. C.

Math. Bull. 26, 1983.

[6] C. Knauer and D. Werner. Erdös-szekeres is NP-hard
in 3 dimensions - and what now? In Abstracts of 28th

EuroCG, pages 61–64, 2012.

[7] W. Morris and V. Soltan. The Erdös-Szekeres problem
on points in convex position – a survey. Bull. Amer.

Math. Soc. 37, 2000.

68

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

The Degree of Convexity

Günter Rote⇤

Abstract

We measure the degree of convexity of a planar region
by the probability that two randomly chosen points
see each other inside the polygon. We show that, for
a polygonal region with n edges, this measure can
be evaluated in polynomial time as a sum of O(n9)
closed-form expressions.

1 Introduction

A set P is convex if, for every two points u,w 2 P , the
whole segment uw belongs to P . If P is not convex,
this conclusion will not always be true, and we can get
a quantity for the “degree” or “measure” of convexity
if we take the probability with which it is fulfilled, for
two points u,w selected uniformly at random from P .

More formally, let |P | denote the area of P . Then
the degree of convexity C(P) is defined as the normal-
ized double area integral

C(P) :=
1

|P |2

Z

u2P

Z

w2P
[uw ⇢ P] dwdu, (1)

using the bracket notation for the characteristic func-
tion of a logical expression: [uw ⇢ P] equals 1 if the
condition uw ⇢ P holds and 0 otherwise.

2 Related Work

Stern [3] has been the first to consider the measure
(1), as a simple alternative to another measure he pro-
posed, the so-called “polygonal entropy”. He evalu-
ated C(P) by Monte Carlo estimation. Stern observed
that C(P) can equally be expressed as the normalized
average visible area, i.e., the expected area of the vis-
ibility polygon of a random point, divided by |P |.

Various other definitions have been proposed to
measure “convexity”, primarily in the pattern recog-
nition community, in addition to measuring “circular-
ity”, “squareness”, “rectangularity” “elongation” etc.
In principle, one can take any quantity that is

bounded by 1, for which equality holds (among com-
pact sets) for convex sets only. Some very primitive
measures that count the reflex angles of a polygon,

⇤Freie Universität Berlin, Institut für Informatik, Taku-
straße 9, 14195 Berlin, Germany. rote@inf.fu-berlin.de.
Supported by the ESF programme EuroGIGA-VORONOI,
Deutsche Forschungsgemeinschaft (DFG): RO 2338/5-1.

(or sum them up) fulfill this requirement but they are
not very sensitive to the shape of P .
Žunić and Rosin [4] mention, besides C(P), the area

of P divided by the area of the convex hull. The
complement of this is called the deficit of convexity

in the textbook [2, p. 35] (p. 23 in the 2008 version).
Instead of the area, one can also look at the perimeter.
Boxer [1] considered the index of non-convexity, the

maximum distance of a pocket from the corresponding
convex hull edge, and related measures.

3 Properties of the Degree of Convexity

Most of the following basic properties were already
observed by Stern [3].
Clearly, C(P) is between 0 and 1, and C(P) = 1 if

P is convex. For a compact set P which is the closure
of its interior, C(P) = 1 if and only if P is convex.
C(P) is invariant under a�ne transformations.

4 Partitioning the Region

Let P be a polygonal region with n boundary edges.
Throughout the paper we will assume general posi-
tion, to keep the discussion simple.
An internal bitangent of P with tangency vertices

x and y (x 6= y) is a line segment ab ⇢ P whose
endpoints a and b lie in the interior of P and which
has the two distinct points x and y in common with
the boundary of P , see Fig. 1a. Then x and y are
necessarily reflex vertices.
We extend the rays from x and y towards the end-

points until they hit the boundary of P , see Fig. 1b–
c. We use these extension rays to partition P , as in
Fig. 1e. We don’t include the segment xy.
We also extend the edges of every reflex vertex, in

order to ensure that all cells of resulting partition Z
are convex as shown in Fig. 1f.
Finally, we will compute the integral in (1) sepa-

rately for each pair of cells A,B of Z, and add up the
results

I(A,B) :=

Z

u2A

Z

w2B
[uw ⇢ P] dwdu (2)

Remark: If we would extend the segments between
any two vertices, like in Fig. 1d, we would get the
well-known visibility cell decomposition: a refinement
of Z that corresponds to the combinatorially di↵erent
visibility polygons of all points in P .

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

69

29th European Workshop on Computational Geometry, 2013

x

y

a

b

(a) (b) (c) (d) (e) (f)

P

Figure 1: Partitioning P by extensions of bitangents. (a) A bitangent. (b–c) Some extensions of bitangents,
and (e) the arrangement of all extensions. (d) Not all extensions of visibility edges are used (only bitangents).
(f) The final partition Z.

Definition 1 Consider to disjoint open convex re-

gions A,B ⇢ P . Let V1, V2, . . . , Vk be a set of open

segments (i.e., not containing their starting point),

disjoint from A and B (see Fig. 2).

• We say that visibility between A and B is deter-
mined by the segments V1, V2, . . . if the following

holds: two points u 2 A and w 2 B can see each

other i↵ the segment uw doesn’t intersect any of

the segments V1, V2,. . . . We refer to these seg-

ments as blocking segments.

• We say that a set of blocking segments is mutu-
ally exclusive if no segment uw for u 2 A and

w 2 B can intersect more than one of the block-

ing segments.

If we have mutually exclusive blocking segments,
we can consider them independently from each other
and evaluate the integral (2) as follows

I(A,B) =

Z

u2A

Z

w2B

�
1� [uw \ V1 6= ;]�

� [uw \ V2 6= ;]� · · ·
�
dwdu

= |A| · |B|�
kX

i=1

Z

u2A

Z

w2B

[uw \ Vi 6= ;] dwdu

Lemma 1 Let P be a polygonal region, possibly with

holes. Consider two cells A,B of the partition Z, con-

sidered as open sets. Then there are three possibili-

ties.

1. All points of A see all points of B.

2. No point from the interior of A sees a point from

the interior of B.

3. Visibility between A and B is determined

by some mutually exclusive blocking segments

V1, . . . , Vk.

For the case of a simple polygon, we can have at most
two blocking segments (one blocking from the left and

one from the right, when looking from A towards B).
If P has h holes, there can be at most h additional
blocking segments.

Proof. Suppose that A and B are separated by a
vertical line, as in Fig. 2, so that, for a segment uw
from A to B, it makes sense to speak of “above uw”
or “below uw”.
If u 2 A and w 2 B move, the segment uw will

sometimes be contained in P (we call it a free seg-

ment in this case), and sometimes it will intersect the
boundary of P . (Otherwise, we are in Case 1 or 2 and
we are done.) When a free segment hits the bound-
ary of P , it will do so at a reflex vertex r of P . We
call such a vertex r a blocking corner, and it is a top

blocking corner or a bottom blocking corner, when the
direction into which uw can freely move is above r or
below r. Fig. 2 shows a top blocking corner r. We
can rotate uw around r while maintaining u 2 A and
w 2 B. The extremes of this rotation are segments
where uw becomes tangent to A or B. If, during
this rotation, uw would hit another obstacle vertex r0

before hitting the extreme directions we would have
an extension ray for the bitangent rr0 that would cut
through A and B, a contradiction to the assumption
that A and B are cells of Z. Thus, we can state:
No segment from A to B goes through two blocking

corners.

As a consequence, the blocking corners can be lin-
early ordered from bottom to top: Choose an arbi-
trary free segment through each blocking corner. For
two corners r and r0 with respective segments uw
and u0w0 through them, r lies above u0w0 i↵ r0 lies
below uw. Thus, we get a (consistent) linear order
(cf. Fig. 3a). In this order, top corners and bottom
corners must alternate We create the blocking seg-
ments Vi by matching each top blocking corner with
the bottom blocking corner immediately below it.
If a bottom corner r at the very top remains un-

matched, we attach a su�ciently long upward vertical
segment (or e↵ectively, an infinite ray) to r, as shown
for segment V1 in Fig. 2. Similarly, at the bottom,

70

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

A B

V1

V2

V3

V4

u

w

r

r0

s0

Figure 2: Visibility between two (hypothetical) regions A and B in a polygon with six holes is determined by
the mutually exclusive blocking segments V1, V2, V3, V4.

r r0A B
r

A B

(a) (b)

s

r0

s0

Figure 3: (a) An inconsistent order between block-
ing vertices cannot happen. (b) Replacing a blocking
segment rs by two unbounded blocking rays.

we attach a downward ray to an unmatched bottom
corner (segment V4 in Fig. 2).
The resulting segments determine the visibility be-

tween A and B. ⇤
As mentioned above, in Case 3 the calculation can

be reduced to considering the blocking probability of
single blocking segments: For such a single blocking
segment V = rs, we have to integrate over the point
pairs (u,w) 2 A⇥B for which uw\V 6= ;. This can be
further reduced to two integrations over unbounded
vertical blocking rays rr0 and ss0, as shown in Fig. 3b.
For the integrand, we have

[uw \ V 6= ;] = [uw \ rr0 6= ;] + [uw \ ss0 6= ;]� 1

For an integral of the form
Z

u2A

Z

w2B
[uw \ rr0 6= ;] dwdu

we simply have to test whether uw passes above or
below the point r.

5 A Single Blocking Ray

Let us consider the integral
Z

u2A

Z

w2B
[uw \ V 6= ;] dwdu (3)

L R

(a)

(b)

(c)

VA B

r

Figure 4: Two cells A and B with a single blocking
segment V .

for a single blocking segment V extending from r
downward to infinity, see Fig. 4a. We draw a line from
each vertex through r. These lines decompose the
problem into double wedges between adjacent lines.
Sectors of A and B which are not in the same double-
wedge are blocked by V either completely or not at
all, and their contribution to (3) is easy to compute.
We are left with the situation of regions in two wedges
like in Fig. 4b, where each boundary edge extends be-
tween the two rays of the wedge. On each side, we
can express the region as a di↵erence of two triangles
that involve the apex r, as in Fig. 4c. Doing this on
each side, the evaluation of the integral for a single
double-wedge is reduced to four integrals over trian-
gular regions L and R as in Fig. 4c.

6 The Basic Integral

It is now convenient to revert to a probabilistic in-
terpretation of these integrals. The integral (3), for
A = L and B = R, equals |L| · |R| times the proba-
bility that a random point u 2 L and a random point
w 2 R form a counterclockwise triangle with r. To
evaluate this probability, we make our life easier by
transforming the situation to the standard situation
shown in Fig. 5. First of all, the problem is invariant
under a�ne transformations. So we assume that the

71

29th European Workshop on Computational Geometry, 2013

O =
�0
0

�

y = sx

�a
a

�

��1
�1

�

��1
0

�

�1
0

�

� t
st

�

L

R

u

Figure 5: Transforming the problem to the standard
situation, for which we evaluate the integral.

apex r is at the origin O and the left triangle L is
bounded by the lines of slope 0 and 1 and the line
x = �1. Scaling the right triangle R from the origin
does not change the probability of a positive orienta-
tion for the random triangle uwO. Thus we can scale
R so that the lower corner lies at

�1
0

�
. Then the upper

corner lies on the line y = x of slope 1 at some point�a
a

�
, for a > 0. There is only one free parameter, a.
The area of L is 1/2 and the area of R is a/2. If we

take a random point u 2 L, the slope s of the line uO
is uniformly distributed in [0, 1]. (This follows from
the fact that the probability that the slope is smaller
than s is the area of the shaded region on the left,
divided by 1/2, which equals s.) Thus, the probability
of blocking is the expected value of the region in the
triangle on the right side below the line y = sx of slope
s, when s chosen uniformly at random, divided by the
area a/2 of the whole triangle R. This region, which
is shaded in Fig. 5, is a triangle with vertices O,

�1
0

�
,

and
� t
st

�
, where t can be evaluated as t = a

a+s�as > 0.

The area of this triangle is st
2 = 1

2 ·
as

a+s�as , and hence
the desired probability is

Q(a) :=
1

a

Z 1

s=0

as

a+ s� as
ds =

Z 1

s=0

s

a+ s� as
ds

=
1� a+ a ln a

(1� a)2
(4)

This derivation assumes a 6= 1. For the symmetric
situation (a = 1) we get Q(1) = 1

2 . The formula (4)
is numerically unstable near a = 1. Near a = 1 we
might therefore resort to the power series expansion

Q(a) =
1X

i=0

(1� a)i

(i+ 1)(i+ 2)

= 1
2 + 1�a

6 + (1�a)2

12 + (1�a)3

20 + (1�a)4

30 + · · ·

= 1
2 � ln a

6 + (ln a)3

180 � (ln a)5

5040 + (ln a)7

151200 � · · ·

7 Complexity and Runtime Analysis

Let P have h holes and n boundary edges, and there-
fore at most n vertices. Suppose P has nR reflex
vertices and nB = O(n2

R) interior bitangents. The

partition Z is generated by 2nB + 2nR segments and
hence has complexity nZ = O((nB + nR)2 + n) =
O(n4

R + n) = O(n4). For each of the n2
Z = O(n8)

pairs of regions A,B we must evaluate the integral
I(A,B) and sum up the results. There might be 2+h
blocking segments, which are reduced to 2+2h block-
ing rays, accounting for a factor of O(1 + h). The
decomposition in Fig. 4a incurs an overhead propor-
tional to the complexity of A plus B; in total, this is
still O(n2

Z) = O(n8). Thus, the total number of inte-
grals (3) that we have to compute is O(n2

Z(1 + h)) =
O((nB + nR)4 + n2)(1 + h) = O(n8

R + n2)(1 + h) =
O(n8(1 + h)) = O(n9).
Algorithmically, we can compute the nB bitangents

and extension rays in O(nRn log n) time by a circular
sweep arount each reflex vertex. We can compute the
partition Z in O(nZ log n) time by a plane sweep.

We pick one of the O(nZ) regions A and compute
the visible region from some arbitrary point u 2 A, in
O(n log n) time. This yields all the potential lower
and upper blocking points and their sorted order
around u. For every region B, we can select the block-
ing points that lie between A and B (in the convex
hull of A[B). By processing them in sorted order, we
can identify the blocking segments. This takes O(n)
time per pair A,B.
As mentioned above, the overhead from the decom-

position into wedges (Fig. 4a) does not add up to more
than O(n2

Z) = O(n8). Thus, for the overall running
time, we get O((nRn+nZ) log n+nZn log n+n2

Zn) =
O(n((nB + nR)4 + n2)) = O(n(n8

R + n2)) = O(n9).

8 Other Convexity Measures

Another interesting measure is the average “detour”
of the geodesic path between u and w within P (either
the quotient over the Euclidean distance, or the di↵er-
ence, suitably normalized). With quotients, this looks
very hard, but computing the excess might be within
reach, although I don’t even know whether the aver-
age Euclidean distance in a polygon is computable in
closed form. Taking squared distances might be a way
out: the average squared distance is just the variance.
The definition (1) extends to higher dimensions, but

the computation of this integral is much harder.

References

[1] L. Boxer. Computing deviations from convexity in
polygons. Pattern Recognition Lett., 14:163–167, 1993.

[2] M. Sonka, V. Hlavac, and R. Boyle. Image Processing,

Analysis, and Machine Vision. Chapman & Hall, 1993.

[3] H. I. Stern. Polygonal entropy: a convexity measure.
Pattern Recognition Letters, 10:229–235, 1989.

[4] J. Žunić and P. L. Rosin. A new convexity measure
for polygons. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(7):923–934, 2004.

72

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Algorithms for distance problems in planar complexes of global

nonpositive curvature

Daniela Maftuleac

Abstract

CAT(0) metric spaces and hyperbolic spaces play an
important role in combinatorial and geometric group
theory. In this paper, we present e�cient algorithms
for distance problems in CAT(0) planar complexes.
First of all, we present an algorithm for answering
single-point distance queries in a CAT(0) planar com-
plex. Namely, we show that for a CAT(0) planar com-
plex K with n vertices, one can construct a data struc-
ture D of size O(n2) so that, given a point x 2 K, the
shortest path �(x, y) between x and the query point
y can be computed in O(n2) time. Our second al-
gorithm computes the convex hull of a finite set of
points in a CAT(0) planar complex. This algorithm
is based on Toussaint’s algorithm for computing the
convex hull of a finite set of points in a simple polygon
and it constructs the convex hull of a set of k points
in O(n2+nk log k) time, using a data structure of size
O(n2 + k).

1 Introduction

Introduced by Gromov in 1987, CAT(0) metric spaces
(or spaces of nonpositive curvature) constitute a far-
reaching common generalization of Euclidean and hy-
perbolic spaces and simple polygons. Most of the
known results on CAT(0) metric spaces are mathe-
matical. To the best of our knowledge, from the algo-
rithmic point of view, these spaces remain relatively
unexplored. Still there are some algorithmic results in
some particular CAT(0) spaces. For example, Billera,
Holmes and Vogtmann [2] showed that the space of all
phylogenetic trees with the same set of leaves, can be
seen as a CAT(0) cube complex. In her doctoral the-
sis [8], Owen proposed exponential time algorithms
for computing the shortest path in the space of phy-
logenetic trees.
Subsequently, the question of whether the distance
and the shortest path between two trees in this
CAT(0) space can be computed in polynomial (with
respect to the number of leaves) time was raised. Re-
cently, Owen and Provan [9] solved this question in
the a�rmative; the paper [4] reports on the imple-
mentation of the algorithm of [9]. Using the result of
[9], Ardila, Owen, and Sullivant [1] described a finite
algorithm that computes the shortest path between
two points in general CAT(0) cubical complexes. This

algorithm is not a priori polynomial and finding such
an algorithm that computes the shortest path in a
CAT(0) complex of general dimension, remains an
open question.
In our paper [5], we proposed a polynomial time al-
gorithm for two-points shortest path queries in 2-
dimensional CAT(0) cubical complex and some of its
subclasses. In this paper, we present e�cient algo-
rithms for single-point distance queries and convex
hulls in CAT(0) planar complexes. A detailed descrip-
tion of these results is given in my doctoral thesis [10].

2 CAT(0) planar complexes

Let (X, d) be a metric space. A geodesic joining two
points x and y from X is the image of a (continu-
ous) map � from a line segment [0, l] ⇢ R to X such
that �(0) = x, �(l) = y and d(�(t), �(t0)) = |t � t0|
for all t, t0 2 [0, l]. The space (X, d) is said to be
geodesic if every pair of points x, y 2 X is joined by
a geodesic [3]. A geodesic triangle �(x1, x2, x3) in a
geodesic metric space (X, d) consists of three distinct
points inX (the vertices of�) and a geodesic between
each pair of vertices (the sides of �). A comparison

triangle for �(x1, x2, x3) is a triangle �(x0
1, x

0
2, x

0
3)

in the Euclidean plane E2 such that dE2(x0
i, x

0
j) =

d(xi, xj) for i, j 2 {1, 2, 3}. A geodesic metric space
(X, d) is a CAT (0) space [6] if all geodesic triangles
�(x1, x2, x3) of X satisfy the comparison axiom of
Cartan–Alexandrov–Toponogov:
If y is a point on the side of �(x1, x2, x3) with vertices

x1 and x2 and y0 is the unique point on the line seg-

ment [x0
1, x

0
2] of the comparison triangle �(x0

1, x
0
2, x

0
3)

such that dE2(x0
i, y

0) = d(xi, y) for i = 1, 2, then

d(x3, y) dE2(x0
3, y

0).
A fundamental property of CAT(0) spaces is that

any pair of points are connected by a unique geodesic.
A planar complex is a 2-dimensional piecewise Eu-

clidean cell complex whose 1-skeleton has a planar
drawing in such a way that the 2-cells of the complex
are exactly the inner faces of the 1-skeleton in this
drawing.
A planar complex K can be endowed with the intrin-
sic l2-metric in the following way. Suppose that inside
every 2-cell of K the distance is measured according
to an l2�metric. A path between x, y 2 K is a se-
quence of points p = (x0 = x, x1, . . . , xk�1, xk = y
such that any two consecutive points xi, xi+1 belong

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

73

29th European Workshop on Computational Geometry, 2013

to a common cell. The length of a path is the sum
of distances between all pairs of consecutive points of
this path. Then the intrinsic l2�metric between two
points of K equals to the infimum of the lengths of
the finite paths joining them. A planar complex K
is a planar CAT(0) complex if with respect to its in-
trinsic metric, K is a CAT(0) space. Equivalently, a
planar complex is CAT(0) planar (see Fig. 2) if for all
inner 0-cells the sum of angles in one of these points
is at least equal to 2⇡. By triangulating each 2-cell
of a CAT(0) planar complex, we can assume without
loss of generality and without changing the size of the
input data, that all 2-cells (faces) of K are isometric
to arbitrary triangles of the Euclidean plane.

120

120

90
90

Figure 1: A CAT(0) planar complex

3 Shortest path map

The notion of shortest path map was introduced by
Hershberger and Suri [7] as a preprocessing step for
continuous Dijkstra algorithm. This algorithm com-
putes the shortest distance between a given point and
any other point in a polygon with holes or in the plane
in the presence of obstacles. This method is a concep-
tual algorithm to compute shortest paths from a given
source s to all other points, by simulating the pro-
pagation of a sweeping line from a point to all points
using scanning level-lines. The output of the conti-
nuous Dijkstra method is called the shortest path map

SPM(s) of a given point s. The shortest path map
SPM(s) is a subdivision of the polygon (free-space)
into cells, such that each cell is a set of points whose
shortest paths to s are equivalent from a combinato-
rial point of view.
The shortest path map SPM(x) in a CAT(0) pla-

nar complex K is a partition of the complex in convex
cones. This partition has a shortest path tree struc-
ture with the common root x 2 K. The construction
of SPM(x) is used in our algorithms for computing
the shortest path and the convex hull of a finite set
of points in K. Thus we will give a more detailed
definition of SPM(x) in K.
A cone in a CAT(0) planar complex K is the set of

points of the complex located between the geodesics

x

Figure 2: A shortest path map SPM(x) in a CAT(0)
planar complex

�(u, v), �(u,w) in the region containing the angle
↵ < ⇡, where v and w belong to the boundary ofK; we
denote by C(u; v, w) the cone of origin (apex) u, where
�(u, v) and �(u,w) are the sides of this cone. By
the interior of the cone C(u; v, w) we mean the set of
points int(C(u; v, w)) = C(u; v, w)\ (�(u, v)[�(u,w)).

A formal definition of SPM(x) is as follows: given
a point x 2 K, the shortest path map SPM(x) is a
partition of K into cones C(zi; pi, qi), i 2 I, where
I = {i1, i2, . . . , im} ⇢ N, such that
(1) for every vertex y of K there exists a geodesic

�(x, p), with p on the boundary of K which
passes via y and:
(a) if ↵(y) = 2⇡, then y belongs to a common

side �(z, p) of the two cones C(z; p, q),
C(z0; p, r) of SPM(x);

(b) if y is a vertex of negative curvature, then y
is the apex of at least one cone C(y; p, q) of
SPM(x);

(2) let C(z; p, q) be a cone of SPM(x), then its apex
z belongs to the geodesics �(x, p) and �(x, q).

We continue with a list of simple but essential pro-
perties of the shortest path map SPM(x) in a CAT(0)
planar complex K.

Proposition 1 Let K be a CAT(0) planar complex,

x a point of K and SPM(x) the shortest path map of

K, then the following conditions are satisfied:

(i) The shortest path map SPM(x) has a geodesic

tree structure;

(ii) Each cone C(z; p, q) of SPM(x) is a convex

subset of K;

(iii) If C(z; p, q) is a cone of SPM(x), then

int(C(z; p, q)) contains no vertices of K;

(iv) The angle \z(p, q) formed by the sides �(z, p)
and �(z, q) of a cone C(z; p, q) of SPM(x) is less or

equal to ⇡;
(v) An inner point of K belongs either to a single

cone, or to a common side of two cones of SPM(x);

74

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

(vi) For any point u belonging to one side �(z, p)
of a cone C(z; p, q) of SPM(x), the angle \u(z, p) is

at least ⇡ inside C(z; p, q).

The next two lemmas present some properties of
the shortest path map in a CAT(0) planar complex K,
which will allow us to describe an e�cient algorithm
for constructing SPM(x).

Lemma 2 For any point y of K, the shortest path

between x and y passes through the apex of the cone

of SPM(x) containing y.

Lemma 3 All cones of SPM(x) can be embedded in

the plane as acute triangles.

We propose a sweeping-line algorithm for construc-
ting the shortest path map in a CAT(0) planar com-
plex K. The algorithm visits the faces of K using
a sweeping(or level)-line, denoted by C(r). We call
events of the sweep, all the crossing points of C(r)
from one face to another. The sweeping line C(r) at
the r instance consists of a sequence of arcs of cir-
cles of radius r and a fixed center x, concatenated by
break points. These arcs appear when C(r) crosses
the events of the sweep.
When C(r) passes through an event h, we construct
the geodesic �(x, h) between h to the root x in K. All
the geodesics constructed this way form a partition
of the complex K into convex regions called cones of
SPM(x).
There are two types of events encountered by the

sweeping line of K: edge-events and vertex-events.

h

h

�(x, h)

C(r)

C(r + ✏)

C(r)

C(r + ✏)

a

b

(a) (b)

Figure 3: (a) Edge-event, (b) Vertex-event.

The vertex-events are all vertices of K. The passage
of the sweeping line C(r) through an event h of this
type creates new arcs on C(r) (see Fig. 3 (b)). When
C(r) passes via h, we construct the geodesic �(x, h)
connecting the points x and h. The information for
the sweep of K is then transmitted from the face al-
ready covered by C(r) which contains h to all other
faces incident to h.
The edge-events are inner points of edges of K. For

some edge-event h, there exists a face F = �(a, b, c)
of K, and a cone C(z; p, q) of SPM(x) such that h
is the closest point of F to x in C(z; p, q). An edge
e of K can contain multiple edge-events (see Fig. 3

(a)). The passage of the sweeping line C(r) through
some edge-event h does not change the shape of
C(r). These events are only used to transmit the
information for the sweep from one face to another.

The data structure used by our algorithm, consists
of two substructures: a static substructure Ds, which
does not change during the steps of the algorithm,
and a dynamic substructure Dd, which is initialized
at step one of the algorithm and changes during the
sweep of K.
The static substructure contains the planar map of
the complex K and the circular lists of angles of
every vertex of K. At the instance r of the sweep,
the dynamic substructure contains a priority queue
Q of events crossed by C(r) and a list C of cones
constructed up to C(r). Note that the intersection
of a triangular face of K with a cone of SPM(x)
is at most a quadrilateral. Thus, the dynamic
substructure Dd contains, for any face F of K the
list of quadrilaterals issued from the intersection of
F with cones of C.
We use the representation of the complex as a
planar map which is a doubly-connected edge list.
This representation allows us to use a data space of
linear size with respect to the number of vertices of K.

Given a CAT(0) planar complex K and a point x 2
K we construct the shortest path map SPM(x) as a
geodesic tree structure.

Theorem 4 Given a CAT(0) planar complex K with

n vertices and a point x of K, it is possible to construct

the shortest path map SPM(x) of K in O(n2) time,

using O(n2) space.

4 Shortest path problem in CAT(0) planar com-

plexes

We consider the following problem: given a source-
point x in a CAT(0) planar complex K, preprocess K
so that for each query point y in K one can compute
the unique shortest path �(x, y) between x and y.

In order to solve this problem, we propose an algo-
rithm based on the continuous Dijkstra method for
computing the shortest path between a given point
and any query point inside a polygon with holes.
Given a point x in a CAT(0) planar complex K, we
construct the shortest path map SPM(x) in K. More-
over, we show that all cones of SPM(x) can be un-
folded in R2, such that shortest path between x and
every query point y is the same inside the cone con-
taining y as in the unfolding of the cone in R2 between
the images of x and y.
First we compute the shortest path map SPM(x) in
O(n2) time as described in previous section. Then for

75

29th European Workshop on Computational Geometry, 2013

any query point y in K, our algorithm determines the
cone containing y, unfolds the cone in the plane as an
acute triangle (Lemma 3) and computes the shortest
path �(x, y) between x and y inside K. The geodesic
�(x, y) is calculated in O(n) time as the isometric
image of the shortest path between the images of x
and y in the plane.
The following theorem gives the main result regar-

ding the one-point query version of the shortest path
problem in a CAT(0) planar complex.

Theorem 5 Given a CAT(0) planar complex K with

n vertices, a point x 2 K and the shortest path map

SPM(x), it is possible to construct a data structure of

size O(n2) such that, for a query y 2 K the algorithm

computes the shortest path �(x, y) between x and y
in K in linear time O(n).

5 Computing convex hulls in a CAT(0) planar

complex

Let S be a finite set of points in a planar CAT(0)
complex K. We consider the problem of computing
the convex hull conv(S) in K.
In order to solve this problem, we propose an algo-
rithm based on Toussaint’s algorithm [11], which con-
structs the convex hull of a finite point-set inside a
triangulated simple polygon in O(n logn) time, using
a data structure of size O(n).
As the pre-processing step, our algorithm builds the

shortest path map SPM(x), where x is an arbitrary
point of the boundary of K. Note that this partition
of K in cones will play the role of the triangulation of
a simple polygon. Then the algorithm unfolds each
cone SPM(x) in the plane, and computes the convex
hull of the subset of S located in this cone. Thus
we obtain a finite number of convex hulls in K, each
contained in a cone C(zi; pi, qi), i 2 I 0 ✓ I, so that
C(zi; pi, qi) \ S 6= ;. As x is chosen on the boundary
of K, SPM(x) can be seen as a canonical counter-
clockwise non-cyclic sequence of cones. We refer to
two consecutive convex hulls constructed earlier, as
the convex hulls contained in two cones of SPM(x),
so that any other cone of the subsequence defined by
these two cones contains no points of S.
A closed polygonal line of the complex is called a
weakly-simple polygon if the line divides the complex
into two areas equivalent to a disc. Less formally, we
can say that a weakly-simple polygon can have sides
that touch but do not intersect.
By connecting with a geodesic segment each pair of
consecutive convex hulls constructed at the previous
step, we obtain a weakly-simple polygon in K.
We denote by P the union of the weakly-simple

polygon and a geodesic segment connecting two points
p and q, where p and q are the closest points, such that
p belongs to the boundary of P and q belongs to the

boundary of K. We show that the complex K \ P is
CAT(0) and planar. Further we denote by p⇤ a copy
of the point p in K. Finally, we show that the shortest
path between p and p⇤ in the CAT(0) planar complex
K \ P coincides with the boundary of the convex hull
of S in K. The shortest path between p and p⇤ in K\P
can be found by the algorithm of previous section.
The following theorem summarizes the main result

concerning the convex hull problem in a CAT(0) pla-
nar complex.

Theorem 6 Given a CAT(0) planar complex K with

n vertices, one can construct a data structure of size

O(n2+k), such that for any finite set S of k points in

K, the algorithm computes the convex hull conv(S)
in O(n2 + nk log k).

References

[1] F. Ardila, M. Owen and S. Sullivant, Geodesics
in CAT(0) cubical complexes, Advances in Applied
Mathematics 48 (2012), 142–163.

[2] L.J. Billera, S.P. Holmes and K. Vogtmann, Geom-
etry of the space of phylogenetic trees, Adv. Appl.
Math. 27 (2001), 733–767.

[3] M. Bridson and A. Haefliger, Metric Spaces of Non-
Positive Curvature, Springer-Verlag, 1999.

[4] J. Chakerian and S.P. Holmes, Computational tools
for evaluating phylogenetic and hierarchical cluster-
ing trees, JCGS, 21(3) (2012), 581–599.

[5] V. Chepoi and D. Maftuleac, Shortest path problem
in rectangular complexes of global nonpositive cur-
vature, Computational Geometry, 46 (2013), 51–64.

[6] M. Gromov, Hyperbolic groups, Essays in Group
Theory (S. M. Gersten, ed.), MSRI Publications, vol.
8, Springer-Verlag (1987), 75–263.

[7] J. Hershberger and S. Suri, An optimal algorithm
for Euclidean shortest paths in the plane, SIAM J.
Comput. 28 (1999), 2215–2256.

[8] M. Owen, Distance computation in the space of phy-
logenetic trees, Thesis, Cornell University, 2008.

[9] M. Owen and S. Provan, A fast algorithm for com-
puting geodesic distances in tree space, ACM/IEEE
Transactions on Computational Biology and Bioin-
formatics 8 (2011), 2–13.

[10] D. Maftuleac, Algorithmique des complexes CAT(0)
planaires et rectangulaires, Thesis, Aix-Marseille
University, 2012.

[11] G.T. Toussaint, Computing Geodesic Properties In-

side a Simple Polygon, Revue d’intelligence artifi-

cielle, vol. 3, 2 (1989), 9–42.

76

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

On the Complexity of Finding Spanner Paths

Mikael Nilsson⇤

Abstract

We study the complexity of determining if a spanner
path exists between two given nodes in a given Eu-
clidean graph. This problem that we call the t-path
problem is proven to be NP-complete for non-constant
spanner stretches (e.g. stretch (2n)3/2). An algorithm
to solve the problem is given. It improves on the naive
O(2n) complexity to give O(20.822n).

We also study the same problem for a type of
one-dimensional graphs that we call Integer Graphs.
A more e�cient algorithm can be devised for these
graphs resulting in a complexity ofO(2c(logn)2), where
c is a constant depending only on the spanner stretch.

1 Introduction

Andersson et al. [1] present an algorithm for building
approximate distance oracles for graphs with dense
clusters. The algorithm assumes that the Euclidean
input graph is partitioned into so-called islands that
are all spanners. Nodes connecting islands are called
airports. The gain from using the oracle is the reduc-
tion in size that can be achieved compared to the naive
n2 lookup table. The size used by the constructed or-
acle is O(M2 + n logn) where n is the total number
of nodes and M is the number of airports.

If we want to construct an oracle for a given graph,
we first have to put it in the required input format.
While doing this we want to minimize the number
of airports to keep the oracle’s size down. This is
a combinatorial optimization problem that has been
discussed by Nilsson [5].

If we had knowledge about which nodes could be-
long to the same island, optimization might become
easier. Two nodes can belong to the same island if and
only if there is a path linking them that is a spanner
path. When applying the spanner concept to paths
we get an approximation requirement on the path re-
quiring that any distance between nodes along the
path is within the stretch factor times the Euclidean
distance between them. Detecting the existence of
spanner paths is a complicated problem that we de-
vote this paper to.

⇤
Linköping University, Sweden, mikael.a.nilsson@liu.se

2 Defining the t-path Problem

A Euclidean graph (we work exclusively with these) is
a t-spanner if the distance between any pair of nodes
via edges in the graph is at most t times the Euclidean
distance between them. Hence the factor t, also called
the stretch, determines the quality by which the graph
approximates Euclidean distances.
Note that by this definition a complete Euclidean

graph is a 1-spanner.
A t-path between two nodes is a path that is a t-

spanner. This means that any distance between nodes
along the path must be within a factor t of their Eu-
clidean distance. Do not confuse the definition used
in this paper with that of a t-path used in the context
of Restricted Shortest Path problems (see Hassin [2]).
The t-path problem consists of deciding if there is a

t-path between two given nodes in a Euclidean graph.

3 A simple algorithm

First we present a simple algorithm for the t-path
problem. The algorithm is recursive and in each iter-
ation it uses Dijkstra’s algorithm to find the shortest
path between the start and end node of the sought
t-path.
If this shortest path is not a t-path there are at least

two nodes along the path that conflict with the span-
ner condition. If there are more conflicting pairs we
chose one pair in each iteration. Since the chosen pair
is connected along a shortest path there can never be a
shorter path between the problem nodes. Hence they
can never both be on the t-path. The algorithm pro-
ceeds by removing one of them and recursively tries
to solve the problem on the resulting smaller graph. If
this does not succeed, it puts the node back, removes
the other problem node and recurses in the same way.
When analyzed, this algorithm is found to run in

time O(2n) (the recurrence equation is tn = O(n2) +
2tn�1

, where tn denotes the time to run the algorithm
on n nodes and O(n2) comes from finding the short-
est path and testing the spanner requirement). It is
possible to improve this to O(20.822n); the calcula-
tions cannot fit here though (see Nilsson [5]). The
idea is that since the order in which nodes are re-
moved is not taken into consideration, several recur-
sions check the same graph. Especially, as the size
of the graphs shrinks the number of times they are
checked increases. By building a lookup table of small
graphs the recursion can be halted earlier.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

77

29th European Workshop on Computational Geometry, 2013

4 NP-Completeness of the t-path Problem

We start by observing that the t-path problem is in
NP. Given a path from a start node s to an end
node e we can check in O(n2) polynomial time if
the path is a t-path. This is done by comparing
distances along the path, incrementally calculated in
O(n) steps, to the corresponding Euclidean distances
for all pairs of nodes on the path (a total of O(n2)
comparisons). The NP-completeness then follows by
reducing a known NP-complete problem to the t-path
problem.
Let G be a directed graph containing the special

nodes s and e. Furthermore, let C be a list of node
pairs. The problem Path with Forbidden Pairs, ab-
breviated PwFP, consists of finding out whether there
exists a path in G from s to e that at most contains
one node from each pair in C. The problem was first
formulated and examined by Gabow et al. [3].
It has been proven that this problem is NP-

complete and that various versions of it are still NP-
complete (see for instance Garey and Johnson [4]).
The version we need is the one where the graph is
undirected and all forbidden pairs are disjoint; this
problem is still NP-complete (see Nilsson [5]).
We now reduce PwFP in the specified version to the

t-path problem showing that this also is NP-complete.
First we give the general reduction scheme and then
follow this by an example. It might help to look at the
example pictures while following the reduction steps.
Given an instance of the PwFP problem (see figure

1), we start by creating a Euclidean graph. The graph
is inscribed in a square that is subdivided into a grid
of smaller squares (see figure 2). We then put the orig-
inal nodes in the smaller squares. Nodes that are not
part of a forbidden pair are put by themselves in the
center of any empty square. Nodes corresponding to
a forbidden pair (these are disjoint) are put together
in any empty square, close to the square center with a
small distance between them (this distance will be es-
tablished later). This means we need between n and
n/2 smaller squares. To be on the safe side we as-
sume that n squares are created. If we set the smaller
square side to 1 this gives us an outer square with
sides measuring

p
n. We now add edges that con-

nect the same nodes as in the original problem. Edges
are assigned lengths corresponding to the Euclidean
distance between the connected nodes.
We now estimate the longest path distance between

two nodes in this new graph. A rough upper bound
can be calculated assuming that all edges are of max-
imum length. Because of the size of the outer square
we know that any edge is shorter than

p
2n. This

means that the longest path is bounded by
p
2n3/2.

The shortest Euclidean distance between two nodes
in di↵erent squares is at least 1/2. This means that
the highest possible stretch in the graph is below

1

13

18

643

16

11

15

10

17 19

12
9

8

14

5

7

2

(1,4)
(3,8)
(5,10)

Forbidden Pairs:
(13,19)
(16,6)
(14,18)

Figure 1: Example of a PwFP problem instance.

p
2n3/2/(1/2) = 2

p
2n3/2 = (2n)3/2 (here we do not

count paths visiting two nodes in the same square as
these will be prohibited). We denote this stretch by
T . If a stretch of T is allowed there can be no viola-
tions of the spanner constraint along paths as long as
only one node in each square is visited.
We now estimate the shortest path between two

nodes in the same square. Since they are not con-
nected it is a path having at least two edges. Since
each edge is at least 1/2 this path measures at least
1. By now setting the distance between the forbidden
pair nodes to be T�1 � " we can prevent these nodes
from both being part of a t-path with stretch T . This
is because the distance along a path (� 1) divided by
the real distance becomes � 1/(T�1 � ") > T .
If we now regard this newly created graph as an

instance of the t-path problem with stretch T we will
see that we can find a solution to this problem if and
only if there is a solution to the original PwFP prob-
lem instance. We have then shown that any PwFP
problem instance can be reduced to a t-path problem
instance which together with the facts that PwFP is
NP-complete and t-path is in NP means that the t-
path problem is also NP-complete.
Suppose there is a solution to the PwFP instance.

This means there is a path which goes from s to e
without visiting more than one node from each pair.
If we consider the corresponding path in the reduction
graph, we see that it is a path that never breaks the
spanner condition (since the stretch allowed is large
enough to allow any path that do not contain two
nodes from the same square). Hence we have a t-path.
If on the other hand we have a t-path between s and e
in the reduction graph this must correspond to a path
which never visits two nodes in the same square since
that would break the spanner condition (the distance

78

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

1

4

3

8
2

6

16
97

10

5

11

1512
13

19

17

18

14

Figure 2: Resulting example reduction graph.

between them was set short enough that including
them both violates the condition). This means that
we have a path which goes from s to e without visit-
ing a forbidden pair, hence there is a solution to the
PwFP problem instance. We see that the reduction
presented works and conclude that the t-path problem
is NP-complete for stretch T .
Figures 1 and 2 show an example PwFP instance

and an example reduction graph created for it. In
the example, a path between node 1 and node 19 is
sought. The edges in figure 1 has no edge distances.
Distances are present but not shown in figure 2. The
edges are drawn so it is possible to see that they still
connect the same nodes.
We have shown that for stretches larger than

(2n)3/2 the t-path problem is NP-complete. By in-
creasing the dimension of the constructed graph (fit-
ting it in a hypercube) it is possible to shrink the
required stretch to 2

p
kn1+1/k where the integer k

denotes the dimension of the constructed graph.

5 The t-path Problem for Integer Graphs

An Integer Graph with n nodes is a one-dimensional
Euclidean graph, where all nodes are placed at inte-
ger positions on the real line. The leftmost node is
placed at 0 and the remaining nodes are placed at
1, 2, 3, . . . , n � 1. The t-path problem in the integer

graph consists of finding a t-path from node 0 to node
n-1. Figure 3 shows an example of an integer graph.
Since nodes in integer graphs are positioned on inte-

ger positions the minimum node distance is 1. This to-
gether with the fact that the graph is one-dimensional
rules out a reduction like the one we just saw. Can the
t-path problem be solved e�ciently in integer graphs?

121 2 3 4 6 7 8 9 110 105

Figure 3: Example of an integer graph.

Figure 4: Two comparable images. The dashed in-
tervals can be visited in later stages without breaking
the spanner requirement.

The problem can be solved e�ciently for stretch 1
and n2/2. Stretch 1 follows since then the path may
never go left. Stretch n2/2 follows since this allows
all paths (it can be proven that the maximum length
path is n2/2, see Nilsson [5]).

It is tempting to guess that since the problem can
be e�ciently solved for stretches greater than n2/2
and stretch 1 this also applies to the whole interval
[1, n2/2]. Although this remains an open problem we
will now examine an algorithm for the integer graph t-
path problem which is more e�cient than the general
algorithm given in section 3.
Our integer graph algorithm uses a data structure

we call an image. An image is centered at a node. It
contains all intervals of nodes that may be visited in
future stages given the path used to reach the center
node. An image centered at node 0 consists of a single
interval containing all nodes. When a path is built,
the interval will be continually subdivided into smaller
intervals due to the spanner constraint.
A partial order is imposed on the set of images by

the image quality concept. The image quality of one
image is ‘better’ than that of another if the intervals
of the first image cover all intervals of the second im-
age. By the definition, not all images are comparable.
Figure 4 shows an example.
The algorithm starts from node 0 and works itera-

tively towards n� 1. Every time it extends a path to
reach a new node, an image capturing the nodes that
can be visited in the future, is created.
The algorithm keeps the invariant “in iteration k

all images for nodes k created by paths using only
nodes k are found”.
Iteration k starts with checking the images of nodes

< k. If any of these, e.g. A, allows for k to be visited a
new image is created for k which is created by shrink-
ing the intervals in A to accommodate this new edge.
When images for k are created they are checked to see
which nodes < k can be reached from k via these new
images. If a node < k is found it is visited and gets
a new image. This can result in recursive behavior
where the path reaches more nodes < k.

79

29th European Workshop on Computational Geometry, 2013

... n-1...400 ... 420 4970

484 500...

Figure 5: Example of a node close to the pivot node.

The algorithm stores for each node only images that
are incomparable. If a comparable image is generated,
only the best image will be kept. Figure 4 shows an
example where the upper image will cause the lower
to be discarded.
Two images can be compared in time O(logn) if

each image consists of a list of interval endpoints.
This follows since the maximum number of intervals
in any image is bounded by log k where k is the node
location where the image is created (see Nilsson [5]).
The number of intervals has a direct impact on the

complexity of the algorithm so it must be examined.
Let the stretch of the problem be 1 + t. We get an
upper bound by assuming the worst in each case in
the following discussion. First we check the number
of intervals that the image for a node can contain on
its left side. The distance these intervals occupy is
limited due to the spanner constraint (it is not possi-
ble to go back too far). In node k the image cannot
contain intervals to the left of point p = 2k/(2 + t).
This sets the maximum length of intervals to the left
of node k to kt/(2 + t). How many times can this in-
terval be subdivided into smaller intervals? The cause
for subdivision is that some node or nodes inside the
interval are visited on the path to k.
There exists a pivot point in the original interval. If

the path visits nodes to the left of this there will be no
new left interval created in the subdivision. However
if the path only visits nodes to the right of the pivot
point a new interval to the left will be created in the
subdivision. An example of this can be seen in figure
5 where a node close to the pivot point is chosen for
the path.
In the example figure the stretch is 1.5 allowing the

path to reach as far back as 400 once it has visited
500. The pivot point of the interval [400,500] in an
image centered at node 500 is 480. If a node to the
left of 480 is visited along the path, the interval will
have no left subdivision.
Each time a new interval is created the pivot point

moves to the right until it finally reaches k. Calculat-
ing the number of times the interval can be subdivided

gives
t

2+t log 1

k subdivisions, where t
2+t is the base of

the logarithm. In order to get an upper bound on
the number of possible images we assume that each
of these intervals can be of any length between 1 and
the maximum length. This gives a total number of

images centered at k which is bounded by O(2
(log k)

2

log a)
where a = (2 + t)/t. Further details can be found in
Nilsson [5].
We now have an upper bound on the number of im-

ages that come from intervals to the left of k. There
are also intervals to the right of the node being pro-
cessed. These intervals are created by the path visit-
ing nodes to the right of k and then in the end going
to k. Since the path has already passed by k this right
interval will be smaller than the left. However to get
an upper bound we let them have the same cardinal-
ity. This gives the final number of images in a node
during the algorithm’s construction of the t-path to

be bounded by O(2
2(log n)

2

log a).
Factoring in the time to build new images (using a

conservative n3 for this) and process all nodes from
1 to n � 1 the algorithm’s runtime is bounded by
O(2c(logn)2) where c is a constant depending only on
the spanner stretch. The constant increases approxi-
mately linearly and has for example the value 5.32 at
stretch 1.5.
The algorithm does not compute the t-path directly

since no information of the path which led to a node
is kept. However by running the algorithm n times
and each time removing a di↵erent node it is possible
to see which nodes are part of the t-path which can
then be found by using Dijkstra’s algorithm on the
remaining nodes.

Acknowledgments

Thanks go to Christos Levcopoulos for numerous discus-

sions on the t-path problem and related topics.

References

[1] M. Andersson, J. Gudmundsson and C. Levcopoulos.
Approximate distance oracles for graphs with dense
clusters. Comput. Geom. Theory Appl., 37(3):142-
154, 2007.

[2] R. Hassin. Approximation schemes for the restricted
shortest path problem. Math. Oper. Res., 17(1):36-
42, February 1992.

[3] H.N. Gabow, S.N. Maheshwari and L.J. Osterweil.
On Two Problems in the Generation of Program Test
Paths. IEEE Trans. Softw. Eng., 2(3):227-231, 1976.

[4] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman & Co., New York, NY,
USA, 1979.

[5] M. Nilsson. Spanneröar och spannervägar. Institutio-
nen för datavetenskap, Lund, 2009.
http://tinyurl.com/6gbxdnj.

80

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Polylogarithmic Approximation

for Generalized Minimum Manhattan Networks

Aparna Das⇤ Krzysztof Fleszar† Stephen Kobourov⇤ Joachim Spoerhase† Sankar Veeramoni⇤

Alexander Wol↵†

Abstract

We consider the generalized minimum Manhattan net-

work problem (GMMN). The input to this problem
is a set R of n pairs of terminals, which are points
in Rd. The goal is to find a minimum-length rec-
tilinear network that connects every pair in R by a
Manhattan path, that is, a path of axis-parallel line
segments whose total length equals the pair’s Man-
hattan distance. This problem is a generalization of
the extensively studied minimum Manhattan network

problem (MMN) in which R consists of all possible
pairs of terminals. Another important special case is
the well-known rectilinear Steiner arborescence prob-

lem (RSA). As a generalization of these problems,
GMMN is NP-hard but approximation algorithms are
only known for MMN and RSA.
We give the first approximation algorithm for

GMMN; our algorithm has a ratio of O(logd+1 n) for
the problem in arbitrary and fixed dimension d. This
is an exponential improvement upon the O(n")-ratio
of an existing algorithm for MMN in d dimensions
[ESA’11]. For the important case of dimension d = 2,
we derive an improved bound of O(logn). Finally, we
show that an existing O(logn)-approximation algo-
rithm for two-dimensional RSA generalizes to higher
dimensions.

1 Introduction

Given a set of terminals, which are points in Rd, the
minimum Manhattan network problem (MMN) asks
for a minimum-length rectilinear network that con-
nects every pair of terminals by a Manhattan path
(M-path, for short), that is, a path consisting of axis-
parallel segments whose total length equals the pair’s
Manhattan distance.
In the generalized minimum Manhattan network

problem (GMMN), we are given a setR of n unordered
terminal pairs, and the goal is to find a minimum-
length rectilinear network such that every pair in R
is M-connected, that is, connected by an M-path.

⇤
Department of Computer Science, University of Arizona,

Tucson, AZ, U.S.A., http://www.cs.arizona.edu/˜kobourov

†
Lehrstuhl I, Institut für Informatik, Universität Würzburg,

Germany, http://www1.informatik.uni-wuerzburg.de/en/sta↵

c

b

a

e

d

f

(a) an MMN for

{a, b, c, d, e, f}

c

b

a

e

d

f

(b) a GMMN for

{(a,b), (c,d), (e,f)}

Figure 1: MMN versus GMMN in 2D.

GMMN is a generalization of MMN since R may con-
tain all possible pairs of terminals. Figure 1 depicts
examples of both network types. We remark that, in
this paper, we define n to be the number of terminal
pairs of a GMMN instance, whereas previous works
on MMN defined n to be the number of terminals.
Two-dimensional MMN (2D-MMN) naturally

arises in VLSI circuit layout; higher-dimensional
MMN has applications in the area of computational
biology. MMN requires a Manhattan path between
every terminal pair. This assumption is, however,
not always reasonable. For example, in VLSI design
a wire connection is necessary only for a, often
comparatively small, subset of terminal pairs, which
may allow for substantially cheaper circuit layouts.
In this scenario, GMMN appears to be a more
realistic model than MMN.
The currently best known approximation algo-

rithms for 2D-MMN have ratio 2; for example, the
O(n log n)-time algorithm of Guo et al. [5]. The com-
plexity of 2D-MMN was settled only recently by Chin
et al. [2]; they proved the problem NP-hard. It is not
known whether 2D-MMN is APX-hard.
Recently, there has been an increased interest in

(G)MMN for higher dimensions. Muñoz et al. [7]
proved that 3D-MMN is NP-hard to approximate
within a factor of 1.00002. They also gave a constant-
factor approximation algorithm for a, rather re-
stricted, special case of 3D-MMN. Das et al. described
the first approximation algorithm for MMN in arbi-
trary, fixed dimension with a ratio of O(n") for any
" > 0 [4].
GMMN was defined by Chepoi et al. [1] who asked

whether 2D-GMMN admits an O(1)-approximation.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

81

http://www.cs.arizona.edu/~kobourov
http://www1.informatik.uni-wuerzburg.de/en/staff

29th European Workshop on Computational Geometry, 2013

Apart from the formulation of this open problem, only
special cases of GMMN such as MMN have been con-
sidered so far.
Another special case of GMMN that has received

significant attention in the past is the rectilinear

Steiner arborescence problem (RSA). Here, we are
given n terminals lying in the first quadrant and
the goal is to find a minimum-length rectilinear net-
work that M-connects every terminal to the origin o.
Hence, RSA is the special case of GMMN where o
is considered a (new) terminal and the set of termi-
nal pairs contains, for each terminal t 6= o, only the
pair (o, t). RSA is NP-hard [9] even in dimension
d = 2. Rao et al. [8] gave a 2-approximation algo-
rithm for 2D-RSA. They also provided a conceptu-
ally simpler O(logn)-approximation algorithm based
on rectilinear Steiner trees. That algorithm general-
izes quite easily to dimensions d > 2 (as we show in
the long version of this paper [3]). Lu and Ruan [6]
described a polynomial-time approximation schemes
(PTAS) for 2D-RSA based on Arora’s technique.
Our contribution is two-fold. First, we provide

an O(logd+1 n)-approximation algorithm for GMMN
(and, hence, MMN) in d dimensions. For the sake
of simplicity, we first present our approach in 2D (see
Section 2). Second, we provide an improved and tech-
nically more involved O(logn)-approximation for the
special case of 2D-GMMN; see Section 3.

2 Polylogarithmic Approximation

We present an O(log2 n)-approximation algorithm for
2D-GMMN and prove the following theorem.

Theorem 1 2D-GMMN admits an O(log2 n)-
approximation algorithm running in O(n log3 n)
time.

Our algorithm consists of a main algorithm that re-
cursively subdivides the input instance into instances
of so-called x-separated GMMN; see Section 2.1. We
prove that the instances of x-separated GMMN can be
solved independently by paying a factor of O(logn) in
the overall approximation ratio. Then we solve each
x-separated GMMN instance within factor O(logn);
see Section 2.2. This yields an overall approxima-
tion ratio of O(log2 n). Our presentation follows this
natural top-down approach; as a consequence, we will
make some forward references to results that we prove
later.

2.1 Main Algorithm

Our algorithm is based on divide and conquer. Let
R be the set of terminal pairs that are to be M-
connected. We identify each terminal pair with its
bounding box, that is, the smallest axis-aligned rect-
angle that contains both terminals. As a consequence

of this, we consider R a set of rectangles. Let m
x

be the median in the multiset of the x-coordinates of
terminals. We identify m

x

with the vertical line at
x = m

x

.
Now we partition R into three subsets R

left

, R
mid

,
and R

right

. R
left

consists of all rectangles that lie com-

pletely to the left of the vertical line m
x

. Similarly,
R

right

consists of all rectangle that lie completely to
the right of m

x

. R
mid

consists of all rectangles that
intersect m

x

.
We consider the sets R

left

, R
mid

, and R
right

as sep-
arate instances of GMMN. We apply the main algo-
rithm recursively to R

left

to get a rectilinear network
that M-connects terminal pairs in R

left

and do the
same for R

right

.
It remains to M-connect the pairs in R

mid

. We call
a GMMN instance (such as R

mid

) x-separated if there
is a vertical line (in our case m

x

) that intersects every
rectangle. We exploit this property to design a sim-
ple O(log n)-approximation algorithm for x-separated
GMMN; see Section 2.2. Later, in Section 3, we im-
prove upon this and describe an O(1)-approximation
algorithm for x-separated GMMN when terminals lie
in 2D.

In the following lemma we analyze the performance
of the main algorithm, in terms of ⇢

x

(n), our approxi-
mation ratio for x-separated instances with n terminal
pairs.

Lemma 2 If x-separated 2D-GMMN admits a ⇢
x

(n)-
approximation, 2D-GMMN admits a (⇢

x

(n) · logn)-
approximation.

Proof. Let ⇢(n) denote the main algorithm’s worst-
case approximation ratio for instances with n terminal
pairs. Now assume that our input instance R is a
worst case. More precisely, the cost of the solution of
our algorithm equals ⇢(n) ·OPT, where OPT denotes
the cost of an optimum solution Nopt to R. Let Nopt

left

and Nopt

right

be the parts of Nopt to the left and to
the right of m

x

, respectively. (We split horizontal
segments that cross m

x

and ignore vertical segments
on m

x

.)
Due to the choice of m

x

, at most n terminals lie
to the left of m

x

. Therefore, R
left

contains at most
n/2 terminal pairs. Since Nopt

left

is a feasible solution to
R

left

, we conclude that the cost of the solution to R
left

computed by our algorithm is bounded by ⇢(n/2) ·
kNopt

left

k, where k · k measures the length of a network.
Analogously, the cost of the solution computed for
R

right

is bounded by ⇢(n/2) · kNopt

right

k. Since Nopt

is also a feasible solution to the x-separated instance
R

mid

, we can compute a solution of cost ⇢
x

(n) ·OPT
for R

mid

.
Therefore, we can bound the total cost of our algo-

rithm’s solution N to R by

kNk ⇢(n/2) · (kNopt

left

k+ kNopt

right

k) + ⇢
x

(n) ·OPT .

82

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Note that this inequality does not necessarily hold if R
is not a worst case since then ⇢(n) ·OPT > kNk. The
networks Nopt

left

and Nopt

right

are separated by line m
x

,

hence they are edge disjoint and kNopt

left

k+ kNopt

right

k
OPT. This yields the recurrence ⇢(n) ⇢(n/2) +
⇢
x

(n), which resolves to ⇢(n) = log n · ⇢
x

(n). ⇤

Lemma 2 together with the results of Section 2.2
allow us to prove Theorem 1.

Proof. By Lemma 2, our main algorithm has per-
formance ⇢

x

(n) · logn, where ⇢
x

(n) denotes the ratio
of an approximation algorithm for x-separated 2D-
GMMN. In Lemma 3 (Section 2.2), we will show that
there is an algorithm for x-separated 2D-GMMN with
ratio ⇢

x

(n) = O(logn). Thus overall, the main al-
gorithm yields an O(log2 n)-approximation for 2D-
GMMN. See the long version [3] for the running time
analysis. ⇤

2.2 Approximating x-Separated Instances

We describe a simple algorithm for approximating x-
separated 2D-GMMN with a ratio of O(logn). Let R
be an x-separated instance, that is, all rectangles in R
intersect a common vertical line.
The algorithm works as follows. Analogously to the

main algorithm we subdivide the x-separated input
instance, but this time using the line y = m

y

, where
m

y

is the median of the multiset of y-coordinates
of terminals in R. This yields sets R

top

, R0
mid

, and
R

bottom

, defined analogously to the sets R
left

, R
mid

,
and R

right

of the main algorithm, using m
y

instead of
m

x

. We apply our x-separated algorithm to R
top

and
then to R

bottom

to solve them recursively. The in-
stance R0

mid

is a y-separated sub-instance with all its
rectangles intersecting the line m

y

. Moreover, R0
mid

(as a subset of R) is already x-separated, thus we call
R0

mid

an xy-separated instance. In Section 2.3, we give
a specialized algorithm to approximate xy-separated
instances within a constant factor. Assuming this for
now, we show (in the long version [3]), analogously to
Lemma 2, the following.

Lemma 3 x-separated 2D-GMMN admits an

O(logn)-approximation.

2.3 Approximating xy-Separated Instances

It remains to show that xy-separated GMMN can be
approximated within a constant ratio. Let R be an in-
stance of xy-separated GMMN. We assume, w.l.o.g.,
that it is the x- and the y-axes that intersect all rect-
angles in R, that is, all rectangles contain the ori-
gin o. To solve R, we compute an RSA network that
M -connects the set of terminals in R to o. We use a
2-approximation algorithm for RSA, for example, the
one of Rao et al. [8]. This yields the following.

o

⇧

x

y

t

t0

Figure 2: Network N connects t to o (dashed path)
and t

0 to o (solid path).

Lemma 4 xy-separated 2D-GMMN admits a

constant-factor approximation.

Proof. Let T be the set of terminals in the xy-
separated GMMN instance R and N 0 be an RSA net-
work M-connecting T to o, which we compute using
the 2-approximation for RSA.
We first claim that N 0 is a feasible GMMN solution

for R. To see this, note that N 0 contains, for every
terminal pair (t, t0) 2 R, an M-path ⇡ from t to o and
an M-path ⇡0 from o to t0. Concatenating ⇡ and ⇡0

yields an M-path from t to t0 as the bounding box
of (t, t0) contains o.

Let OPT denote the cost of an optimal GMMN
solution for R. We claim there is a solution N for the
RSA instance of M-connecting T to o of cost O(OPT).
Let Nopt be an optimum solution to R. Let N be

the union of Nopt and the projections of Nopt to the
x-axis and to the y-axis. The total length of N is
kNk 2 · OPT = O(OPT) since every line segment
of Nopt is projected either to the x-axis or to the y-
axis but not to both. The crucial fact about N is
that this network contains, for every terminal t in R,
an M-path from t to the origin o. In other words,
N is a feasible solution to the RSA instance of M-
connecting T to o.
To see this, consider an arbitrary terminal pair

(t, t0) 2 R. Let ⇧ be an M-path connecting t and t0 in
Nopt; see Fig. 2. Note that, since the bounding box
of (t, t0) contains o, ⇧ intersects both x- and y-axis.
To obtain an M-path from t to o, we follow ⇧ from t
to t0 until ⇧ crosses one of the axes. From that point
on, we follow the projection of ⇧ onto this axis. We
reach o when ⇧ crosses the other axis; see the dotted
path in Fig. 2. Analogously, we obtain an M-path
from t0 to o.
Finally, as there is a feasible RSA solution N for

terminals T of cost O(OPT), the RSA solution N 0

that we compute costs at most 2kNk = O(OPT). ⇤

Our algorithm for d dimensions is a generalization
of the algorithm for 2D-GMMN. For each dimen-
sion, we loose a (log n)-factor in the approximation
ratio. The final problem instances can be solved us-
ing an adaptation to d dimensions of the O(logn)-
approximation algorithm of Rao et al. [8] for 2D-RSA;
see the long version [3].

83

29th European Workshop on Computational Geometry, 2013

Theorem 5 In any fixed dimension d, GMMN ad-

mits an O(logd+1 n)-approximation algorithm run-

ning in O(n2 logd+1 n) time.

3 Improved Algorithm for Two Dimensions

In this section, we show that 2D-GMMN admits
an O(logn)-approximation, which improves upon the
O(log2 n)-result of Section 2. To this end, we develop
a (6+")-approximation algorithm for x-separated 2D-
GMMN, for any " > 0; see Lemma 8. Together with
Lemma 2, we obtain the following.

Theorem 6 For any " > 0, 2D-GMMN admits a

((6 + ") · logn)-approximation algorithm running in

O(n1/" log2 n) time.

Our constant-factor approximation for x-separated
2D-GMMN and its analysis are technically more in-
volved. Therefore, we only sketch the underlying ap-
proach; see the long version [3] for details.
Let R be the set of terminal pairs of an x-separated

instance of 2D-GMMN.We assume, w.l.o.g., that each
terminal pair (l, r) 2 R is separated by the y-axis,
such that x(l) < 0 x(r). Let Nopt be an optimum
solution to R. Let OPT

ver

and OPT
hor

be the total
costs of the vertical and horizontal segments in Nopt,
respectively. Hence, OPT = OPT

ver

+OPT
hor

.
The algorithm consists of two stages: a stabbing

stage and a connection stage. In the stabbing stage,
we compute a set S of horizontal line segments such
that each rectangle in R is completely stabbed by some
line segment in S. More precisely, for each rectangle
r there is a horizontal line segment h 2 S such that
the intersection of r and h equals the intersection of
r with the supporting line of h. We can show the
following [3].

Lemma 7 Given a set R of rectangles intersecting

the y-axis, we can compute a set of horizontal line

segments of cost at most 4 ·OPT
hor

that stabs R.

The connection stage M-connects the terminals to
the y-axis so that the resulting network, along with
the stabbing S, forms a feasible solution to R of cost
O(OPT). To this end, we assume that the union
of the rectangles in R is connected. Otherwise we
apply our algorithm separately to each subset of R
that induces a connected component of

S
R. Let I

be the line segment that is the intersection of the y-
axis with

S
R. Let top(I) and bot(I) be the top and

bottom endpoints of I, respectively. Let L ✓ T be
the set containing every terminal t with (t, t0) 2 R
and y(t) y(t0) for some t0 2 T . Symmetrically, let
H ✓ T be the set containing every terminal t with
(t, t0) 2 R and y(t) > y(t0) for some t0 2 T . Note
that, in general, L and H are not disjoint.

Using a PTAS for 2D-RSA [6], we compute a near-
optimal RSA network A

up

connecting the terminals
in L to top(I) and a near-optimal RSA network A

down

connecting the terminals in H to bot(I). Then we
return the network N = A

up

[A
down

[S, where S is
the stabbing computed by the stabbing stage.
In the long version [3], we show that the resulting

network is a feasible solution to R, with cost at most
constant times OPT.

Lemma 8 x-separated 2D-GMMN admits, for any

" > 0, a (6 + ")-approximation.

References

[1] V. Chepoi, K. Nouioua, and Y. Vaxès. A rounding al-
gorithm for approximating minimum Manhattan net-
works. Theor. Comput. Sci., 390(1):56–69, 2008.

[2] F. Chin, Z. Guo, and H. Sun. Minimum Manhattan
network is NP-complete. Discrete Comput. Geom.,
45:701–722, 2011.

[3] A. Das, K. Fleszar, S. G. Kobourov, J. Spoer-
hase, S. Veeramoni, and A. Wol↵. Polylogarithmic
approximation for generalized minimum Manhattan
networks. Arxiv report, Apr. 2012. Available at
http://arxiv.org/abs/1203.6481.

[4] A. Das, E. R. Gansner, M. Kaufmann, S. Kobourov,
J. Spoerhase, and A. Wol↵. Approximating minimum
Manhattan networks in higher dimensions. In Proc.
19th Annu. Europ. Symp. on Algorithms (ESA’11),
volume 6942 of LNCS, pages 49–60. Springer, 2011.
To appear in Algorithmica.

[5] Z. Guo, H. Sun, and H. Zhu. Greedy construction of
2-approximate minimum Manhattan networks. Int. J.
Comput. Geom. Appl., 21(3):331–350, 2011.

[6] B. Lu and L. Ruan. Polynomial time approximation
scheme for the rectilinear Steiner arborescence prob-
lem. J. Comb. Optim., 4(3):357–363, 2000.

[7] X. Muñoz, S. Seibert, and W. Unger. The min-
imal Manhattan network problem in three dimen-
sions. In Proc. 3rd Int. Workshop Algorithms Comput.
(WALCOM’09), volume 5431 of LNCS, pages 369–380.
Springer, 2009.

[8] S. Rao, P. Sadayappan, F. Hwang, and P. Shor. The
rectilinear Steiner arborescence problem. Algorith-
mica, 7:277–288, 1992.

[9] W. Shi and C. Su. The rectilinear Steiner arbores-
cence problem is NP-complete. SIAM J. Comput.,
35(3):729–740.

84

http://arxiv.org/abs/1203.6481

⇤

⇤

85

86

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Topologically Safe Curved Schematization

⇤

Arthur van Goethem† Herman Haverkort† Wouter Meulemans†

Andreas Reimer‡ Bettina Speckmann†

Abstract

Traditionally schematized maps make extensive use
of curves. However, automated methods for schema-
tization are mostly restricted to straight lines. We
present a generic framework for topology-preserving
curved schematization that allows a choice of qual-
ity measures and curve types. Our fully-automated
approach does not need critical points or salient fea-
tures. We illustrate our framework with Bézier curves
and circular arcs.

1 Introduction

A schematized map uses shapes of low complexity to
represent geographic objects. So far, most research
on automated schematization has concentrated on
straight line segments with restrictions on the admis-
sible directions. Many manually produced schema-
tized maps, however, make use of curves [12]. Curves
have greater expressive power than line segments: sev-
eral line segments can often be replaced by a single,
low-degree curve. This can make it easier to interpret
maps (see Fig. 1).
When using curves in cartography we need topo-

logically sound results. Generalization and other geo-
processing operations are often implemented in recur-
sive processes that repeatedly make expensive checks
for topology violations. Removing detected intersec-
tions is a challenge as well, triggering more checks for
curve-curve intersections. To the best of our knowl-
edge, our framework is the first that ensures topol-
ogy preservation for curved schematization operations
while avoiding repeated checks for intersections.

Contribution. We describe a generic framework for
computing curved schematizations of simple polygons
that maintain the topology of the input. Our frame-
work segments the input polygon at a subset of its ver-
tices and fits curves to the resulting polygonal chains,

⇤A. van Goethem, B. Speckmann, and W. Meulemans
are supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 612.001.102 (AvG) and
no. 639.022.707 (BS and WM).

†Dept. of Mathematics and Computer Science, TU
Eindhoven, The Netherlands, a.i.v.goethem@tue.nl,
cs.herman@haverkort.net, w.meulemans@tue.nl, and
speckman@win.tue.nl

‡Institute of Geography, University of Heidelberg, Germany,
andreas.reimer@geog.uni-heidelberg.de

Figure 1: Languedoc-Roussillon [1], Corsica [2].

which consist of one or more (consecutive) edges of
the input polygon. To ensure that the result of this
operation is topologically correct, we use the Voronoi
cell of each chain and constrain the curves to remain
within these cells.
To use the framework two components need to be

specified. The first is a method to fit a simple curve
to a polygonal chain. The second is a distance mea-
sure which expresses how well the curve fits. There
are two requirements for a simple curve fit. First, the
curve must start and end at the endpoints of the cor-
responding chain. Second, the curve may not have
self-intersections. The distance measure can be any
function that assigns a non-negative value to the com-
bination of a curve and a chain. A low value should
indicate a high quality of fit. Straight lines are also
curves and could be used in our framework, resulting
in “classic” simplification.
The quality of the schematization depends on the

segmentation. We formulate the problem of finding
the best segmentation as an optimization problem
(Section 2). Hence we do not need critical points or
salient features to be specified by the user. To illus-
trate our framework we use Bézier curves (Section 3)
and area-preserving circular arcs (Section 4) to gen-
erate curved schematizations of territorial outlines.

Related work. Automated simplification and
smoothing with straight lines have received signifi-
cant attention over the years. Mustafa et al.[11] use
Voronoi cells for topologically safe simplification and
heuristics to speed up the process. Our framework
with straight lines and the directed Hausdor↵ distance
yields a similar setting. Van der Poorten and Jones
[18] use constrained Delaunay triangulations to find
and simplify features in a topologically safe way.
A variety of methods fit a (cubic) Bézier curve to

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

87

29th European Workshop on Computational Geometry, 2013

a polygonal line [9, 15, 16]. However, these meth-
ods often do not avoid intersections nor is it obvious
how to adapt the fitting process to avoid intersections
when fitting multiple curves. Schneider [15] applies
a heuristic similar to Douglas-Peucker to fit multi-
ple curves, in essence using critical points. Shao and
Zhou [16] also use critical point detection before fit-
ting Bézier curves. B-splines have been applied to ap-
proximate polygons [7, 14]. Intersections of di↵erent
splines, however, still need to be checked and resolved
separately. Existing work on automated schematiza-
tion of shapes is sparse. So far it has concentrated on
straight-line drawings.
Drysdale et al. [5] present an algorithm to compute

an approximation with a minimal number of circular
arcs for a given tolerance region and a set of “gates”.
However, requirements on these gates prevent a sig-
nificant complexity reduction. Heimlich and Held [8]
describe how to generate smooth approximations with
circular arcs using tolerance bands. Their framework
allows other curves, but cannot guarantee optimal re-
sults. Also, smooth approximations are not always
suitable for schematization. Neither of these methods
can incorporate area-preservation constraints.

2 Computing optimal segmentations

As stated earlier, the quality of the final schematiza-
tion depends on the segmentation. In this section we
describe how to e�ciently use dynamic programming
to find an optimal segmentation.
We first compute the edge-based Voronoi diagram

of the input polygon. Every Voronoi cell is a simple
polygon (potentially unbounded and with parabolic
parts) without holes. The Voronoi cell of a chain is
the union of the Voronoi cells of its edges. To guaran-
tee topological correctness, we ensure that the union
of cells remains a simple polygon without holes (see
Fig. 2).
To be able to quickly change the parameters of the

schematization, we pre-compute a two-dimensional
table T . Let P [i, j] denote the chain of the input
polygon from vertex i to vertex j. For i = j, this
is the entire polygon. Each entry T [i, j] in the table
will contain the curve fitted to P [i, j] and a value that
indicates the quality of the fit. For each entry of T

(a) (b)

Figure 2: (a) Dashed curve lies in the cell but violates
topology. (b) Union considers the pocket.

we compute the associated cell and fit a curve to the
chain. If the curve lies within the cell, we compute
the quality of the fit and store it. If not, we disallow
the use of this curve by setting T [i, j] = 1 to ensure
topological correctness.
Let F (v) represent the time required to fit a curve

to a chain with v vertices, check whether the curve
lies within the chain’s cell, and compute the quality
of the fit. Let n denote the number of vertices of
the polygon. Since the table has n2 entries, it takes
O(n2F (n)) time to compute the lookup table.

To obtain a schematization from the table T , we
select the curves representing a collection of consec-
utive chains which together constitute the complete
polygon. We distinguish two variants, as described
below. We first explain, for each of these variants,
how to compute the value of the optimal solution, as-
suming that we start at vertex 1. In the presentation
of both variants we assume that T [i, j] denotes only
the quality of fit of the curve fitted to P [i, j]. For sim-
plicity of explanation we define T [j, n+ 1] = T [j, 1].

Min-# problem. For the min-# problem, we wish
to minimize the number of curves that are used, if
the distance of each curve has to be at most ✏. The
minimum number of curves needed can be determined
by computing the values of the following expression
for i = 1 up to i = n+ 1:

OPT [i] =

(
0, if i = 1

min1j<i and T [j,i]✏ OPT [j] + 1, if i > 1

The computation takes O(n2) time and the end re-
sult is OPT [n+ 1]. A solution is guaranteed to exist
if the curve representing a single line segment is the
line segment itself and has distance zero.

Min-✏ problem. For the min-✏ problem, we wish
to minimize the maximum distance of the selected
curves, while using at most K curves. The minimum
achievable distance can be determined by computing
the values of the following expression for i = 1 up to
i = n+ 1 and for k = 1 up to k = K:

OPT [i, k] =

8
><

>:

T [1, i], if k = 1

min

OPT [i, k � 1],

min1j<i (max (T [j, i], OPT [j, k � 1]))

!
, if k > 1

The computation takes O(n2K) time and the end
result is OPT [n + 1,K]. A solution is guaranteed to
exist if the curve fitting method can fit a curve to a
chain that starts and ends at the same point (i.e. the
entire polygon with a given start vertex).
To compute the best solution, we repeat the above

computations for each vertex as starting vertex. We
obtain the actual schematization by keeping track of
the choices made during the computation of OPT .

88

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

The initialized table OPT [i, k] for the min-✏ prob-
lem is independent of the scale or complexity param-
eter. Hence, one table can be used to create multiple
schematizations with di↵erent parameter values. As
a byproduct of querying for k curves, we obtain all
results using less than k curves. So if we run the
query for k = n once, we obtain all possible schema-
tizations and we can store these instead of the table.
A query for di↵erent values then becomes a simple
lookup. We can also handle queries for the min-#
problem by computing the maximum distance used in
each of the solutions and performing a binary search.

3 Cubic Bézier curves

In this section we show how to use our framework with
Bézier curves. We describe a method to fit a Bézier
curve to a chain and specify a distance measure.

Distance measure. Assume that we are given a
Bézier curve C and a chain S with m vertices. In
contrast to fitting a curve to a set of data points, we
want to fit a curve to a chain. Therefore, we base our
distance measure on a dense sampling of S. These
samples are regularly spaced in the parameter space
of C. Each of these samples has a corresponding point
along S as parameterized by length.
We desire long curves that approximate the data

well, since such curves can frequently be observed
in manually drawn curved schematizations. The dis-
tance measure of C is, therefore, a weighted average
of the squared distance between corresponding points,
divided by the length of S. Formally, our distance
measure between curve C and chain S is:

P2m
i=0 kC(i/2m)� S(i/2m)k2 ⇤ (i�m)2

length(S) ⇤
P2m

i=0(i�m)2
, where

length(S) : Euclidean length of S;

C(t), S(t) : position on C or S, as parameterized by t;

ku� vk : Euclidean distance between points u and v.

When curves do not match the local contour at their
endpoints, this may create visually salient points not
present in the input data (see Fig. 3a). To avoid such
visual artifacts we use a weighted average that assigns
a high weight to samples near the endpoints and a low
weight to the midsection. As a result, features along
the midsections of curves may disappear (see Fig. 3b).
We deem the disappearance of features less disturbing
than the appearance of features that do not exist.
To exclude self-intersecting curves we define the dis-

tance measure of a self-intersecting curve to be infin-
ity. Self-intersection of a cubic Bézier curve is tested
by examining the control points [17].

Fitting a cubic Bézier curve. For fixed tan-
gents at the endpoints, Schneider [15] shows how
to algebraically compute the Bézier curve optimizing

(a) (b)

Figure 3: (a) Regular squared error. (b) Weighted
squared error.

the least-squares measure in linear time. A similar
method can be used to optimize a weighted measure.
We direct the initial tangents towards the furthest
vertex on either side of the straight line connecting
the endpoints (see [9]). Based on these tangents, the
algorithm by Schneider optimizes the distance of the
second and third control point. We subsequently fix
the distance between control points P0 and P1, and
between P2 and P3 and optimize the tangents for ei-
ther side algebraically. If desired, this process of sub-
sequently optimizing the distance and tangents can be
repeated. In our experiments, a few iterations were
su�cient to obtain a stable solution.
Topological validity is tested by checking for inter-

sections between a polygonal approximation of the
Voronoi cell and the convex hull of the control points.
If required the curve can be subdivided up to a con-
stant number of times using De Casteljau’s algorithm
[4] to obtain a tighter fit around the curve.

Algorithmic complexity. Fitting a Bézier curve
takes O(n) time for a single iteration. We repeat the
process until the solution is stable, which takes 3 to 6
iterations in our experiments. Thus, assuming a con-
stant upper bound on the number of iterations, the to-
tal preprocessing time within our framework is O(n3).

Results. Fig. 4 and 5 show results of our framework.
Each depicts a schematization of di↵erent complexity
on top of the input polygon. Even a small number of
curves result in recognizable and pleasing shapes.

Figure 4: Australia with 5, 10, and 20 curves.

Figure 5: Vietnam with 7, 10, and 20 curves.

89

29th European Workshop on Computational Geometry, 2013

4 Circular arcs

Inspired by recent work on area-preserving schema-
tization [3] and circular-arc graph drawing [6], we
use our framework for area-preserving circular-arc
schematizations. Given a chain, the circular arc with
the same start and end vertex that preserves the area
on each side of it is unique. It is computed by fit-
ting a circular segment with a signed area equal to
that of the chain. This requires numerical meth-
ods. As distance measure we use the continuous
Fréchet distance, extended for curves [13]. We find
that F (n) = O(n logn) and thus, precomputing the
lookup table requires O(n3 logn) time.

Results. Fig. 6 and 7 show some results using area-
preserving circular arcs. A very low number of arcs
results in a very stylized shape. The results typically
retain some features, but are hard to recognize with-
out context. A few more arcs give a stylized or playful
appearance and make the shape more recognizable.

Figure 6: China with 5, 10, and 20 arcs.

Figure 7: France with 5, 12, and 20 arcs.

References

[1] R. Brunet. La population du Languedoc-Roussillon
en 1990 et la croissance récente. MappeMonde,
91(1):34–36, 1991.

[2] R. Brunet. La Corse, région d’Europe. Mappemonde,
76(4):1–16, 2004.

[3] K. Buchin, W. Meulemans, and B. Speckmann. A
new method for subdivision simplification with ap-
plications to urban-area generalization. In Proc 19th

ACM GIS, pages 261–270, 2011.

[4] P. De Casteljau. Outillages méthodes calcul. Techni-
cal report, A. Citroën, 1959.

[5] R. Drysdale, G. Rote, and A. Sturm. Approximation
of an open polygonal curve with a minimum number
of circular arcs and biarcs. CGTA, 41(1-2):31–47,
2008.

[6] C. Duncan, D. Eppstein, M. Goodrich, S. Kobourov,
and M. Lö✏er. Planar and poly-arc Lombardi draw-
ings. Graph Drawing (LNCS 7034), pages 308–319,
2012.

Figure 8: (Top) Downsized map of Antarctica [10].
(Bottom) Diagrams using results of our framework.

[7] E. Guilbert and H. Lin. Isobathymetric line simplifi-
cation with conflict removal based on a B-spline snake
model. Marine Geodesy, 30(1-2):169–195, 2007.

[8] M. Heimlich and M. Held. Biarc approximation,
simplification and smoothing of polygonal curves by
means of Voronoi-based tolerance bands. IJCGA,
18(3):221–250, 2008.

[9] A. Masood and S. Ejaz. An e�cient algorithm for
robust curve fitting using cubic Bezier curves. In Proc

6th ICIC (LNAI 6216), pages 255–262, 2010.

[10] Militärgeographisches Amt (ed.). Antarktis
1:30.000.000. Atlas der militärischen landeskunde

DMG-1982, 1982.

[11] N. Mustafa, E. Koutsofios, S. Krishnan, and
S. Venkatasubramanian. Hardware-assisted view-
dependent map simplification. In Proc 17th SCG,
pages 50–59, 2001.

[12] A. W. Reimer. Understanding chorematic diagrams:
towards a taxonomy. The Cartographic Journal,
47(4):330–350, 2010.

[13] G. Rote. Computing the Fréchet distance between
piecewise smooth curves. Computational Geometry:

Theory and Appl., 37(3):162–174, 2007.

[14] E. Saux and M. Daniel. Data reduction of polygo-
nal curves using B-splines. Computer-Aided Design,
31(8):507–515, 1999.

[15] P. J. Schneider. An algorithm for automatically fit-
ting digitized curves. In Graphic Gems, pages 612–
626. Academic Press Professional, 1990.

[16] L. Shao and H. Zhou. Curve fitting with Bezier
cubics. Graphical models and image processing,
58(3):223–232, 1996.

[17] M. Stone and T. DeRose. A geometric characteri-
zation of parametric cubic curves. ACM Trans. on

Graph., 8(3):147–163, 1989.

[18] P. van der Poorten and C. Jones. Characterisation
and generalisation of cartographic lines using De-
launay triangulation. International Journal of GIS,
16(8):773–794, 2002.

90

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Straight Line Triangle Representations⇤

Nieke Aerts† Stefan Felsner†

Abstract

Which plane graphs admit a straight line representa-
tion such that all faces have the shape of a triangle?
We present a characterization based on flat angle as-
signements, i.e., selections of angles of the graph that
have size ⇡ in the representation. Another character-
ization is in terms of contact systems of pseudoseg-
ments. We use discrete harmonic functions to show
that contact systems of pseudosegments that respect
certain conditions are stretchable.
The drawback of the characterization is that we are

not able to e↵ectively check whether a given graph
admits a flat angle assignment that fulfills the con-
ditions. Hence it is still open to decide whether the
recognition of graphs that admit straight line triangle
representation is polynomially tractable.

1 Introduction

Planar graphs and their geometric representations
have been studied intensively over the years. Tutte
showed that 3-connected planar graphs have convex
drawings (rubber band representation) [11]. Koebe
has shown that they can be represented as circle con-
tact graphs [9]. They also admit triangle contact rep-
resentations [4].
In this paper we aim at characterizing the class of

planar graphs that admit a straight line representa-
tion in which all faces are triangles. Haas et al. present
a necessary and su�cient condition for a graph to be
a pseudo-triangulation [7], however this condition is
not su�cient for a graph to have the desired straight
line triangle representation.
The problem has been studied in the dual set-

ting, i.e., in the setting of side contact representa-
tions of planar graphs with triangles. Gansner, Hu
and Kobourov [6] show that outerplanar graphs, grid
graphs and hexagonal grid graphs can be represented
as Touching Triangle Graphs (TTG’s) and give a lin-
ear time algorithm to find the representation. Alam,
Fowler and Kobourov [2] consider proper TTG’s, i.e.,
the union of all triangles of the TTG is a triangle
and there are no holes. They present a necessary and
a slightly weaker su�cient condition for biconnected

⇤
The full version of this paper can be found online [1]

†
Institut für Mathematik, Technische Universität Berlin,

Germany, {aerts,felsner}@math.tu-berlin.de, Partially

supported by DFG grant FE-340/7-2 and ESF EuroGIGA

project GraDR

outerplanar graphs to have a TTG. Kobourov, Mon-
dal and Nishat [8] present construction algorithms
for proper TTG’s of 3-connected cubic graphs and
some grid graphs and a recognition algorithm for
proper TTG’s.
Here is the formal introduction of the main charac-

ter for this paper.

Definition 1 A plane drawing of a graph such that

• all the edges are straight line segments and

• all the faces, including the outer face, bound a

non-degenerate triangle

is called a straight line triangle representation
(SLTR).

Figure 1: A graph and one of its SLT Representations.

Clearly every straight line drawing of a triangula-
tion is an SLTR. So the class of planar graphs ad-
mitting an SLTR is rich. On the other hand, graphs
admitting an SLTR can not have a cut vertex. Being
well connected, however, is not su�cient as shown e.g.
by the cube graph.
To simplify the discussion we assume that the input

graph is given with a plane embedding and a selection
of three vertices of the outer face that are designated
as corner vertices for the outer face. These three ver-
tices are called suspension vertices.
The two edges of a degree two vertex that is not a

suspension are aligned in every SLTR. Hence, we may
replace the vertex and its incident edges by a single
edge. Such an operation is called a vertex reduction.
With vertex reductions we eliminate all the degree
two vertices except for degree two vertices that are
suspensions.
A plane graph G with suspensions s1, s2, s3 is said

to be internally 3-connected when the addition of a
new vertex v1 in the outer face, that is made adjacent
to the three suspension vertices, yields a 3-connected
graph.

Proposition 2 If a graph G admits an SLTR with

s1, s2, s3 as corners of the outer triangle and no vertex

reduction is possible, then G is internally 3-connected.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

91

29th European Workshop on Computational Geometry, 2013

By Proposition 2 we may assume that the graphs
we consider are internally 3-connected since any graph
that is not internally 3-connected but does admit an
SLTR, is a subdivision of an internally 3-connected
graph.
In Section 2 we present necessary conditions for the

existence of an SLTR in terms of what we call a flat
angle assignment. A flat angle assignment that fulfills
the conditions induces a partition of the set of edges
into a set of pseudosegments. With the aid of discrete
harmonic functions we can show that in our case the
set of pseudosegments is stretchable. Hence, the nec-
essary conditions are also su�cient. The drawback of
the characterization is that we are not aware of an ef-
fective way of checking whether a given graph admits
a flat angle assignment that fulfills the conditions.
In Section 3 of the full paper, we use our result to

give a new, simpler proof of a theorem of de Fraysseix
and Ossona de Mendez [3] about stretchable systems
of pseudosegments.

2 Necessary and Su�cient Conditions

Consider a plane, suspended, internally 3-connected
graph G = (V,E). Suppose that G admits an SLTR.
This representation induces a set of flat angles, i.e.,
incident pairs (v, f) such that vertex v has an angle
of size ⇡ in the face f .
Since G is internally 3-connected every vertex has

at most one flat angle. Therefore, the flat angles can
be viewed as a partial mapping of vertices to faces.
The outer angle of suspension vertices exceeds ⇡,
hence, suspensions have no flat angle. Since each
face f (including the outer face) is a triangle, each
face has precisely three angles that are not flat. In
other words every face f has |f |� 3 incident vertices
that are assigned to f . This motivates the definition:

Definition 3 A flat angle assignment (FAA) is a

mapping from a subset U of the non-suspension ver-

tices to faces such that

[C

v

] Each vertex of U is assigned to exactly one face,

[C

f

] For every face f , precisely |f | � 3 vertices are

assigned to f .

Not every FAA induces an SLTR. An example is given
in Figure 2.

a

b

c

d e f

g

Figure 2: A graph with an FAA given by the arrows,
an arrow assigns a vertex to a face. When all as-
signed angles are stretched, all vertices but b have to
be aligned between a and c.

Hence, we have to identify another condition. To
state this we define: If H is a connected subgraph

of the plane graph G, then we call the closed walk
corresponding to the outer face of H the outline cycle
�(H) of H.

An outline cycle of G is a closed walk that can be
obtained as outline cycle of some connected subgraph
of G. Outline cycles may have repeated edges and
vertices, see Fig. 3. The interior int(�) of an outline
cycle � = �(H) consists of H together with all ver-
tices, edges and faces of G that are contained in the
area enclosed by �.

Figure 3: Three examples of outline cycles.

Proposition 4 An SLTR obeys the following condi-

tion C

o

:

[C

o

] Every outline cycle that is not the outline cy-

cle of a path, has at least three geometrically

convex corners.

Condition C
o

has the disadvantage that it depends
on a given SLTR, hence, it is useless for deciding
whether a planar graph G admits an SLTR. The fol-
lowing definition allows to replace C

o

by a combina-
torial condition on an FAA.

Definition 5 Given an FAA a vertex v of an outline

cycle � is a combinatorial convex corner for � if

• v is a suspension vertex, or

• v is not assigned to a face and there is an edge e
incident to v with e 62 int(�), or

• v is assigned to a face f , f 62 int(�) and there

exists an edge e incident to v with e 62 int(�).

γ γ

Figure 4: Combinatorially Convex Corners. Left, v
is not assigned and has an edge reaching to a ver-
tex outside of int(�). Right, the arrow represents the
assignment of the vertex.

Proposition 6 Let G admit an SLTR �, that in-

duces the FAA and let H be a connected subgraph

of G. If v is a geometrically convex corner of the

outline cycle �(H) in �, then v is a combinatorially

convex corner of �(H) with respect to .

Proof. If v is a suspension vertex it is clearly geo-
metrically and combinatorially convex.
Let v be geometrically convex and suppose that v is

not a suspension and not assigned by . In this case

92

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

v is interior and, with respect to �, the outer angle at
v exceeds ⇡. Therefore at least two incident faces of
v are outside of �. These faces can be chosen to be
adjacent, hence, the edge between them is an edge e
with e 62 int(�). This shows that v is combinatorially
convex.
Let v be geometrically convex and suppose that v is

assigned to f by . If f 2 int(�), then the inner angle
of v with respect to � is at least ⇡. This contradicts
the fact that v is geometrically convex. Hence f 62
int(�). If there is no edge e incident to v such that e 62
int(�), then v has an angle of size ⇡ with respect to �.
This again contradicts the fact that v is geometrically
convex. Therefore, if v is geometrically convex and
assigned to f , then f 62 int(�) and there exists an
edge e incident to v such that e 62 int(�). This shows
that v is a combinatorial convex corner for �. ⇤

The proposition enables us to replace the condition
on geometrically convex corners w.r.t. an SLTR by a
condition on combinatorially convex corners w.r.t. an
FAA.
[C⇤

o

] Every outline cycle that is not the outline cy-
cle of a path, has at least three combinatorially
convex corners.

From Proposition 4 and Proposition 6 it follows that
this condition is necessary for an FAA that belongs
to an SLTR. It is shown in Theorem 11 below, that
if an FAA obeys C⇤

o

then it belongs to an SLTR. In
anticipation of this result we say that an FAA obeying
C⇤

o

is a good flat angle assignment and abreviate it as
a GFAA.
Next we argue that a GFAA induces a contact fam-

ily of pseudosegments.

Definition 7 A contact family of pseudosegments is

a family {c
i

}
i

of simple curves c
i

: [0, 1] ! R2
, with

c(0) 6= c(1), such that any two curves c
i

and c
j

(i 6= j)
have at most one point in common. If c

i

and c
j

have

a common point, then this point is an endpoint of (at

least) one of them.

A GFAA on a graph G gives rise to a relation ⇢
on the edges: Two edges, both incident to v and f
are in relation ⇢ if and only if v is assigned to f . The
transitive closure of ⇢ is an equivalence relation.

Proposition 8 The equivalence classes of edges of G
defined by ⇢ form a contact family of pseudosegments.

Definition 9 Let ⌃ be a family of pseudosegments

and S a subset of ⌃. A point p of a pseudosegment

from S is a free point for S if

1. p is an endpoint of a pseudosegment in S, and
2. p is not interior to a pseudosegment in S, and
3. p is incident to the unbounded region of S, and
4. p is a suspension or p is incident to a pseudoseg-

ment that is not in S.

We now give a relation between a GFAA and a fam-
ily of pseudosegments that is induced by the GFAA.

Lemma 10 Let a GFAA on a plane, internally 3-

connected graph G. For every subset S of the family

of pseudosegments associated with , it holds that, if
|S| � 2 then S has at least 3 free points.

Given an internally 3-connected, plane graph G
with a GFAA. To find a corresponding SLTR we aim
at representing each of the pseudosegments induced
by the FAA as a straight line segment. If this can be
done, every assigned vertex will be between its two
neighbors that are part of the same pseudosegment.
This property can be modeled by requiring that the
coordinates p

v

= (x
v

, y
v

) of the vertices of G satisfy
a harmonic equation at each assigned vertex.
Indeed if uv and vw are edges belonging to a pseu-

dosegment s, then the coordinates satisfy

x
v

= �
v

x
u

+ (1� �
v

)x
w

,

y
v

= �
v

y
u

+ (1� �
v

)y
w

.

The parameter �
v

is some number stricly between 0
and 1. The theory of harmonic functions applied to
(plane) graphs is well explained in [10].
In the SLTR every not assigned vertex is placed in

a weighted barycenter of its neighbors. In terms of
coordinates this can be written as

x
v

=
X

u2N(v)

�
vu

x
u

, y
v

=
X

u2N(v)

�
vu

y
u

with
X

u2N(v)

�
vu

= 1 and �
vu

> 0.

These are again harmonic equations. The vertices
whose coordinates are not restricted by harmonic
equations are called poles. In the given case the sus-
pension vertices are the three poles of the harmonic
functions for the x and y-coordinates. The coordi-
nates for the suspension vertices are the corners of
some non-degenerate triangle.
The theory of harmonic funcions [10] implies that

for every choice of the parameters �
v

and �
vu

com-
plying with the conditions, the system has a unique
solution.

Now we state our main result, it shows that the
necessary conditions are also su�cient.

Theorem 11 Given an internally 3-connected, plane

graph G and ⌃ a family of pseudosegments associated

to an FAA, such that each subset S ✓ ⌃ has three free

points or cardinality at most one. The unique solution

of the system of equations that arises from ⌃, is an

SLTR.

Proof. The proof consists of 7 arguments, which
together yield that the drawing induced from the
GFAA via a solution of the harmonic system is a
non-degenerate, plane drawing. The proof has been
inspired by the proof of Colin de Verdière [5] for con-
vex straight line drawings of plane graphs via spring

93

29th European Workshop on Computational Geometry, 2013

embeddings. For this abstract we only indicate the
steps.
1. Pseudosegments get Segments.
2. Outer Face is Convex.
3. No Concave Angles.
4. No Degenerate Vertex. A vertex is degenerate if
it is placed on a line, together with at least three
of its neighbors. The proof of this property is quite
involved, it makes use of the absence of K3,3 minors
in G.
5. Preservation of the Embedding. The rotation sys-
tem at all vertices is preserved.
6. No Edge Crossings.
7. No Edges or Angles of Size 0. ⇤

Hence, we obtained equivalence between the SLTR,
the FAA satisfying C

v

, C
f

and C⇤
o

, and a stretchable
system of pseudosegments that arises from this FAA.

3 Stretchability of Systems of Pseudosegments

A contact system of pseudosegments is stretchable if it
is homeomorphic to a contact system of straight line
segments.
De Fraysseix and Ossona de Mendez characterized

stretchable systems of pseudosegments [3]. Their re-
sult is based on the notion of an extremal point.

Definition 12 Let ⌃ be a family of pseudosegments

and S a subset of ⌃. A point p is an extremal point
for S if

1. p is an endpoint of a pseudosegment in S, and
2. p is not interior to a pseudosegment in S, and
3. p is incident to the unbounded region of S.

Theorem 13 (De Fraysseix & O. de Mendez)
A contact family ⌃ of pseudosegments is stretchable

if and only if each subset S ✓ ⌃ of pseudosegments

with |S| � 2, has at least 3 extremal points.

Our notion of a free point (Def. 9) is more restric-
tive than the notion of extremal points from [3, Sec-
tion 5.2]. However, in the case of families of pseu-
dosegments that live on a plane graph via an FAA,
the two notions coincide. The following reformula-
tion of Theorem 11 replaces free points by extremal
points:

Proposition 14 Given an internally 3-connected,

plane graph G and ⌃ a family of pseudosegments as-

sociated to an FAA, such that each subset S ✓ ⌃ has

three extremal points or cardinality at most one. The

unique solution of the system of equations that arises

from ⌃, is an SLTR.

4 Conclusion and Open Problems

We have given necessary and su�cient conditions for
a 3-connected planar graph to have an SLT Repre-
sentation. Given an FAA and a set of rational pa-
rameters {�

i

}
i

, the solution of the harmonic system

can be computed in strongly polynomial time. Hence,
a degenerate solution can be identified in polynomial
time. It shows that the FAA is not good.
Checking whether an FAA satisfies C

o

can be done
in polynomial time, but a graph may admit di↵er-
ent assignments of which only some are good. We
are not aware of an e↵ective way of finding a GFAA.
We therefore leave the problem: Is the recognition of
graphs that have an SLTR (GFAA) in P?
Given a 3-connected planar graph and a GFAA,

interesting optimization problems arise, e.g. find the
set of parameters {�

i

}
i

such that the smallest angle in
the graph is maximized, or the set of parameters such
that the length of the shortest edge is maximized.

References

[1] N. Aerts and S. Felsner, Straight line triangle
representations. http://page.math.tu-berlin.de/

~

aerts/pubs/sltr.pdf.

[2] M. J. Alam, J. Fowler, and S. G. Kobourov,
Outerplanar graphs with proper touching triangle rep-
resentations. unpublished manuscript.

[3] H. de Fraysseix and P. O. de Mendez, Barycen-
tric systems and stretchability, Discrete Applied

Mathematics, 155 (2007), pp. 1079–1095.

[4] H. de Fraysseix, P. O. de Mendez, and
P. Rosenstiehl, On triangle contact graphs, Com-

binatorics, Probability & Computing, 3 (1994),

pp. 233–246.

[5] Y. C. de Verdière, Comment rendre géodésique
une triangulation d’une surface?, L’Enseignement

Mathématique, 37 (1991), pp. 201–212.

[6] E. R. Gansner, Y. Hu, and S. G. Kobourov, On
touching triangle graphs, in Graph Drawing, Proceed-

ings GD’10, vol. 6502 of Lecture Notes in Computer

Science, 2011, pp. 250–261.

[7] R. Haas, D. Orden, G. Rote, F. Santos, B. Ser-
vatius, H. Servatius, D. Souvaine, I. Streinu,
and W. Whiteley, Planar minimally rigid graphs
and pseudo-triangulations, in Proceedings of the nine-

teenth annual symposium on Computational geom-

etry, SCG ’03, New York, NY, USA, 2003, ACM,

pp. 154–163.

[8] S. G. Kobourov, D. Mondal, and R. I. Nishat,
Touching triangle representation for 3-connected pla-
nar graphs, in Graph Drawing, Proceedings GD’12,

2012.

[9] P. Koebe, Kontaktprobleme der konformen abbil-
dung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys.

Kl., 88 (1936), pp. 141–164.

[10] L. Lovász, Geometric representations of graphs.
http://www.cs.elte.hu/

~

lovasz/geomrep.pdf,

Draft version December 11, 2009.

[11] W. T. Tutte, How to draw a graph, Proc. of the

London Math. Society, 13 (1963), pp. 743–767.

94

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Reconstructing Polygons from Embedded Straight Skeletons

Therese Biedl⇤ Martin Held† Stefan Huber†

Abstract

A straight skeleton is a well-known geometric struc-
ture, and several algorithms exist to construct the
straight skeleton for a given polygon. In this paper,
we ask the reverse question: Given the straight skele-
ton (in form of a tree with a drawing in the plane,
but with the exact position of the leaves unspecified),
can we reconstruct the polygon? We show that in
most cases there exists at most one polygon; in the
remaining case there is an infinite number of polygons
determined by one angle that can range in an interval.
We can find this (set of) polygon(s) in linear time in
the Real RAM computer model.

1 Introduction

The straight skeleton S(P) of a polygon P is a well-
known geometric data structure. It is defined by o↵-
setting a polygon inwards, thereby moving all edges
at constant speed, and tracing the movement of the
polygon’s vertices. The straight skeleton is always a
tree for a polygon without holes. We refer to Huber
and Held [3] for an extensive and up-to-date discus-
sion of theory and applications of straight skeletons.
In this paper, we consider the following problem:

Given a straight skeleton, can we re-construct its
defining polygon? And if so, is the polygon unique
(up to o↵setting)?
The answer to this problem depends on what we

mean by “given a straight skeleton.” If the locations
of all nodes of the tree are known, then the vertices
of the polygon are the leaves of the straight skeleton
and the problem is trivial. At the other end of the
spectrum, if the straight skeleton is given as an ab-
stract tree, then there always exists a polygon (even a
convex polygon) for which this is the straight skeleton
[1], and it is not unique. Somewhat in-between is a
problem from phylogenetic tree reconstruction, where
we are given the edge lengths and the cyclic order of
edges at vertices; here partial results are known for
trees that are stars or caterpillars [1].
In related work, Liotta and Meijer [4] showed that

for any abstract tree T , there exists a convex point
set S such that the Voronoi diagram of S equals T .

⇤David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, Ontario N2L 1A2, Canada. Supported
by NSERC. Research was done while the author was visiting
Universität Salzburg.

†Universität Salzburg, Computerwissenschaften, A–5020
Salzburg, Austria. [held,shuber]@cosy.sbg.ac.at

(Their result actually follows from Dillencourt’s re-
sult [2] that all outerplanar graphs can be realized as
Delaunay triangulations of points in convex position.)
The proof in [4] resembles the one in [1]. Questioning
whether perhaps their proof could be used to show
the results in [1] led us to the following problem:

Problem 1 (Voronoi-matching problem (VMP))
Given a Voronoi diagram T of a set of points in

convex position, does there exist a polygon P such

that its straight skeleton S(P) coincides with T?

Hence our setup of “given a straight skeleton” is
that we are given a drawing of the tree, but the ver-
tices of the polygon may be anywhere on rays towards
the leaves at infinity. Our results will not use the fact
that the tree came from a Voronoi diagram, and we
hence solve the more general problem:

Problem 2 (Tree-matching problem (TMP))
Given a planar drawing of a tree T with n leaves on

rays towards infinity, does there exist a polygon P

with n vertices that lie on the edges incident to the

leaves such that S(P) coincides (inside P) with T?

We often call the edges incident to the leaves (i.e.,
on the infinite rays) the leaf edges while all other edges
are called inner edges.
The next problem is derived from TMP by only

considering the leaf edges, and will be a crucial first
step towards solving TMP.

Problem 3 (Bisector-matching problem (BMP))
Given a set of n non-intersecting rays b1, . . . , bn, find

a polygon P with vertices v1, . . . , vn such that v

i

lies on b

i

and the edge-bisector at v

i

has the same

supporting line as b

i

, for 1 i n, with the ray

leading towards the outside.

p1

p2

p3p4

p5

p6

v1

v2

v3

v4

v5

v6

Figure 1: The straight skeleton of the (red) polygon
v1, . . . , v6 matches the Voronoi diagram of the (green)
points p1, . . . , p6.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

95

29th European Workshop on Computational Geometry, 2013

We will make two simplifying assumptions on the
input bisectors which hold if the input comes from
VMP, see Sec. 2.
Our results. In this paper, we first solve BMP, and
then use it to solve TMP. In particular, given a draw-
ing of a tree, we show that either there exists a unique
polygon for which this is the straight skeleton (up to
o↵setting the polygon), or there exist infinitely many
such polygons. The solution set is described by an
interval for one angle at a vertex.

2 Notation and Basics

The input to TMP is a tree T that has a planar
(crossing-free) drawing in 2D, and that has n leaves
(at infinity). Enumerating the leaves of T in coun-
terclockwise order, let b

i

(for i = 1, . . . , n) be the ray
that represents the edge incident to the i-th leaf, and
consider b

i

to be directed towards the leaf. For BMP,
we are only given these rays b1, . . . , bn. Denote by `

i

the line that supports b
i

.
Our first assumption is that `

i

and `

i+1 intersect
in a point, say o

i

, for all i, see Fig. 2. (All indices
k outside {1, . . . , n} are taken as 1 + (k � 1) mod n.)
Our second assumption is that o

i

is outside the rela-
tive interior of b

i

and b

i+1. If the input stems from
VMP then these assumptions are automatically sat-
isfied since the rays form increasing angles with the
x-axis.
By definition line `

i

contains o

i

, o

i�1 and b

i

. Our
second assumption implies that while going along line
`

i

, we encounter (in order) either o

i

, o
i�1 and b

i

or
o

i�1, oi and b

i

. Let d
i

be ko
i

o

i�1k if the order along
line `

i

is o
i

, o

i�1, bi and �ko
i

o

i�1k otherwise.
Let �

i

be the angle between `

i

and `

i+1, measured
in the wedge at o

i

that contains both b

i

and b

i+1. We
will need the following aggregation of �

i

:

B

i

:= �1 � �2 + · · ·+ (�1)i+1
�

i

=
iX

k=1

(�1)k+1
�

k

.

To solve BMP we would like to find vertices
v1, . . . , vn that lie on b1, . . . , bn. We can parameter-
ize them by giving for each vertex v

i

the distance s

i

b1

b2
b3

o1
o2

�1�2
↵1

↵2

↵2

v1

v2

v3

Figure 2: Figure to illustrate b

i

, o
i

, �
i

,↵

i

for (part
of) the Voronoi tree of Fig. 1.

from o

i

. Each edge (v
i

, v

i+1) forms an inner angle ↵

i

with the line `

i

supporting b

i

, see Fig. 2. We want
the b

i

’s to be bisectors at v
i

and, hence, demand that
↵

i

is also the inner angle of edge (v
i�1, vi) with `

i

.
For TMP, we additionally require the inner edges of
the given tree T to be bisectors of the corresponding
edges of the polygon.

3 Solving the Bisector-Matching Problem

Incremental polygon construction. We first dis-
cuss an incremental construction that simply tries to
satisfy all conditions, and from it, derive an algorithm
to solve the problems later.
Recall that we can describe the position of vertex

v1 by specifying its distance s1 from o1. As our main
parameter, we use the angle ↵1 subtended between b1

and the edge (v1, v2).
We claim that knowledge of s1 and ↵1 determines

the full polygon. To see this, consider the triangle
�(o1, v1, v2). This triangle has angles ↵1,�1 and ↵2,
hence ↵2 = ⇡ � �1 � ↵1. Also, by the sine-equation
ko1v2k
sin↵1

= ko1v1k
sin↵2

, which with s

i

= ko
i

v

i

k and the defi-
nition of d

i

gives

s2 = ko2v2k = ko1v2k+ d2 =
sin↵1

sin↵2
s1 + d2.

Therefore, we can determine ↵2 and s2 from ↵1 and
s1, and so forth, and hence the whole polygon.

We observe that the above iteration may run into
problems in the following cases:

1. Extending the line from v

i

at angle ↵

i

yields a
ray that does not hit line `

i+1. This occurs if
⇡ � �

i

� ↵

i

< 0. In terms of the equations above
this means ↵

i+1 < 0.

2. Extending the line from v

i

at angle ↵

i

we hit
line `

i+1, but not within b

i+1. This occurs if the
computed value of s

i+1 is smaller than what is
needed to be within b

i+1.

3. ↵

n+1 6= ↵1, i.e., the last computed angle does
not equal the initial starting angle, and hence b1

is not a bisector at v1.

4. s

n+1 6= s1, i.e., while all angles are correct, the
polygon has either opened up or closed down like
a spiral and the vertices do not match up.

In all these cases, we have two possible sources for
errors: The starting angle ↵1 could have been wrong,
or the distance s1 of v1 to o1 was too small. We now
show how to use this error-information to first find a
suitable value of ↵1 (if one exists), and then a suitable
value of s1 (if one exists), thus solving BMP.

Achieving ↵

n+1 = ↵1. Recall that we computed
that ↵2 = ⇡�↵1��1, and generally ↵

i+1 = ⇡�↵

i

��

i

.
A simple proof by induction gives:

96

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Lemma 1 We have

↵

i

=

⇢
↵1 +B

i�1 if i is odd,

⇡ � (↵1 +B

i�1) if i is even.

In order to obtain a closed polygon in our in-
cremental construction scheme it is necessary that
↵

n+1 = ↵1. By Lemma 1, we have ↵

n+1 = ↵1 + B

n

if n is odd and ↵

n+1 = ⇡ � (↵1 + B

n

) otherwise. So
achieving ↵

n+1 = ↵1 is equivalent to

B

n

=

(
0 if n is even,

2↵1 � ⇡ if n is odd.
(1)

Therefore, if n is odd, then ↵1 = 1
2 (⇡ + B

n

) is
the only possible value of ↵1 for which the iterative
procedure could give a set of feasible angles. If n is
even, then all values of ↵1 yield ↵

n+1 = ↵1 if B
n

= 0,
and none does otherwise.

Achieving s

n+1 = s1. Recall that s

i

denotes the
distance of v

i

from o

i

, and that we showed that s2 =
sin↵1
sin↵2

s1 + d2, and generally

s

i+1 =
sin↵

i

sin↵
i+1

s

i

+ d

i+1.

A simple proof by induction then shows:

Lemma 2 We have

s

i+1 =
1

sin↵
i+1

s1 sin↵1 +

i+1X

k=2

d

k

sin↵
k

!
.

This lemma implies s
n+1 = s1 if and only if

nX

k=2

d

k

sin↵
k

= 0. (2)

Note that this equation is independent of the initial
choice of s1. In particular, we can simply test whether
s

n+1 = s1 if there is only a unique choice of ↵1 (as
in the case of n odd.) If there are multiple choices
of ↵1, then Equation (2) can be used to determine a
suitable ↵1 as follows. Recall that sin(⇡�↵) = sin↵,
and therefore sin↵

k

= sin(↵1 + B

k�1) regardless of
whether k is even or odd. Therefore

nX

k=2

d

k

sin↵
k

=
nX

k=2

d

k

sin(↵1 +B

k�1)

=
nX

k=2

d

k

(sin↵1 cosBk�1 + cos↵1 sinBk�1)

= sin↵1

nX

k=2

d

k

cosB
k�1

| {z }
=:A

+cos↵1

nX

k=2

d

k

sinB
k�1

| {z }
=:B

Note that A and B are independent of ↵1. If A 6= 0,
then the only ↵1 that satisfies (2) (and hence yields
s

n+1 = s1) is ↵1 = arctan(�B/A). If A = 0 but

B 6= 0, then the only such value would be ↵1 = 0
(but we disallow this elsewhere, so there is no feasible
solution.) If A = B = 0, then any value ↵1 gives
s

n+1 = s1.

Achieving ↵

i

> 0. Recall that we must maintain
positive angles to ensure that each edge (v

i

, v

i+1) ac-
tually hits the line through b

i+1. But by Lemma 1,
there is a linear dependence of ↵

i

on ↵1. Therefore,
we can turn a lower bound on ↵

i

into a lower or up-
per bound on ↵1. By intersecting all these bounds we
obtain an interval (L

↵

, U

↵

) such that any choice of
↵1 2 (L

↵

, U

↵

) results in angles ↵
i

that satisfy ↵

i

> 0.
Note that exactly the same technique can also ac-

commodate upper bounds on ↵

i

. (For example, we
could demand ↵

i

< ⇡/2, and hence restrict the atten-
tion to polygons that are strictly convex. This would
be a natural restriction for VMP, since here the input
was points in convex position.) Any upper or lower
bound onto ↵

i

turns into an upper or lower bound
for ↵1 via the linear relation, and intersecting these
bounds gives an interval (L

↵

, U

↵

) for feasible values
of ↵1. (We omit the precise formula for L

↵

and U

↵

for space reasons.)

Hitting b

i

. The last problem to avoid is that edge
(v

i

, v

i+1) hits line `i but not at a point within b

i

. This
can be avoided by developing lower bounds for s1. We
require that s

i

is at least the distance from o

i

to the
closer end of b

i

. By Lemma 2 this gives a lower bound
L

s

(↵1) on s1, which depends on ↵1.

Putting it all together. We summarize the al-
gorithm for the bisector-matching problem as follows.
Initially start with I

⇤
↵

= (0,⇡) for the interval of pos-
sible values of ↵1. Compute the B

i

’s. If n is odd,
set I

⇤
↵

= { 1
2 (⇡ + B

n

)}. If n is even and B

n

6= 0, set
I

⇤
↵

= ;. Either way, if I⇤
↵

6= ; then using ↵1 2 I

⇤
↵

guarantees that ↵
n+1 = ↵1.

Next compute values A and B, and if A 6= 0, set
I

⇤
↵

= I

⇤
↵

\ {arctan(�B/A)}. Now using ↵1 2 I

⇤
↵

addi-
tionally guarantees that s

n+1 = s1.
Next, compute the interval (L

↵

, U

↵

) imposed by
lower (and, perhaps, upper) bounds on the ↵

i

’s, and
set I⇤

↵

= I

⇤
↵

\ (L
↵

, U

↵

). Any ↵1 2 I

⇤
↵

now additionally
guarantees that ↵

i

> 0 for all i.
Finally, to determine suitable values for s1, com-

pute the lower bound required for each s

i

, and deter-
mine from it a lower bound L

s

(↵1) for s1. Then any
polygon for which the vertex-bisectors coincide with
b1, . . . , bn is described by ↵1, s1 with ↵1 2 (L

↵

, U

↵

)
and s1 � L

s

(↵1), and vice versa, any such choice gives
a polygon via the iterative procedure.
Clearly all computations use a linear number of

operations involving real numbers and trigonometric
functions. In fact, all trignometry can be avoided (if
sqrt is allowed) if the input consists of coordinates for
all vertices, and one additional point on each ray b

i

.
For the coordinates determine sin(�) and cos(�) for

97

29th European Workshop on Computational Geometry, 2013

p1

p2

p3p4

p5

p6

v1

v2

v3

v4

v5

v6

v

0
1

v

0
2

v

0
3

v

0
4

v

0
5

v

0
6

o1

o4

Figure 3: An input Voronoi tree that has an infinite
number of solutions to BMP but only one for TMP.

angles � related to �1, . . . ,�n

, and we can compute
all other needed sines and co-sines using addition for-
mulas and solving 2 ⇥ 2-systems of equations. This
then gives a range into which sin↵1 and cos↵1 must
fall, which we output as solution. Hence a Real RAM
computer model is enough, and we have:

Lemma 3 The bisector-matching problem can be

solved in linear time in the Real RAM computer

model.

4 Solving the Tree-Matching Problem

If BMP yields a unique (up to o↵-setting) solution P

then TMP can be solved trivially (and in linear time)
by checking whether the bisectors of T do indeed form
a straight skeleton of P . If, however, a family of poly-
gons satisfies BMP then the situation is more tricky.
If the input tree is a star then an infinite number of
solutions to BMP translates to an infinite number of
solutions to TMP. If the tree is not a star then this
need no longer be true.
Fig. 3 shows six points p1, p2, . . . , p6 (in green) and

their Voronoi diagram (in black) together with two
polygons (in red and blue) that solve the bisector-
matching problem. However, only the red polygon
(v1, v2, . . . , v6, v1) also solves TMP, while the blue
polygon (v01, v

0
2, . . . , v

0
6, v

0
1) only solves BMP.

So, how can we characterize solutions for TMP?
The key insight is that a line ` is the bisector of edges
e

i

, e

j

of P if and only if e
i

and e

j

form the same angle
with a line `

0 perpendicular to `. This yields for each
inner edge another (linear) equation for ↵1.
Still, there do exist input trees T for which all these

additional equations for ↵1 are of the form 0 = 0,
i.e., where no additional constraint on ↵1 can be ob-
tained. See for example Fig. 4. However, this happens
only if all nodes of the tree have even degree. Other-
wise, there exists a subtree T 0 for which the number of
edges is odd; the constraints defined by T

0 then give
a unique solution for ↵1 similar to Eqn. 1.

Figure 4: Example of an input Voronoi tree that has
an infinite number of solutions to TMP. (Two solu-
tions are shown in red and blue.)

Lemma 4 The tree-matching problem can be solved

in linear time in the Real RAM computer model.

5 Discussion

In this paper, we asked whether a polygon can be
reconstructed if we are given a straight skeleton (but
with the position of a leaf only specified within a ray.)
We show that this is possible, and that the answer
is unique (up to o↵-setting) in most cases. We can
find the polygon (or a description of the infinite set
of polygons) in linear number in the Real RAM com-
puter model.
Our problem was motivated by finding a straight

skeleton that matches the Voronoi diagram of a given
point set. One can also turn the question around:
Given the straight skeleton of a polygon P or, more
generally, given a planar straight-line graph G, can we
find a set S of points such that VD(S) matches G?
This is very easy if G has two vertices of odd de-

gree on one face; in particular the answer is unique.
If all nodes of G have even degree then S need not be
unique: Fig. 4 shows a tree for which both an infinite
number of defining point sets S (for the Voronoi dia-
gram) and polygons P (for the straight skeleton) ex-
ist. We will present a solution to this problem (which
uses an entirely di↵erent approach) in a forthcoming
paper.

References

[1] O. Aichholzer, H. Cheng, S.L. Devadoss, T. Hackl,
S. Huber, B. Li, and A. Risteski. What Makes a
Tree a Straight Skeleton? In Proc. 24th Canad. Conf.

Comput. Geom.(CCCG’12), pages 267–272, Charlot-
tetown, P.E.I., Canada, Aug 2012.

[2] M.B. Dillencourt. Realizability of Delaunay Triangu-
lations. Inform. Process. Lett., 33(6):283–287, 1990.

[3] S. Huber and M. Held. A Fast Straight-Skeleton Algo-
rithm Based on Generalized Motorcycle Graphs. In-

ternat. J. Comput. Geom. Appl., in press 2013.

[4] G. Liotta and H. Meijer. Voronoi Drawings of Trees.
Comput. Geom. Theory and Appl., 24(3):147–178,
2003.

98

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

A conceptual take on invariants of low-dimensional manifolds found by

integration

Mathijs Wintraecken ⇤ Gert Vegter †

Introduction Recently a lot of e↵ort has been put
into the the study of topological properties of Gaus-
sian random fields [2, 6, 15], using among others Eu-
ler integration [4]. This is especially important in the
context of cosmology, because these random fields are
believed to describe the density fluctuations in the
early universe [3] or are at least a good approxima-
tion of these fluctuations. The topological aspect has
gained popularity over the last few years as there is a
great deal of numerical evidence of the fact that the
topology of the density field is very sensitive to small
deviations from Gaussianity. A nice closed formula
for the expectation value of the Euler characteristic
of the level sets of these fields has been found [3, 8].
This result relies on the Gauss-Bonnet theorem which
relates the integral of some intrinsic quantity whose
origins lie in the field of di↵erential geometry, namely
the Gaussian curvature, to some topological invariant,
the Euler characteristic. The Gauss-Bonnet theorem
can be generalized to higher dimensional manifolds,
using the theory of characteristic classes. For a very
elegant exposition we refer to Milnor and Stashe↵ [12]
or alternatively Spivak [13]. The generalization only
goes so far, in fact Abrahamov [1] proved that the in-
variants thus produced (the so-called Chern numbers)
are unique, up to some equivalence. See Gilkey [7] for
a modern (and more extensive) treatment. This re-
sult implies that no expressions can be found, using
a similar straightforward integration techniques, for
all other interesting topological invariants associated
to Gaussian random fields in three dimensions, such
as Betti numbers. Both the proof by Abrahamov and
the modern treatment by Gilkey involve a significant
amount of analysis and machinery. Below we provide
a proof of a similar statement for two and three di-
mensional manifolds, which does not need to call in
an elaborate set of calculations.
The formulation of the main result will be along

the lines of the following question proposed by I.M.
Singer: ‘Suppose that f is a scalar valued invariant
of the metric such that t =

R
fdvol is independent

of the metric. Then is there some universal constant
c so that t = c�(M)?’ This question has reportedly
([7]) been answered in the a�rmative by E. Miller.
Our proof relies heavily on the classification of two di-

⇤JBI, University of Groningen,
m.h.m.j.wintraecken@rug.nl

†JBI, University of Groningen, g.vegter@gmail.com

mensional closed surfaces and on Heegaard splitting.
A discussion of the classification can be found in [9] or
[10] , for the latter we refer to [5] or [14]. We complete
our discussion by some remarks on generalizations.

The two dimensional case

Theorem 1 Let M be an orientable

1
two dimen-

sional real compact manifold and f a function on M
which is completely determined by the metric and

its derivatives, that is locally f can be written as

f(g, @g, . . .) with g the metric, such that

Z

M
f dvol,

where dvol indicates the volume form, is a topological

invariant t. Then there exists a real number c such

that t = c�(M), where � denotes the Euler charac-

teristic.

Proof First we note that the space of Riemannian
metrics on a manifold is connected. This is obvious
because if g and g̃ are metrics then so is �g+(1��)g̃
for all � 2 [0, 1]. This means that we can assume with-
out loss of generality that M is isometrically embed-
ded in R3, because we can choose g̃ to be the standard
metric of M . Now let f be a function as described in
the theorem, such that

Z

M
f dvol = t

is a topological invariant. Suppose that for the two
sphere S2 we have

Z

S2
f dvol = 2c,

where c is some constant. From this we can conclude
that for the sphere t = c�(M).
We can now deform the two-sphere as follows. A

small region is pushed outwards and bent -in a suf-
ficiently smooth manner- such that this region con-
tains three equally spaced parallel cylinders pieces all
of the same radius. We can now cut in the cylindrical
part along the plane orthogonal to the cylinder and

1Clearly the integral over a non-orientable manifold does not
make sense.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

99

29th European Workshop on Computational Geometry, 2013

Figure 1: From left to right, top to bottom we have
depicted: the sphere, the deformation (in two steps),
the deformed surface with cutting lines indicated by
the yellow glass plane and the reassembled surfaces
(with and without cutting lines).

reassemble the parts so that we recover a topological
sphere but also get a torus. The integral is not al-
tered because integrals are additive. The procedure
is illustrated in figure 1. Because the integral is clearly
additive for unions this implies that

Z

C1

fdvol = 0,

where C1 is a surface of genus 1. Generally we shall
denote a surface of genus g by Cg.

The rest of the proof is inductive in nature. We be-
gin with a topological genus-g torus and two spheres.
We deform these surfaces so that the spheres contain a
piece of a cylinder, both of the same radius, and the n-
torus such that it contains two pieces of the cylinder,
again of the same radius, so that if these pieces are
deleted one of the remaining surfaces is itself a topo-
logical cylinder. We again cut the cylindrical pieces
in half and reassemble the part so that we have a
genus-g � 1 torus and a sphere. As sketched in figure
2.

Figure 2: From left to right, top to bottom we have
depicted: An n-torus and two spheres, the same sur-
faces deformed, the deformed surfaces with the lines
along which we cut indicated by yellow glass plane
and the reassembled surfaces.

We can now conclude that
Z

Cg

fdvol + 2

Z

S2
fdvol =

Z

Cg�1

fdvol +

Z

S2
fdvol

and thus by induction that
Z

Cg

fdvol = c(2� 2g) = c�(Cg).

By the classification of all 2-manifolds we have proven
the theorem for all two dimensional real manifolds
embedded in R3. ⇤

Three dimensions We will now focus on the three
dimensional case. The intuition for the following
proof is much strengthened by the remark that a
Morse function h on some manifold M can always
be interpreted as height function. This can be eas-
ily seen as follows: Let M be isometrically embedded
in Rn, possibly using the Nash embedding theorem.
Then we can add the value of the Morse function as
another coordinate to a point p 2 M ⇢ Rn, so that
the manifold M is embedded in Rn+1 and the last
coordinate is the height.

Theorem 2 Let M be a three-dimensional real man-

ifold and f a function which is completely determined

by the metric and its derivatives such that

Z

M
f dvol,

is a topological invariant t. Then we have t = 0.

Proof The first step in our proof will consist of show-
ing that if M = Cg ⇥ S1 we have that

Z

M
f dvol = 0.

To show this we shall consider any manifold N , that
admits a Heegaard splitting of genus g. This means
that the manifold N can be represented as the at-
tachment of two three-dimensional manifolds, which
are both homeomorphic to a three-dimensional ball
with g handles, with respect to a di↵eomorphism of
their boundaries. We further have that there exists a
Morse function h on N with one minimum and one
maximum and all critical points of index 1, 2 cor-
respond to the critical values c1 and c2 respectively
with c1 < c2, see [5]. This has been schematically
represented in the leftmost picture in figure 3. 2

2Note that conversely a Heegaard splitting also gives a
Morse function in a natural manner. Namely we start with
Morse functions on both g-handled balls, by simply taking a
Morse function on the standard g-handled ball and pulling back
via the di↵eomorphisms to the g-handled balls in question. Now
theorem 1.4 and lemma 3.7 of [11], give a di↵erentiable struc-
ture on the union with a smooth structure compatible with the
given di↵erentiable structure on the di↵erent parts, moreover
such that the Morse functions on both parts piece together to
a smooth function.

100

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Figure 3: From left to right we have sketched: A mani-
fold admitting a Heegaard splitting; the critical points
of the Morse function are indicated as dots and the
attachment by a blue dashed line, the same mani-
fold with a small part of it brought to a standard
Cg⇥ [��, �] metric, the deformed surface with cutting
lines (red) indicated and the reassembled surfaces.

We now define for every surface Cg of genus g, some
metric induced by an embedding in R3, exhibiting Z2

symmetry. We shall refer to this Riemannian mani-
fold as the standard surface of genus g. In the follow-
ing we view N as embedded in Rk. Let f be as in
theorem 1 such that

Z

N
f dvol,

is a topological invariant t. For some su�ciently small
[a1, b1] ⇢ R, with c1 < a1 < ↵1 < �1 < b1 < c2,
we smoothly and isotopically deform h�1([a1, b1]) \
M ⇠ Cg ⇥ [a1, b1], so that h�1([↵1,�1])\M becomes
isometric to the standard Cg ⇥ [↵1,�1] ⇢ R4 ⇢ Rk

given by the standard Cg and the ordinary Cartesian
product. This standard form is referred to as straight.
We shall now deform this part of the manifold so that
it consists of a straight piece and two pieces which are
straight at the beginning and the end but are bent in
the middle so that if we cut along the the boundaries
of the pieces and reassemble we recover the original
manifold and Cg ⇥ S1. The procedure is sketched in
figure 3. From this we conclude that

Z

N
f dvol =

Z

N
f dvol +

Z

Cg⇥S1
f dvol,

where we again used local isotopy and the additivity
of integration. Therefore,

Z

Cg⇥S1
f dvol = 0.

The next part of the proof relies on the fact that the
sphere (S3) allows a Heegaard splitting of every genus
g, see [5]. Let M be a manifold which allows a Hee-
gaard splitting of genus g. We now deform two pieces
of the manifold into parts isometric to Cg ⇥ [↵1,�1]
and Cg ⇥ [↵2,�2], with ↵1 < �1 < ↵2 < �2, so
that for all p1 2 (↵1,�1) and p2 2 (↵2,�2) both

Figure 4: A Heegaard splitting, then the same mani-
fold with two small parts brought to a standard metric
both on another side of the ‘attachment line’, cutting
lines (red) are also indicated, and finally the reassem-
bled surface (two connected components).

h�1((�1, p1)) \ M and h�1(p2,1) \ M are topo-
logical spheres with g handles whose boundary is iso-
metric to the standard genus g surface, as discussed
above. We can now smoothly deform h�1((p1, q1)) \
M and h�1((q2, p2)) \ M , with p1 < q1 < �1 and
↵2 < q2 < p2 (see figure 5), such that if we cut along
the pi and qi lines and reassemble (possibly using Z2

symmetry) we recover two topological manifolds, with
given topology. One of the manifolds we thus con-
struct is a manifold admitting a Heegaard splitting
of genus g. The attachment di↵eomorphism, of the
latter, on the boundary of the sphere with g handles
is the identity. This manifold shall be denoted by

MS(3D)
g . The other manifold is a topological Cg ⇥ S1-

manifold. The entire procedure is sketched in figure
4.

Figure 5: A sketch of the deformed manifold with the
cutting lines (red) and the ‘attachment line’ (blue).

This means that by deforming, cutting and pasting
a manifold M , which allows a Heegaard splitting of
genus g, we find the following equalities

Z

M
f dvol =

Z

MS(3D)
g

f dvol +

Z

Cg⇥S1
f dvol

=

Z

MS(3D)
g

f dvol + 0,

where f is as defined in the theorem. If we now use
that the sphere (S3) allows a Heegaard splitting of

101

29th European Workshop on Computational Geometry, 2013

every genus g we find that

Z

M
f dvol =

Z

MS(3D)
g

f dvol =

Z

S3
f dvol. (1)

Following this observation, we are able to use the re-
sult of the first part of the proof,

Z

Cg⇥S1
f dvol = 0.

This immediately translates into

Z

S2⇥S1
f dvol = 0.

We notice that both S3 and S2 ⇥ S1 allow a Heegaard
splitting of genus 1, so that

Z

S3
f dvol =

Z

MS(3D)
1

f dvol =

Z

S2⇥S1
f dvol = 0. (2)

Combining equations (1) and (2) yields

Z

M
f dvol = 0,

for any manifold M and f = f(g, @g, . . .) a function
determined by the metric and all its derivatives. ⇤

Discussion One can wonder about generalizations of
the methods stated above to manifolds of general di-
mension. Some of these generalizations are immedi-
ately obvious, for example the procedure sketched in
figure 3 can be used in any dimension so see that for
f and t as in the theorem

Z

Md�1⇥S1
f dvol = t

implies that t = 0, where Md�1 is any manifold of
dimension d � 1 occurring as level set. However a
full classification of all integrals yielding a topological
invariant does not seem feasible because there is no
easy classification of manifolds of dimension d� 1 for
d > 3 (and none for d > 4), occurring as the level sets
of a Morse function on a manifold of dimension d.

Acknowledgements The authors are greatly in-
debted to Erik van den Ban for discussion and sugges-
tions. We further acknowledge Rien van de Weijgaert
and Ramsay Dyer for discussion and Arthemy Kise-
lev for discussion and use of his knowledge of Rus-
sian. This work has been supported in part by the
7th Framework Programme for Research of the Eu-
ropean Commission, under FET-Open grant number
255827 (CGL Computational Geometry Learning).

References

[1] A.A. Abrahamov. On the topological invariants of
Riemannian spaces obtained by integration of tensor
fields. Doklady Akademii Nauk, 81:125–128, 1951.

[2] J.A. Adler, O. Bobrowski, M.S. Norman, E. Subag,
and S. Weinberger. Persistent homology for random
fields and complexes. Borrowing Strength: Theory
powering applications, 6:124–143, 2010.

[3] F.M. Bardeen, J.R. Bond, N. Kaiser, and Szalay. The
statistics of peaks of Gaussian random fields. The
astrophysical Journal, 304:15–61, 1986.

[4] Y. Baryshnikov and R. Ghrist. Target enumeration
via Euler characteristic integrals. SIAM Journal on
Applied Mathematics, 70:825–844, 2009.

[5] A.T. Fomenko. Di↵erential Geometry and Topology.
Contemporary Soviet Mathematics. Consultants Bu-
reau, New York and London, 1987.

[6] C. Gay, C. Pichon, and D. Pogosyan. Non-Gaussian
statistics of critical sets in 2D and 3D: Peaks, voids,
saddles, genus, and skeleton. Physical Review D,
85(2):023011, January 2012.

[7] P.B. Gilkey. Invariance Theory, The Heat Equation,
And the Atiyah-Singer Index Theorem. Mathematics
Lecture Series. Publich or Perish, inc., 1984.

[8] A.S.J. Hamilton, J.R. Gott III, and D. Weinberg. The
topology of the large-scale structure of the universe.
The astrophysical Journal, 309:1–12, 1986.

[9] M.W. Hirsch. Di↵erential Topology. Springer-Verlag:
New York, Heidelberg, Berlin, 1976.

[10] W.S. Masssey. Algebraic Topology: An Introduction.
Springer-Verlag: New York, Heidelberg, Berlin, 1977.

[11] J. Milnor. Lectures on the h-cobordism theorem.
Princton Mathematical notes. Princeton university
press, 1965.

[12] J.W. Milnor and J.D. Stashe↵. Characteristic
Classes. Number 76 in Annals of Mathematics Stud-
ies. Princeton University Press and University of
Tokyo Press, Princeton, New Jersey, 1974.

[13] M Spivak. A comprehensive introduction to di↵eren-
tial geometry: Volume V. Publish or Perish, 1975.

[14] J. Stillwell. Classical Topology and Combinatorial
Group Theory. Graduate Texts in Mathematics.
Springer, 1993.

[15] Rien van de Weygaert, Gert Vegter, Herbert Edels-
brunner, Bernard J.T. Jones, Pratyush Pranav,
Changbom Park, Wojciech A. Hellwing, Bob Elder-
ing, Nico Kruithof, E.G.P.(Patrick) Bos, Johan Hid-
ding, Job Feldbrugge, Eline ten Have, Matti van En-
gelen, Manuel Caroli, and Monique Teillaud. Alpha,
betti and the megaparsec universe: On the topology
of the cosmic web. Transactions on Computational
Science, 14:60–101, 2011.

102

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Cut Equivalence of d-Dimensional Guillotine Partitions

Andrei Asinowski⇤ Gill Barequet† Toufik Mansour‡ Ron Y. Pinter†

4

y
z

x

3cc0

c1

2c

c

Figure 1: A guillotine partition of a 3D box.

Abstract

A guillotine partition of a d-dimensional axis-aligned
box B is a recursive partition of B by axis-aligned
hyperplane cuts. Two guillotine partitions are box-

equivalent if their boxes satisfy compatible order re-
lations wrt. the axes. In this work we define cut-

equivalence of guillotine partitions, derived in a simi-
lar way from order relations of cuts. We study struc-
tural properties of these kinds of equivalence, and enu-
merate cut-equivalence classes of d-dimensional guil-
lotine partitions.

1 Introduction

1.1 Basic Definitions

Let B be a d-dimensional (d-D, in short) axes-aligned
box. A guillotine partition of B is either trivial (B
itself) or a partition obtained by recursively cutting
B by a hyperplane perpendicular to an axis xi, 1
i d, into two sub-boxes whose inner partitions are
also guillotine. B often denotes the partition as well
as the box. Fig. 1 shows such a partition of a 3D box.
Guillotine partitions have been studied intensively

due to their important role in geometric algorithms,
visualization of scientific data, integrated circuit de-
sign, and many more fields; see, e.g., [4, 6, 7]. The
number of guillotine partitions was discussed in 2D [8]
and in higher dimension [1, 3].
Understanding the structure of guillotine partitions

is important both from the combinatorial point of
view and for analyzing data structures that hold the

⇤Dept. of Mathematics, The Technion, Haifa 32000, Israel.
E-mail: andrei@tx.technion.ac.il; Current address: Inst. für
Informatik, FU-Berlin, Takustr. 9, 14195 Berlin, Germany.

†Dept. of Computer Science, The Technion, Haifa 32000,
Israel. E-mail: {barequet,pinter}@cs.technion.ac.il

‡Dept. of Mathematics, Univ. of Haifa, Mount Carmel,
Haifa 31905, Israel. E-mail: toufik@math.haifa.ac.il

partitions and algorithms that generate them. In
many works, guillotine partitions that have the same
recursive structure wrt. their boxes are considered
identical. Another kind of elements in guillotine par-
titions is their defining cuts, whose structure, in some
applications, is more relevant to the complexity or
running-time analysis than that of the boxes. In this
paper we study these two types of structures. To this
aim, we define two kinds of equivalence of d-D parti-
tions: B-equivalence and C-equivalence (B for boxes

and C for cuts), in terms of order relations between
boxes and cuts, resp. We show that B-equivalence
is the intuitive way to identify guillotine partitions,
while C-equivalence is a more coarse way to do it.
Finally, we show how C-equivalence is related to B-
equivalence, and enumerate C-equivalence classes.

The intersection of a box B with a hyperplane that
splits it into two sub-boxes is a primary cut (for exam-
ple, c0 and c3 in Fig. 1). A cut in a guillotine partition
is either a primary cut, or (in a recursive manner) a
cut in the partition of one of the sub-boxes. It is as-
sumed that parallel cuts do not intersect, that is, they
cannot share a (d� 2)-dimensional “edge.” A guillo-
tine partition B with n cuts consists of n + 1 boxes;
in this case we say that the size of B is n+ 1.

Throughout this paper, the dimension d is assumed
fixed, and all the guillotine partitions are assumed to
be d-dimensional. For shortness, we shall usually just
write “partition” instead of “guillotine partition.”

If a nontrivial partition B has several primary cuts,
then they are all perpendicular to the same axis. If
the primary cut(s) of a nontrivial partition B is (are)
perpendicular to the xi axis, we say that B is an xi-

aligned partition. The parts of B bounded by two
adjacent primary cuts, as well as the part below the
lowest (wrt. xi) primary cut, and the part above the
highest primary cut, are called slices and denoted by
S1, . . . , Sk (ordered from bottom to top wrt. xi). A
trivial slice and a 2-slice are slices of size 1 and 2,
resp. Primary cuts of any slice are not parallel to
those of B. The partition in Fig. 1 is an x-aligned
partition into three slices: S1, S2, S3 are a z-aligned
slice of size 3, a trivial slice, and a y-aligned 2-slice,
resp. The lowest primary cut is called the principal

cut of B. The sub-boxes obtained by cutting B along
the principal cut are denoted by B� and B+ (the
part of B below and above the principal cut, resp.).
In Fig. 1, the principal cut of B is c0, the principal
cut of B� is c1, and the principal cut of B+ is c3.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

103

29th European Workshop on Computational Geometry, 2013

1.2 Order Relations in Guillotine Partitions

We define d order relations between boxes and be-
tween cuts in d-dimensional guillotine partitions.

Definition 1 Consider a nontrivial d-dimensional

guillotine partition B with principal cut c.

• Let K,L be two distinct boxes in the partition.

Box K is below L (or L is above K) wrt. the axis

xi (1 i d), to be denoted by K (
i
L, if

– B is xi-aligned, K is in B�
, L is in B+

;

– K and L are inB�
, andK (

i
L in the partition

of B�
; or

– K and L are inB+
, andK (

i
L in the partition

of B+
.

• Let u, v be two distinct cuts in the partition. Cut

u is below v (or v is above u) wrt. the axis xi

(1 i d), to be denoted by u
i
v, if

– B is xi-aligned, u is in B�
, v is in B+

;

– B is xi-aligned, u is in B�
, v = c;

– B is xi-aligned, u = c, v is in B+
;

– u and v are in B�
, and u

i
v in the partition

of B�
; or

– u and v are in B+
, and u

i
v in the partition

of B+
.

All relations (
i
,

i
are (irreflexive) partial orders.

Let B be an xi-aligned partition. If boxes K,L lie,
resp., in B�, B+, then they are i-comparable (compa-
rable in(

i
) but by no other order(

j
. A similar claim

holds for cuts. By induction, we obtain the following:

Observation 1 In any d-D guillotine partition,

1. Each pair K,L of distinct boxes is i-comparable

(K (
i
L or L(

i
K) for a unique i, 1 i d.

2. Each pair u, v of distinct cuts is i-comparable

(u
i
v or v

i
u) for a unique i, 1 i d.

Definition 2 Let B and D be two d-dimensional

guillotine partitions, both of size n+ 1. We say that

• B,D are B-equivalent if one can label the boxes

of B by K1, . . . ,Kn+1 and the boxes of D by

L1, . . . , Ln+1 s.t. for all 1 {`,m} n + 1 we

have K` (
i
Km i↵ L` (

i
Lm. Two such labelings

are said to be B-compatible.

• B,D are C-equivalent if one can label the cuts of

B by u1, . . . , un and the cuts of D by v1, . . . , vn
s.t. for all 1 {`,m} n we have u`

i
um

i↵ v`
i

vm. Two such labelings are said to be

C-compatible.

1.3 Enumeration of C-Equivalence Classes

Denote by Gd,n the number of B-equivalence classes
of d-D partitions of size n+1, and byHd,n the number
of C-equivalence classes of d-D partitions of size n+1.
Let Gd(t) =

P
n�0 Gd,ntn and Hd(t) =

P
n�0 Hd,ntn

be the associated generating functions.
Ackerman et al. [1] proved that for n � 1 Gd,n =

1
n

Pn�1
k=0

�n
k

�� n
k+1

�
(d�1)kdn�k (clearly, Gd,0 = 1), and

that Gd(t) =
1�t�
p

(1�t)2�4(d�1)t

2(d�1)t . Asinowski et al. [2]

proved that H2,n =
Pb(n+1)/2c

i=0 (�1)i
�n+1�i

i

�
G2,n�i,

which can also be written as H2(t) = (1� t) G2(t(1�
t)). Here we generalize this formula to the d-D case.

Theorem 1

Hd,n =

b(n+1)/2cX

i=0

(�1)i(d�1)i
✓
n+ 1� i

i

◆
Gd,n�i, (1)

or, equivalently,

Hd(t) = (1� (d� 1)t) Gd(t(1� (d� 1)t)). (2)

2 Structural Properties of B- and C-Equivalence

In this section we list a series of results. In particular,
they will be used in the proof of Theorem 1. For most
of them, the proofs are omitted in this version.
Let be a partial order in a finite set X. A se-

ries decomposition of X is a partition (X1, X2) of X
(X1, X2 6= ?) s.t. for each ↵ 2 X1,� 2 X2 we have
↵ �. X is series decomposable if it has a series de-
composition. A component of such a decomposition
may be further decomposable. A final series decom-

position of X is a partition (X1, X2, . . . , Xk) of X
(X1, X2, . . . , Xk 6= ?) s.t. for i = 1, 2, . . . , k � 1 we
have ↵ � for each ↵ 2 Xi,� 2 Xi+1, and the com-
ponents Xi are not further decomposable. The final
series decomposition of X is uniquely determined.

Lemma 2 Let X be a finite set, and let
i
and

j
be

two partial orders in X. If X is series decomposable

wrt. both orders, then there are two members of X
which are comparable in both orders.

Proof. Let (I�, I+) and (J�, J+) be series decom-
positions of X wrt.

i
and

j
, resp. Assume wlog.

that I� \J� 6= ?. Let ↵ 2 I� \J�, � 2 I+, � 2 J+.
If � 2 J+, then ↵

i
� and ↵

j
�; if � 2 I+, then

↵
i
� and ↵

j
�; and if � 2 J� and � 2 I�, then

�
i
� and �

j
�. ⇤

For the order (
i

between boxes of B, define the

inherited order (
i

in [n + 1] as follows: ↵ (
i

� in

[n+ 1] if and only if K↵ (
i
K� in B.

104

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Lemma 3 Let B be a nontrivial xi-aligned partition

of size n+1. Let K1, . . . ,Kn+1 be the boxes of B. Let

S1, . . . , Sk be the slices of B (ordered from bottom to

top wrt. the xi axis). For each ` = 1, . . . , k, denote
X` = {↵ 2 [n+ 1] : K↵ 2 S`}. Then, (X1, . . . , Xk) is
the final series decomposition of [n+ 1] wrt. (

i
.

Lemma 4 If B and D are nontrivial B-equivalent

guillotine partitions, then they are similarly aligned.

We say that a cut is i-universal if it is i-comparable
with all other cuts.

Observation 2 Let B be an xi-aligned guillotine

partition of size at least 3.

1. A cut u in B is i-universal if and only if either u
is a primary cut or u is the inner cut of a 2-slice.

2. If u is the inner cut of a 2-slice Sm, then u has a

unique below-neighbor u0
which is a primary cut

of B (unless Sm is the lowest slice of B) and a

unique above-neighbor u00
which is a primary cut

of B (unless Sm is the highest slice of B).

Corollary 5 For j 6= i, a partition B of size at least 3

cannot have both i- and j-universal cuts.

Lemma 6 If B,D are C-equivalent partitions of size

at least 3, then they are similarly aligned.

The next lemma says that the usual way to identify
partitions that have the same recursive structure wrt.
boxes, coincides with our notion of B-equivalence.

Lemma 7 Let B,D be two nontrivial partitions of

the same size. B and D are B-equivalent i↵

– The principal cuts of B and D are parallel;

– Partition B�
is B-equivalent to partition D�

; and

– Partition B+
is B-equivalent to partition D+

.

Next, we study the structure of C-equivalence.
Since any two trivial partitions are C-equivalent and
any two partitions of size 2 are C-equivalent, we state
the results for partitions of size at least 3.
We start with some definitions. A block is either a

trivial partition or a nontrivial partition in which
i
is

linear for some i, 1 i d. If B is such a block of size
at least 3, then it is xi-aligned; see Fig. 2. A partition
B is a block i↵ each slice of B is either trivial or a
2-slice. A block in a guillotine partition B is a set of
boxes of B whose union is a box which, with its inner
partition, is a block. The blocks in B are ordered by
inclusion and each box in B belongs to exactly one
maximal block. A semiblock is a partition B which
is not a block and for some i, 1 i d, there is a
(unique) minimum element wrt.

i
. In such a case B

is of size at least 3 and it is xi-aligned.

8

y
z

x

K
K

K
K KK

K

K
1

2

3
4 5 6

7

Figure 2: An x-aligned block of size 8.

Lemma 8 Let B be an xi-aligned semiblock. Let u
be the cut s.t. u and all cuts below it (wrt.

i
) are i-

universal, and u is a (uniquely determined) maximum

element (wrt.
i
) with this property. Then, u is a

primary cut.

The cut u as in Lemma 8 will be called the special

cut of a semiblock B. The part of B below the spe-
cial cut is a block, and the special cut is the highest
primary cut with this property. Denote by Ḃ (resp.,
B̈) the part of B below (resp., above) the special cut.

Lemma 9 Let B be a semiblock, and D be a parti-

tion of the same size. B,D are C-equivalent i↵

– The principal cuts of B and D are parallel;

– Partition Ḃ is C-equivalent to partition Ḋ; and

– Partition B̈ is C-equivalent to partition D̈.

In particular, a partition which is C-equivalent to a

semiblock, is itself a semiblock.

A partition which is neither a block nor a semiblock
will be called regular. It is easy to see that a partition
B is regular if and only if |B| > 3 and |B�| > 2.

Observation 3 Let B be an xi-aligned regular par-

tition. Let u be the minimal (wrt.
i
) i-universal cut.

Then, u is the principal cut of B.

Lemma 10 Let B be a regular partition, and D be

a partition of the same size. B,D are C-equivalent i↵

– The principal cuts of B and D are parallel;

– Partition B�
is C-equivalent to partition D�

; and

– Partition B+
is C-equivalent to partition D+

.

In particular, a partition which is C-equivalent to a

regular partition is also a regular partition.

Next, we mention two facts concerning partitions
with “small” lowest slice.

Lemma 11 Let B,D be partitions of size at least 3

s.t. |B�| = |D�| = 1. B and D are C-equivalent i↵

– The principal cuts of B and D are parallel; and

– Partition B+
is C-equivalent to partition D+

.

Observation 4 Let B be a partition s.t. |B�| = 2.
Then, there exists a partition D which is C-equivalent

to B and satisfies |D�| = 1.

105

29th European Workshop on Computational Geometry, 2013

The next two claims show how C-equivalence is re-
lated to B-equivalence.

Proposition 12 If two guillotine partitions B and D
are B-equivalent, then they are C-equivalent.

Proposition 13 Let B,D be partitions of the same

size. B,D are C-equivalent i↵ there exist partitions

B0, D0
s.t. B0

is B-equivalent to B, D0
is B-equivalent

to D, and B0
and D0

can be obtained from each other

by replacing some blocks by C-equivalent blocks.

3 Proof of Theorem 1

Since we assume d to be fixed and in order to simplify
notation, we shall write Hn, H(t), Gn, G(t) rather
than Hd,n, Hd(t), Gd,n, Gd(t).

First, H0 = H1 = 1. Let n � 2. By Lemma 6, two
C-equivalent partitions are similarly aligned. There-

fore, by symmetry, Hn = dH(1)
n , where H(1)

n is the
number of C-equivalence classes of x1-aligned parti-
tions of size n+1. By Lemmas 10 and 11, a partition
B for which |B�| 6= 2 is C-equivalent only to parti-
tions D for which |D�| = |B�|. By Observation 4, a
partition B for which |B�| = 2 is C-equivalent to a
partition D for which |D�| = 1. In turn, such D is
C-equivalent only to partitions E with |E�| = 1 or 2.
Consequently,

H(1)
n =

X

0 k n� 1
k 6= 1

H(1)
n,k,

where H(1)
n,k is the number of classes containing x1-

aligned partitions of size n+ 1 with k cuts below the
principal cut.
By Lemmas 10 and 11, these classes are in 1-to-1

correspondence with ordered pairs (C1, C2) of classes
of resp. size k+1 and n�k, where C1 (if nontrivial) is
not x1-aligned. By Lemma 6, the number of choices
for C1 is d�1

d Hk (for k � 2). Therefore,

H(1)
n,k =

⇢
H0Hn�1, if k = 0;
d�1
d HkHn�1�k, otherwise.

This yields, for n � 2,

Hn = d ·

H0Hn�1 +

d� 1

d

n�1X

k=2

HkHn�1�k

!
=

= dHn�1+(d�1)
n�1X

k=0

HkHn�1�k�(d�1)(Hn�1+Hn�2),

which implies

H(t) =
1�t+(d�1)t2�

p
(1�t+(d�1)t2)2�4(d�1)t(1�(d�1)t)

2(d�1)t .

As above, Ackerman et al. [1] proved that the
generating function for the number of B-equivalence

classes of d-dimensional guillotine partitions is G(t) =
1�t�

p
(1�t)2�4(d�1)t

2(d�1)t . Substituting t := t(1� (d� 1)t)

and comparing this with the formula for H(t), we ob-
tain H(t) = (1�(d�1)t) G(t(1�(d�1)t)). Expanding
this expression, we obtain that Hn may be expressed
in terms of Gn:

Hn =

b(n+1)/2cX

i=0

(�1)i(d� 1)i
✓
n+ 1� i

i

◆
Gn�i,

as claimed. 2

4 Asymptotics

A standard singularity analysis [5] yields the asymp-
totic behavior (d is fixed, n ! 1) Gd,n ⇠ `�nn�3/2,

where ` = `(d) =
4
p

d(d�1)
p
�

2(d�1)
p
⇡

and � = �(d) = 2d�1+

2
p
d(d� 1) (this form also appears in [1]); andHd,n ⇠

mµnn�3/2, where m = m(d) =
4
p

⌘d(d�1)
p

1+
p
⌘

2(d�1)
p
2⇡'

and

µ = µ(d) =
1+

p
⌘

2' , in which ' = '(d) = 2d � 1 �
2
p
d(d� 1) and ⌘ = ⌘(d) = 8(d� 1)

p
d(d� 1)� 3 +

12d� 8d2. As d tends to infinity, � and µ, the growth
rates of Gd,n and Hd,n, are similar to 4d� 2�O(1/d)
and 2d+

p
2d� 1�O(

p
1/d), respectively.

References

[1] E. Ackerman, G. Barequet, R.Y. Pinter, and
D. Romik, The number of guillotine partitions in d
dimensions, Inf. Processing Let., 98 (2006), 162–167.

[2] A. Asinowski, G. Barequet, M. Bousquet-
Mélou, T. Mansour, and R.Y. Pinter, Orders
induced by segments in floorplan partitions and
(2-14-3, 3-41-2)-avoiding permutations, submitted.

[3] A. Asinowski and T. Mansour, Separable
d-permutations and guillotine partitions, Annals of
Combinatorics, 14 (2010), 17–43.

[4] M. Cardei, X. Cheng, X. Cheng, and D.-Z. Du,
A tale on guillotine cut, Proc. Novel Approaches
to Hard Discrete Optimization, Waterloo, Canada,
2001, 41–54.

[5] P. Flajolet and R. Sedgewick, Analytic Combi-
natorics, Cambridge University Press, 2009.

[6] J.S.B. Mitchell, Guillotine subdivisions: Part II—
A simple polynomial-time approximation scheme for
geometric k-MST, TSP, and related problems, SIAM
J. on Computing, 28 (1999), 1298–1309.

[7] L.J. Stockmeyer, Optimal orientations of cells in
slicing floorplan designs, Information and Control,
57 (1983), 91–101.

[8] B. Yao, H. Chen, C.K. Cheng, and R. Gra-
ham, Revisiting floorplan representations, Proc. Int.
Symp. on Phys. Design, Sonoma, CA, 2001, 138–143.

106

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Approximating Weighted Geodesic Distances on 2-Manifolds in R3

Christian Sche↵er
Department of Computer Science,

University of Münster, Einsteinstr. 62,
48149 Münster, Germany

christian.scheffer@uni-muenster.de

Jan Vahrenhold
Department of Computer Science,

University of Münster, Einsteinstr. 62,
48149 Münster, Germany

jan.vahrenhold@uni-muenster.de

Abstract

We present the first algorithm for approximating
weighted geodesic distances on 2-manifolds in R3.
Our algorithm works on an weighted "-sample S of
the underlying manifold and computes approximate
geodesic distances between all pairs of points in S.
The approximation error is multiplicative and de-
pends on the density of the sample. The algorithm
has a running time of O(|S|2.25 log2 |S|) and an opti-
mal space requirement of O(|S|2); the approximation
error is bound by 1±O(").

1 Introduction

Computing shortest paths in two and three dimen-
sions is one of the fundamental problems in Com-
putational Geometry. In this paper, we consider a
variant of this problem, namely to compute all-pairs
geodesic distances on a weighted 2-manifold in three-
dimensional space, i.e., on a 2-manifold � ⇢ R3 to-
gether with a continuous weight function w : � ! R+.

Definition 1 For a 2-manifold � and a continuous
weight function w , the weighted geodesic distance
L

w

�(x, y) between x, y 2 � is the minimal weighted
lengths of all connecting curves on the surface, i.e.,
L

w

� (x, y) := min
f

R
f

w(⇠)d⇠, where f is a curve on �
connecting x and y.

Despite a variety of approaches, exactly solving the
weighted shortest path problem in R3 still remains
wide open—see [2] and the references therein—and
even for the case of a weighted polyhedral surface, only
approximation algorithms are known [2].
The surfaces we consider are represented by a dis-

crete subset of sample points. To be able to build
on previous results on surface reconstruction and ap-
proximation, we require the quality of this subset to
be related to the local feature size of �. The local fea-
ture size is represented by the function lfs : � ! R+

which maps each point on � to its distance to the me-
dial axis of �, the closure of all points having at least
two nearest neighbors on �. In line with previous ap-
proaches to surface reconstruction, the input then is
required to be an "-sample:

Definition 2 A discrete subset S of a smooth 2-
manifold � ⇢ R3 is an "-sample of � for some " > 0
if, for each point x 2 �, there is a sample point s 2 S

with |xs| " · lfs(x).
As usual [1, 3, 4, 5, 7], we assume that " is su�-

ciently small; in particular, we require " 1/22 [8].

2 Description of the Algorithm

From a high-level point-of-view, our algorithm for ap-
proximating weighted geodesic distances closely re-
sembles our algorithm for the unweighted case [8]:
first reconstruct a polyhedral approximation of � and
then use the results of shortest-path calculations on
this object to approximate the geodesic distances
on �. However, there are two non-trivial obstacles to
overcome: first of all, in contrast to the unweighted
case, there is no e�cient exact algorithm for com-
puting distances on weighted polyhedral surfaces and
thus we have to rely on the best approximation al-
gorithm [2]. This algorithm needs an input parame-
ter � controlling its approximation quality, and this
implies that this parameters needs to depend on "

if the approximation error of our algorithm shall be
bounded by any function involving "—see [8, Sec. 4].
Unfortunately, the exact value of " is not available as
part of the input; both in theory (Definition 2) and
in practice (data coming from scanning devices) only
an upper bound is known and needed. The second
issue is that truthfully reconstructing a weighted sur-
face � from a discrete sample S requires that S not
only captures folding and local curvature (this can be
enforced by requiring S to be an "-sample) but also
the (gradients of the) weight of �. Otherwise, an ap-
proximation of the weighted length of a geodesic could
di↵er arbitrarily from the exact value—see Figure 1.

� x1 x2

w (x1) w (x2)w (.)

w (.) = 0
w (y)

�

x1x2y

Figure 1: Unweighted and weighted distances.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

107

29th European Workshop on Computational Geometry, 2013

To resolve the second issue we extend the definition
of the local feature size to the weighted case. Recall
that in the unweighted case the local feature size is
used to bound the Euclidean distance between a point
x 2 � and a point s 2 S. As can be seen in Figure 1,
we need to also bound the di↵erence in weight between
a point x 2 � and a point s 2 S. As a first step, we
bound the aperture of a cone with apex at x 2 �
by setting m

x

:= sup
x 6=v2� {|w(v)� w(x)|/|xv|}. If

m

x

= 0, i.e., if w is constant, we set �
w

(x) := lfs(x),
otherwise we set �

w

(x) := w(x)/m
x

. We can prove:

Observation 1 The weights as measured by �
w

are
upper-bounded locally: for x1, x2 2 � and c > 0 we
have [|x1x2| c ·�

w

(x1)) w(x2) (1 + c) · w(x1)]

To be able to also locally lower-bound the weights,
we use a standard technique, namely to compute
a Lipschitziation of �

w

. More formally, we define
r

w

(x) := inf
y2� {�w

(y) + |xy|}. Then, we have
r

w

(x) �
w

(x) and can prove:

Observation 2 The weights as measured by r
w

are
lower-bounded locally: for x1, x2 2 �, c > 0, we
have [|x1x2| c ·r

w

(x1)) w(x2) (1 + c) · w(x1)
and w(x1) (1 + c/(1� c)) · w(x2)].

Using the above definitions, we are ready to define
a local feature size for the weighted case and a corre-
sponding sampling condition:

Definition 3 For a smooth 2-manifold � ⇢ R3 and
a continuous weight function w : � ! R, we de-
fine the weighted local feature size as lfs

w

(x) :=
min {r

w

(x), lfs(x)}. A discrete subset S of � is a
weighted "-sample for some " > 0 if, for each point
x 2 �, there is an s 2 S with |xs| " · lfs

w

(x).

Observation 3 The weighted local feature size is 1-
Lipschitz and each weighted "-sample is an "-sample.

Outline of the Approach As mentioned above,
the new algorithm follows our template for the un-
weighted case [8]: For each s 2 S, we first reconstruct
an approximation of � and then compute (approxi-
mate) single-source shortest paths from s on this sur-
face. Just as in the unweighted case, however, we first
need to decimate the point set in a way that main-
tains the properties of a weighted "-sample but also
guarantees that it is not too dense (and a reconstruc-
tion thus too costly). These points are re-inserted
(by projecting them onto the reconstruction) prior to
computing the shortest paths. In a nutshell, we first
construct a so-called control function with the fol-
lowing (non-trivial) properties:
• is 1

18 -Lipschitz.• For each s 2 S: (s) 1.19 · " · lfs
w

(s).

These properties are then used to show that for
each s 2 S the intersection of � with the Voronoi
cell Vor

S

(s) is contained in the ball B

 (s)(s) with
radius (s) centered at s. This leads to Algorithm 1:

Algorithm 1 Compute subsample S

uni ⇢ S [7, 8].

Require: S

1: S

uni ;
2: while S 6= ; do
3: s arbitrary from S

4: S

uni S

uni [{s}
5: S S\ �S \B

 (s)

�

6: return S

uni

For each decimated point set Suni constructed this
way we can prove the following:

Lemma 1 For each x 2 �, there exists a point s

0 2
S

uni such that |xs0| �
2 + 1

18

� · (s0). Furthermore,
S

uni is a weighted "0-sample for "0 3 · ".
We now sketch how to compute asymptotic bounds

for " · lfs and lfs and thus how resolve the first issue,
i.e., to approximate ".

Computation of a Control Function To compute
the control function used in Algorithm 1 we fol-
low exactly the same approach as in the unweighted
case: we use a simplified, quadratic-time version of
an algorithm by Funke and Ramos [7] to compute the
Voronoi diagram of S and, based upon the properties
of its cells, for each sample point s 2 S an approxima-
tion e

T

s

of the plane T

s

tangent to � in s. This leads
to the following definitions:

Definition 4 ([8]) Let the function � be defined as
�(s) := 1.002263·max

v2e
Ts\VorS(s) |sv|. Then the con-

trol function used in Algorithm 1 can be defined as
 (s) := max

s

02S

�
� (s0)� 1.19 · 1

23 · |ss0| .
The next lemma (Lemma 2 in [3]) is crucial for

proving the following two lemmas which ultimately
allow to prove that the control function indeed has
the properties stated above:

Lemma 2 ([3]) (a) On either side of �, the distance
from s to its pole is at least lfs(s).
(b) [. . .]
(c) Let v be a vertex of Vor

S

(s) such that |vs| �
lfs(s). The angle at s between the vector to v and the
normal to the surface is at most 2 ·arcsin("/(2�2 ·")).
We than can show that for each x 2 Vor

S

(s) \ �
there is a “witness” v 2 Vor

S

(s) \ e
T

s

and vice versa
such that the distance |sx| is approximate the same
as |sv|; based upon this, we can show (P2) and con-
clude that the intersection of � with the Voronoi cell
Vor

S

(s) is contained in ball B
 (s)(s).

108

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Reconstructing a Weighted Surface Since, by
Lemma 1, each decimated point set Suni is a weighted
"

0-sample and thus, by Observation 3, also an "

0-
sample, we can build upon the large body of litera-
ture on reconstructing (unweighted) smooth surfaces.
In particular, we can follow (one of the approaches
of) Funke and Ramos [7] and use the CoCone algo-
rithm [4]. The central insight by Funke and Ramos [7,
Sec. 6] is that only a small portion of the point set
contributes to each co-cone CC (s) used in the recon-
struction algorithm. We can prove a similar result:

Lemma 3 After O(|S| log |S|) preprocessing, we can
report in O(log |S|) time a constant-size superset of
all sample points contributing to CC (s) \ Vor

S

uni(s).

While Funke and Ramos use a (di↵erent) unifor-
mity property of the point sets in question to prove
the above result, we do so by analyzing the properties
of the reconstruction the unmodified CoCone algo-
rithm would construct:

Lemma 4 Let N be the output of the CoCone algo-
rithm when run on a decimated point set Suni. Then
the following holds for each triangle 4

s1s2s3 2 N :
1. The circumradius of4

s1s2s3 is upper-bounded by
1.11 · (2 + 1

18) · (si) for i = 1, 2, 3.
2. The circumradius of4

s1s2s3 is upper-bounded by
2.72 · " · lfs

w

(s
i

) for i = 1, 2, 3.
3. The angles of 4

s1s2s3 are lower-bounded by 11�.

The last point is of direct relevance to the running
time of the shortest path algorithm to be used later
on, since its running time depends on the average
minimal interior angle of all faces visited. The lower
bound shown in Lemma 4 gives an important lower
bound for this and thus implies an upper bound for
the running time.
The first two points of Lemma 4, however, allow us

to prove which points are not needed locally and thus
can be ignored safely:

Lemma 5 All sample points contributing to CC (s)\
Vor

S

uni(s) lie inside B5· (s)(s).

Thus, (approximate) range reporting queries [6] can
be used (as in [7]) to compute a superset of the sample
points contributing to CC (s) \ Vor

S

uni(s):

Lemma 6 After O(|S| log |S|) preprocessing, we can
report a constant-size superset of Suni \B5· (s)(s) in
O(log |S|) time.

We can also prove that B5· (s)(s) contains a vertex
of the triangle containing s’s nearest point ⌫

s

on the
surface of N (note that ⌫

s

= s () s 2 S

uni).
This implies that Lemma 6 and a standard packing
argument can be used to prove that we can e�ciently
“re-insert” each s 2 S \ Suni by identifying it with ⌫

s

in overall O(|S| log |S|) time.

Approximate Weighted Shortest Path Queries As
mentioned above, the most e�cient algorithm to an-
swer weighted shortest path queries is the (1 ± �)-
approximation algorithm by Aleksandrov et al. [2].
This algorithm, however, requires the approximation
parameter � as part of the input. Since we aim at
an approximation quality depending on the unknown
parameter ", we have to overcome the obstacle of not
having an exact value of � to pass to the shortest path
algorithm. We can pass, however, an approximation e"
of " which we define using the concept of a pole:

Definition 5 ([5]) The poles p�
s

and p

+
s

are the two
vertices of its Voronoi cell farthest from s, one on
either side of the surface.

Aichholzer et al. [1, Lemma 5.1] proved that an
asymptotic upper bound for the local feature size of
a sample point s 2 S is given by the distance of s to
its nearest pole p

s

.

Lemma 7 ([1]) |p
s

s| � 1.2802�1 · lfs(s).
Based upon this lemma, we are ready to define the

approximate sampling density of an "-sample:

Definition 6 Let f
lfs(s) := |p

s

s| be the approxima-
tion of the local feature size as defined by Aichholzer
et al. [1]. Then, the approximate sampling density e"
is defined as e" := max

s2S

{ (s)/flfs(s)}.
By definition, the local feature size is an upper

bound for the weighted local feature size. Since
is an asymptotic lower bound for " · lfs

w

and f
lfs is an

asymptotic upper bound for lfs, Lemma 8 follows:

Lemma 8 e" 1.53 · "
We now can pass � := e" as a parameter to the (1±

�)-approximation algorithm by Aleksandrov et al. [2]
and compute shortest paths on N between all points
in S

uni [{⌫
s

|s 2 S \ Suni}.

3 Analysis of the Algorithm

For the analysis of the approximation quality, we
first extend a lemma from the unweighted case [8,
Lemma 20] to the following “weighted” version:

Lemma 9 Let x1 and x2 be two arbitrary points on �
with |x1x2| O (1)·"·max {lfs

w

(x1) , lfs
w

(x2)}. Then
we have (1 +O (")) · Lw

� (x1, x2) � w (x1) · |x1x2| �
(1�O (")) · Lw

� (x1, x2).

Definition 7 Let x1, x2 2 R3 be two points and ↵ <

⇡

2 an angle. Let C

x1 be the cone defined by {x 2
R3|\ (x2x1x) ↵} and let C

x2 be the cone defined by
{x 2 R3|\ (x1x2x) ↵}. The (linear) biconeD

x1,x2,↵

then is defined as C
x1 \ C

x2 , see Figure 2.

109

29th European Workshop on Computational Geometry, 2013

Algorithm 2 Approximating weighted distances.

Require: Weighted "-sample S of 2-manifold � ⇢ R3

1: Compute control function . . [8]
2: for all s 2 S do
3: Compute nearest pole p

s

and f
lfs(s) := |p

s

s|.
4: Compute e" := max

s2S

{ (s)/flfs(s)}.
5: for all s 2 S do
6: Compute decimated set Suni s.t. s 2 S

uni .
7: Preprocess Suni for approximate (1+ 1

10)-range
reporting queries. . [6]

8: Compute superset of B5· (s) (s)\Suni. . [6, 7]
9: Compute reconstruction N of �. . [4, 7]

10: for all 4 2 N do
11: w(4) := w(arbitrary vertex of 4)

12: Preprocess data structure for (1± e")-
approximate weighted single-source shortest
path (SSSP) queries w.r.t. s on N . . [2]

13: for all s0 2 S do
14: ⌫

s

0 := point on N nearest to s

0. . [6]
15: e

L

w

N

(⌫
s

, ⌫

s

0) := result of (1± e")-approxi-
mate weighted SSSP query on N . . [2]

16: return e
L

w

N

. Approximate distances on N .

x2x1

C

x1
C

x2

↵

↵

D

x1,s2,↵

Figure 2: Definition of the (linear) bicone D

x1,x2,↵

Using a result by Amenta et al. [3, Lemma 1]
(“For any two points p and q on � with |pq|
⇢ ·min {lfs(p), lfs(q)}, where ⇢ 1

3 , the angle between

the normals to � at p and q is at most |pq|
(1�3·⇢)·lfs(p) .”),

we then can show that for each edge e = (s1, s2) of a
triangle in the reconstruction N there exists a curve
�

s1s2 ⇢ � \ D

s1,s2,6·"0 . We then use that the trian-
gles examined by the CoCone-algorithm in the re-
construction N of � lie “flat” w.r.t. the planes tangent
to � in the triangles’ vertices:

Theorem 10 (Theorem 11 in [4]) The normal to
each triangle makes an acute angle of no more than

sin�1
⇣

1.15·"
1�"

⌘
+sin�1

⇣
2p
3
· sin

⇣
2 · sin�1

⇣
1.15·"
1�"

⌘⌘⌘
2

O (") with the surface normal at the vertex subtend-
ing the triangle’s largest interior angle.

Theorem 10 allows us to prove the approximation
quality of the approximate distances e

L

w

N

:

Lemma 11 For any s1, s2 2 S, we have (1�O (")) ·
L

w

� (s1, s2) e
L

w

N

(⌫
s1 , ⌫s2) (1 +O (")) · Lw

� (s1, s2)

For the analysis of the running time of Algorithm 2,
we can prove the following non-trivial lemma:

Lemma 12 1
e"2 2 O (|S|).

The proof of Lemma 12 uses the next two lemmas:

Lemma 13 8s 2 S : 8v 2 Vor (s)\� : |vs| e"·flfs (s)
Lemma 14 (Aichholzer et al. [1]: Lemma 4.2)
Let p

?

s

, ? 2 {+,�}, be a pole with polar radius ⇢?
s

.
The surface � cannot get closer to p than:

⇢?s ·
✓r

1� 4 ·
⇣
"2 � "4

4

⌘
� "2

◆
� ⇢?s ·

�
1� 3 · "2 �O �

"4
��
.

Algorithm 2 spendsO �|S|2� time on Steps 1–5. Ex-

cept for Step 14 which takes timeO
⇣

|S|p
e"
log |S|

e" log 1
e"

⌘
,

all steps inside the for-loop run in time O (|S| log |S|).
Theorem 15 Algorithm 2 approximates weighted
geodesic distances between all pair of points in
a weighted "-sample S of a weighted 2-manifold
in R3 in O �|S|2.25 · log �|S|1.25� · log �|S|0.25�� =

O �|S|2.25 log2 |S|� time up to a multiplicative approx-
imation error of 1±O (").

References

[1] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Korn-
berger, S. Plantinga, G. Rote, A. Sturm, and G. Veg-
ter. Recovering Structure from r-Sampled Objects.
Computer Graphics Forum, 28(5):1349–1360, 2009.

[2] L. Aleksandrov, H. N. Djidjev, H. Guo, A. Mahesh-
wari, D. Nussbaum, and J.-R. Sack. Algorithms for
approximate shortest path queries on weighted poly-
hedral surfaces. Discrete & Computational Geometry,
44(4):762–801, 2010.

[3] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Discrete & Computational Geome-

try, 22(4):481–504, 1999.

[4] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A sim-
ple algorithm for homeomorphic surface reconstruc-
tion. International Journal of Computational Geome-

try and Applications, 12(1–2):125–141, 2002.

[5] N. Amenta, S. Choi, and R. K. Kolluri. The power
crust, union of balls, and the medial axis transform.
Computational Geometry: Theory and Applications,
19(2–3):127–153, 2001.

[6] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. Jour-

nal of the ACM, 45(6):891–923, 1998.

[7] S. Funke and E. A. Ramos. Smooth-surface reconstruc-
tion in near-linear time. In Proc. Thirteenth Symp. on

Discrete Algorithms, pages 781–790. 2002.

[8] C. Sche↵er and J. Vahrenhold. Approximating
geodesic distances on 2-manifolds in R3. Computa-

tional Geometry: Theory & Applications, 2012. In
press. http://dx.doi.org/10.1016/j.comgeo.2012.

05.001.

110

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

E�cient volume and edge-skeleton computation

for polytopes defined by oracles

⇤

Ioannis Z. Emiris† Vissarion Fisikopoulos† Bernd Gärtner‡

Abstract

We design and implement total polynomial-time al-
gorithms for computing the exact edge-skeleton and
for approximating the volume of polytopes given by
optimization oracles. That is, the time complexity of
the algorithm is bounded by a polynomial in the in-
put and the output size. The main algorithmic step
is to obtain e�cient separation oracles given an opti-
mization oracle, which is reduced to solving a linear
program in the polar polytope. This separation ora-
cle is used to yield polynomial-time Monte Carlo algo-
rithms for approximating the volume of the polytope.
Next, we use this separation oracle to derive the first
total polynomial-time algorithm for the edge skeleton
of the polytope, when we are also given a superset
of the polytope’s edges, with cardinality bounded by
a polynomial in the number of those edges. Finally,
we briefly discuss our implementation and experimen-
tal results of optimization and volume approximation
algorithms, based on random walks.

1 Introduction

Convex polytopes in general dimension admit a num-
ber of alternative representations. The best known,
explicit representations for a polytope P is either as
the set of its vertices (possibly with additional infor-
mation about the positive-dimensional faces), or as a
bounded intersection of halfspaces. In the latter case,
a linear programming problem (LP) on P consists in
finding a vertex of P that maximizes the inner prod-
uct with a given objective vector c. In this paper we
study the case where a polytope is given by an implicit
representation. That is, the only allowable access to
P is a black box subroutine (oracle) that solves the
LP problem on P for a given vector c. Then, we say
that P is given by an optimization, or LP, or vertex

⇤Work partially supported from project “Computational
Geometric Learning”, which acknowledges the financial support
of the Future and Emerging Technologies (FET) programme
within the 7th Framework Programme for research of the Eu-
ropean Commission, under FET-Open grant number: 255827.
We also thank K. Fukuda, C. Müller, S. Stich for discussions
and bibliographic suggestions.

†Department of Informatics and Telecommunications, Uni-
versity of Athens, Greece. {emiris,vfisikop}@di.uoa.gr

‡Institut für Theoretische Informatik, Swiss Federal
Institute of Techology (ETHZ), Zurich, Switzerland.
gaertner@inf.ethz.ch

oracle. Given such an oracle, the entire polytope can
be reconstructed and its explicit representation can
be found using the Beneath-Beyond method [2]. This
is implemented in [8, 4] for a special case of polytopes,
called resultant polytopes.
Another important implicit representation for a

polytope P is to be given by a separation oracle. That
is, given a point x the oracle returns yes if x 2 P or
a hyperplane that separates P from x otherwise. To
acquire an optimization oracle for P , one has to solve
a linear program over P , using the separation ora-
cle. This can be done by (variants of) the ellipsoid
method (Sect. 2).
Now we pose the opposite (dual) question. Given

an optimization oracle for a polytope P , compute a
separation oracle for P . This boils down to solving
a linear program in the polar dual space where the
optimization oracle of P is a separation oracle for the
polar polytope P ⇤ (Sect. 2).

Proposition 1 An approximate separation oracle

for a well-rounded polytope P ✓ Rn

, given by an

optimization oracle of complexity T , is computed in

time O⇤(nT+n3.38), where O⇤(·) hides polylog factors
in the argument.

Well-rounded means that the radii of some bounding
and some inscribed ball di↵er by a constant factor not
depending on n. Also, the approximation error is as-
sumed to be constant, so that the bound is simple and
only depends on n and T . Prop. 1 is the main algo-
rithmic tool used in the sequel. This leads to our first
contribution, namely an implementation of a linear
program solver based on the randomized algorithm
of [1] (Sect. 4), which is also valuable because of its
independent interest.
Regarding the volume computation problem, it is

known that the exact computation is hard. However,
randomized poly-time approximation algorithms ex-
ist when the polytope is given by a separation oracle,
and currently the best complexity is O⇤(n4) oracle
calls [13]. The literature on implementing such algo-
rithms is limited. A notable exception is [12], which
implements [13] and computes the volume of n-cubes,
n = 2, 5, 8, in 807, 1901, 7551 secs respectively. Our
second contribution consist in providing an implemen-
tation, based on the O⇤(n5) algorithm of [9], which is
simpler and appears to have competitive performance

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

111

29th European Workshop on Computational Geometry, 2013

(Sect. 4). Regarding volume computation for poly-
topes given by optimization oracle, Prop. 1 is used in
conjunction with the above randomized algorithm.
Edge skeleton computation and vertex enumeration

from edge directions and suitable oracles is a prob-
lem of independent interest. It has been studied be-
fore [14]; their solution is used as a subroutine in ef-
ficiently solving convex integer programming in fixed
dimension [11]. Our third contribution is the design
of total poly-time algorithms for computing the ex-
act edge-skeleton of polytopes given by optimization
oracles, when we are also given a superset of the poly-
tope’s edges, with cardinality bounded by a polyno-
mial in the number of those edges.

Applications. Two applications have motivated this
paper. The first is the Minkowski sum P ⇢ Rn of
polytopes P1, . . . , Pr

⇢ Rn which are given by the set
of their vertices. Here, optimization oracles are nat-
urally and easily available, whereas it is not straight-
forward to construct the separation oracles. To illus-
trate this assume we are given a direction. Then, the
extremal vertex of each polytope summand can be
e�ciently computed by computing the interior prod-
uct of the direction with each vertex of the summand.
The extremal vertex of P towards the given direction
is the sum of the extremal vertices of the summands.
The above can be generalized for summand polytopes
given by optimization oracles.

Proposition 2 If P1, . . . , Pr

are given by optimiza-

tion oracles, each of complexity bounded by v, then by

Prop. 1, a separation oracle for P =
P

r

i=1 Pi

is com-

puted in O⇤(nrv+n3.38). The edge skeleton of P can

be computed in O⇤(m2n3.5) and an approximation of

its volume in O⇤(n7.38).

Our second application is resultant polytopes. Re-
sultant polynomials are fundamental in algebraic ge-
ometry since they generalize determinants to nonlin-
ear systems [6]. The Newton polytope of resultant
R, or resultant polytope, is the convex hull of the ex-
ponent vectors corresponding to nonzero terms. A
resultant is defined for d+1 pointsets in Zd. If R lies
in Zn, the total number of input points is n+ 2d+ 1,
and we assume that they are in generic position. If m
is the number of vertices in R, typically m � n � d,
so d is assumed fixed. A poly-time optimization ora-
cle is described in [4]. This approach can be used for
the secondary and discriminant polytopes [6].

Proposition 3 Given an optimization oracle for R ⇢
Zn

we can compute the edge-skeleton of R ⇢ Zn

in

O⇤(m3nb(d/2)+1c + m4n) for input points in generic

position, and an approximation of its volume in

O⇤(nb(d/2)+5c), where d > 5.

2 Polytope oracles

We introduce all tools needed to prove Prop. 1. Fol-
lowing [7], we define 5 basic oracles for polytope
P ⇢ Rn and, for completeness, describe exact poly-
time procedures that connect them.
Optimization (OPT

P

(c)): Given c 2 Rn, find x 2 P
maximizing cTx, x 2 P , or assert P = ;.
Validity (V AL

P

(c)): Given c 2 Rn, decide whether
cTx 1 holds for all x 2 P .
Violation (V IOL

P

(c)): Given c 2 Rn, call V AL
P

(c);
if negative, find y 2 P : cT y > 1.
Membership (MEM

P

(y)): Given y 2 Rn decide
whether y 2 P .
Separation (SEP

P

(y)): Given y 2 Rn callMEM
P

(y).
If it answers negatively, find the normal to a hyper-
plane that separates y from P ; i.e. c 2 Rn : cT y >
max{cTx | x 2 P}.
We use the polar dual polytope of P in dual space

(Rn)⇤, as defined in e.g. [16]:

P ⇤ := {c 2 Rn : cTx 1, for all x 2 P} ✓ (Rn)⇤,

where we assume that the origin 0 2 int(P), the rela-
tive interior of P , i.e. 0 is not contained in any face of
P of dimension < n. This hypothesis can be ensured
by an appropriate a�ne translation.
It is easy to see that having OPT

P

we can derive
V IOL

P

and then V AL
P

. Similarly, having SEP
P

we
can derive MEM

P

. For a polytope P ✓ Rn, its po-
lar P ⇤ ✓ (Rn)⇤ and c 2 Rn, it holds V IOL

P

(c) =
SEP

P

⇤(cT) hence V IOL
P

⇤(cT) = SEP
P

(c) [16,
Thm 2.11].
Given V IOL

P

(c) we compute OPT
P

(c) by per-
forming binary search on the value of cTx, for x 2
P . That is, we test feasibility, or non-emptiness, of
{x 2 P : cTx c0} for various constants c0, by
calling V IOL(c) on suitably chosen translations of P .

Let B(⇢) denotes the n-ball of radius ⇢ centered at
the origin. Assume that P ✓ B(⇢) and B(r) ✓ P if
P is not empty. Then, let L denote the log-ratio of
the bounding balls of P , i.e. L = lg(⇢/r). Computing
V IOL

P

from SEP
P

is a fundamental question. Some
poly-time algorithms for this problem are the ellip-
soid method [10] with complexity O(n2LT

S

+ n4L)
that [15] improves to

O(nLT
S

+ n3.38L) = O⇤(nT
S

+ n3.38) (1)

and the randomized algorithm of [1] which runs in
O(nLT

S

+ n7L), where T
S

is the complexity of the
separation oracle.
For proving Prop. 1 we have to compute a sepa-

ration oracle for a polytope P , SEP
P

, given an op-
timization oracle for P , OPT

P

. As it is explained
above this can be done by solving a linear program in
the polar dual space. The fastest algorithm used to
solve this linear program is [15], with complexity of

112

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Eq. (1). However, we implement the slightly slower
but simpler algorithm of [1].

3 Computing the edge skeleton

We are implicitly given a polytope P ✓ Rn via an op-
timization oracle OPT

P

(x) of P and we are explicitly
given a superset E of all edge directions of P , i.e.

E ◆ D(P) := {v � w : v, w adjacent vertices of P},

with cardinality |E| bounded by a polynomial in
|D(P)|. The goal is to e�ciently compute the edge
skeleton of P , i.e. its vertices and the edges connect-
ing the vertices. Even if E = D(P), this set does not
in general provide enough information to perform the
task, so we need additional information about P ; here
we assume an optimization oracle.

Proposition 4 [14] Let P ✓ Rn

be a polytope given

by an optimization oracle OPT
P

(c), and let E ◆
D(P) be a superset of the edge directions of P , With

O(|E|n�1) arithmetic operations and O(|E|n�1) calls
to OPT

P

(c), all vertices of P can be computed.

If P has m vertices, then |D(P)|
�
m

2

�
, and this

is tight for neighborly polytopes in general position.
This means that the bound of Prop. 4 is ⇥

�
m2n�2

�

in the worst case.
We improve over this result and compute the edge

skeleton with a number of arithmetic operations and
calls to OPT

P

(x) which are polynomial in m,n, and
L⇤, the ratio between the radii of balls enclosing
and included in the polar P ⇤. This ratio comes in
since we construct a separation oracle SEP

P

(y) from
OPT

P

(x), according to Prop. 1. We therefore get rid
of the exponential dependence on n in Prop. 4, but
at the cost of an additional dependence on L⇤ which
in general cannot be bounded by m,n. On the other
hand, L⇤ is related to L.
The algorithm is as follows. Using OPT

P

(c), we
find the unique vertex v of minimum x

n

coordinate.
We maintain sets V

P

, E
P

of vertices and edges that
have already been found, along with a priority queue
W of the vertices that are in V

P

. When we process the
next vertex v from the queue, it remains to find its in-
cident edges. To find the neighbors of v, we first build
a set V

cone

of candidate vertices. V
cone

can be con-
structed using SEP

P

(y) that we build from OPT
P

(x)
as described above. In a final step, we remove the can-
didates that do not yield vertices. For this, we first
solve a linear program to compute a hyperplane sepa-
rating v from the candidates; w.l.o.g. this hyperplane
is {x

n

= 1}. Then we compute the extreme points
of C \ {x

n

= 1}, giving us the extremal rays of C.
Finally, we remove every point from V

cone

that is not
on an extremal ray, or not highest on its extremal ray.

We bound the time complexity of the algorithm: We
call OPT

P

(x) to find the first vertex of P . Then, there
are O(m) iterations; one iteration calls SEP

P

(y) at
most |E| times, each call requiring O(nL⇤T+n3.38L⇤)
time, where T is the time to execute OPT

P

(x). Then
we compute the (at most m) extreme points from a
set of at most |E| points, which can be done in

O(|E| · LP⇤(n+ 1,m+ 1) + n|E|m)

time and O(n|E|) space [3], where LP⇤(a, b) is the
time to solve a linear program with a variables and b
inequality constraints.
Assuming |E| = O(|D(P)|) = O(m2), we obtain

the following result, and since LP⇤(n,m) is polyno-
mial in n,m in the bit model [10], an overall polyno-
mial bound follows.

Theorem 5 The algorithm runs in time

O(m3(nL⇤T + n3.38L⇤ + LP

⇤(n,m))), where T
is the time to perform one call to OPT

P

(x).

4 Implementation and experiments

We implement optimization and volume computation
algorithms based on random walks. The Hit-and-Run
random walk is used to generate uniformly distributed
points in P ⇢ Rn in O⇤(n3) per point [13]. In a feasi-
bility problem we have to answer if a given polytope P
is empty or compute a feasible point in P . We imple-
ment optimization algorithms based on [1] that solves
the feasibility problem. The advantage of this algo-
rithm is its simplicity and the re-usage of procedures,
such as random walks, in volume computation.
We also implement randomized approximate vol-

ume computation algorithms of polytopes given by
separation oracles. Moreover, we implement the al-
gorithm in [9] which approximates of the volume of
a polytope P given by a separation oracle by com-
puting uniformly distributed points in P . Assuming
B(1) ✓ P ✓ B(⇢), the algorithm returns an estima-
tion of vol(P), which lies between (1 � ")vol(P) and
(1 + ")vol(P) with probability � 3/4, making

O

✓
n4⇢2

"2
lnn ln ⇢ ln2

n

"

◆
= O⇤(n4⇢2)

oracle calls with probability � 9/10. Combining
the above implementations we also provide an im-
plementation for volume approximation of Minkowski
sums. The code is in C++ and is publicly available
at http://sourceforge.net/projects/randgeom.
We perform an experimental analysis of the above

implemented algorithms on an Intel Core i5-2400
3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian
GNU/Linux. The optimization algorithms are able to
run in less than a minute for up to dimension 11 when

113

29th European Workshop on Computational Geometry, 2013

n vol(P) exact(sec) r2 ws (1 + ")vol(P) min max µ � appr(sec)
2 4 0.06 2218 8 6.09 3.84 4.12 3.97 0.05 0.23
4 16 0.06 2738 7 30.4 14.99 16.25 15.59 0.32 1.77
6 64 0.09 5308 38 121.6 60.85 67.17 64.31 1.12 39.66
8 256 2.62 8215 16 486.4 242.08 262.95 252.71 5.09 46.83

10 1024 388.25 11370 40 1945.6 964.58 1068.22 1019.02 30.72 228.58
12 4096 – 14725 82 7782.4 3820.94 4247.96 4034.39 80.08 863.72

Table 1: Volume computation for hypercubes; ‘–’: the exact method was unable to compute the volume.

n vol(P) exact(sec) r2 ws min max µ � appr(sec)
2 14.00 0.01 216 11 12.60 19.16 15.16 1.34 119.00
3 45.33 0.01 200 7 42.92 57.87 49.13 3.92 462.65
4 139.33 0.03 100 7 100.78 203.64 130.79 21.57 721.42
5 412.26 0.23 100 7 194.17 488.14 304.80 59.66 1707.97

Table 2: Volume computation of the Minkowski sum of a hypercube and a crosspolytope.

tested on hypercubes and their polar duals, namely
crosspolytopes. The volume approximation algorithm
tested on hypercubes and crosspolytopes compute the
volume up to dimension 12 within minutes, whereas it
is intractable to compute in more than 10 dimensions
with exact methods, such as Polymake [5]. For 20
runs, the code’s computed values have less than 2%
error from the average one. Additionally, the mini-
mum and maximum computed values bounds the ex-
act volume providing tighter bounds than the theo-
retical ones, i.e. (1 ± ")vol(P). Table 1 shows exper-
imental results, where r2 is the number of random
points computed, w

s

is the number of the steps of
a Hit-and-Run random walk, and max, min, µ and
� denote, respectively, the maximum, the minimum,
the average and the average absolute deviation of the
computed volume approximation.
Finally, we compute an approximation of the vol-

ume of the Minkowski sum of a hypercube and a
crosspolytope. We perform 10 experiments for each
polytope sum. The results show that the min and
max computed values bound the exact one. However,
we are unable to compute in dimensions higher than
5 since each membership test for P runs one of the
optimization algorithms. On the other hand, there
is space for improvement in many places of the pro-
totype implementations of optimization and volume
computation, which will improve the Minkowski sum
volume computation as well. Table 2 shows experi-
mental results with the same notation as in Table 1.

References

[1] D. Bertsimas and S. Vempala. Solving convex pro-
grams by random walks. J. ACM, 51(4):540–556,
2004.

[2] Bernard Chazelle. An optimal convex hull algorithm
in any fixed dimension. Discrete & Computational
Geometry, 10:377–409, 1993.

[3] K.L. Clarkson. More output-sensitive geometric algo-
rithms. In Proc. IEEE FOCS, pages 695–702, 1994.

[4] I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and
L. Peñaranda. An output-sensitive algorithm for
computing projections of resultant polytopes. In
Proc. SoCG, pages 179–188, 2012.

[5] E. Gawrilow and M. Joswig. Polymake: an approach
to modular software design in computational geome-
try. In Proc. SoCG, pages 222–231. ACM, 2001.

[6] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky.
Discriminants, Resultants and Multidimensional De-
terminants. Birkhäuser, Boston, 1994.

[7] M. Grötschel, L. Lovász, and A. Schrijver. Geo-
metric Algorithms and Combinatorial Optimization.
Springer-Verlag, New York, 1988.

[8] P. Huggins. ib4e: A software framework for
parametrizing specialized LP problems. In A. Igle-
sias and N. Takayama, editors, Mathematical Soft-
ware - ICMS, volume 4151 of LNCS, pages 245–247.
Springer, 2006.

[9] R. Kannan, L. Lovász, and M. Simonovits. Ran-

dom walks and an O*(n5) volume algorithm for con-
vex bodies. Random Struct. Algorithms, 11(1):1–50,
1997.

[10] L.G. Khachiyan. A polynomial algorithm in linear
programming. Soviet Math. Doklady, 20(1):191–194,
1979.

[11] J.A. De Loera, R. Hemmecke, S. Onn, U.G. Roth-
blum, and R. Weismantel. Convex integer maximiza-
tion via Graver bases. J. Pure & Applied Algebra,
213(8):1569–1577, 2009.

[12] L. Lovász and I. Deák. Computational results of an
O(n4) volume algorithm. European J. Operational
Research, 216(1):152–161, 2012.

[13] L. Lovász and S. Vempala. Simulated annealing in

convex bodies and an O*(n4) volume algorithm. J.
Comp. Syst. Sci., 72(2):392–417, 2006.

[14] S. Onn and U.G. Rothblum. The use of edge-
directions and linear programming to enumerate ver-
tices. J. Combin. Optim., 14:153–164, 2007.

[15] P.M. Vaidya. A new algorithm for minimizing convex
functions over convex sets. In Proc. IEEE FOCS,
pages 338–343, 1989.

[16] G.M. Ziegler. Lectures on Polytopes. Springer, 1995.

114

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Flip Distance Between Triangulations of a Simple Polygon is

NP-Complete

Oswin Aichholzer⇤ Wolfgang Mulzer† Alexander Pilz‡

Abstract

Let T be a triangulation of a simple polygon. A flip in
T is the operation of removing one diagonal of T and
adding a di↵erent one such that the resulting graph
is again a triangulation. The flip distance between
two triangulations is the smallest number of flips that
is necessary to transform one triangulation into the
other. We show that computing the flip distance be-
tween two triangulations of a simple polygon is NP-
hard.

1 Introduction

Let P be a simple polygon in the plane, that is, the
closed region bounded by a piece-wise linear, simple
cycle. A triangulation T of P is a geometric (straight-
line) maximal outerplanar graph whose outer face is
the complement of P and whose vertex set are the
vertices of P . Let d be a diagonal of P whose removal
creates a convex quadrilateral f . By replacing d with
the other diagonal of f , we again get a triangulation
of P . This operation is called a flip. The flip graph

of P is the abstract graph whose vertices are the tri-
angulations of P and in which two triangulations are
adjacent if and only if they di↵er by a single flip. We
study the flip distance, that is, the minimum number
of flips required to transform a given source triangu-
lation into a target triangulation.
Edge flips became popular in the context of Delau-

nay triangulations. Lawson [6] proved that the flip
graph is connected with diameter O(n2). Hurtado,
Noy, and Urrutia [5] gave an example where the flip
distance is ⌦(n2), and showed that the same bounds
hold for triangulations of simple polygons. They also
proved that if the polygon has k reflex vertices, then
the flip graph has diameter O(n+ k2). This general-
izes the well-known fact that the flip distance between

⇤Institute for Software Technology, Graz University of Tech-
nology, Austria. Partially supported by the ESF EUROCORES
programme EuroGIGA - ComPoSe, Austrian Science Fund
(FWF): I 648-N18. oaich@ist.tugraz.at.

†Institute of Computer Science, Freie Universität Berlin,
Germany. Supported in part by DFG project MU/3501/1.
mulzer@inf.fu-berlin.de.

‡Recipient of a DOC-fellowship of the Austrian Academy of
Sciences at the Institute for Software Technology, Graz Univer-
sity of Technology. Part of this work has been done while this
author was visiting the Dept. de Matemáticas, Universidad de
Alcalá, Spain. apilz@ist.tugraz.at.

any two triangulations of a convex polygon is at most
2n� 10, for n > 12 [11].
Hanke, Ottmann, and Schuierer [4] showed that the

flip distance between two triangulations of a point set
is at most the number of crossings in the overlay of the
source and the target triangulation. Eppstein [3] gave
a polynomial-time algorithm for computing a lower
bound on the flip distance. This bound is tight for
point sets that do not contain empty 5-gons. For a
survey on flip operations see Bose and Hurtado [2].
Recently, the problem of finding the flip distance be-
tween two triangulations of a point set was shown to
be NP-complete by Lubiw and Pathak [7] and, in-
dependently, to be APX-hard by Pilz [8]. Here, we
obtain the following result.

Theorem 1 (main result) Let P be a simple poly-

gon. It is NP-complete to decide whether the flip

distance between two triangulations of P is a most k.

In this extended abstract we omit all proofs; they can
be found in the preprint [1]. Our reduction uses
a variant of the Rectilinear Steiner Arbores-

cence Problem. Let S be a set of N points in the
plane, called sinks, whose coordinates are nonnega-
tive integers. A rectilinear Steiner tree T is called a
rectilinear Steiner arborescence (RSA) for S if (i) T
is rooted at the origin; (ii) each leaf of T lies at a sink
in S; and (iii) for each s = (x, y) 2 S, the length of
the path in T from the origin to s equals x + y, i.e.,
all edges in T point north or east, as seen from the
origin [9]. In the RSA problem, we are given a set of
sinks S and an integer k and ask whether S has an
RSA of length at most k. The problem is strongly
NP-complete; in particular, it remains NP-complete
if S is contained in an n⇥n grid, with n polynomially
bounded in N = |S| [10]. For our reduction we need
a restricted version of the RSA problem, called the
YRSA problem. In an instance (S, k) of the YRSA
problem, we require that no two sinks in S have the
same y-coordinate. One can show that this variant of
the problem remains NP-complete.

2 Double Chains

We use definitions (and illustrations) along the lines
of [8]. A double chain D consists of two chains, an
upper chain and a lower chain. There are n points

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

115

29th European Workshop on Computational Geometry, 2013

Figure 1: The upper and lower extreme triangulations
of P

D

with a flip distance of (n� 1)2, as shown in [5].

p

Figure 2: The extra point p in the kernel of D allows
flipping one extreme triangulation of P p

D

to the other
in 4n� 4 flips.

on each chain, hu1, . . . , un

i on the upper chain and
hl1, . . . , lni on the lower chain, both numbered from
left to right. The upper chain is reflex w.r.t. any point
of the lower chain, and vice versa. Let P

D

be the
polygon defined by hl1, . . . , ln, un

, . . . , u1i. We call
the triangulation T

u

of P
D

where u1 has maximum
degree the upper extreme triangulation; observe that
this triangulation is unique. The triangulation T

l

of
P
D

where l1 has maximum degree is called the lower

extreme triangulation. The flip distance between T
u

and T
l

is (n� 1)2 [5], see Figure 1.

Definition 1 Let D be a double chain. Let W1 be

the double wedge defined by the supporting lines of

u1u2 and l1l2 whose interior does not contain a point

of D. W
n

is defined analogously by the supporting

lines of u
n

u
n�1 and l

n

l
n�1. Let W = W1 [W

n

be

called the wedge of D. A point is outside of D if it

is not contained in W [P
D

. The kernel of D is the

intersection of the closed half-planes below u1u2 and

u
n�1un

, as well as above l1l2 and l
n�1ln.

We refer to a polygon as in Figure 2, where p is in
the kernel of D, by P p

D

. As mentioned in [12], the flip
distance between the two extreme triangulations from
Figure 1 is much smaller in P p

D

than in P
D

. Figure 2
shows that 4n � 4 flips su�ce. It turns out that this
is optimal, even for more general polygons:

Lemma 2 Let P be a polygon that completely con-

tains P
D

and has hl1, . . . , lni and hu
n

, . . . , u1i as part
of its boundary. Further, let T1 and T2 be two triangu-

lations that contain the upper extreme triangulation

and the lower extreme triangulation of P
D

as a sub-

triangulation, respectively. Then T1 and T2 have flip

distance at least 4n� 4.

The proof by Lubiw and Pathak [7] for constant-size
double chains directly generalizes to the above result.
The following is a special case of a result from [8].

u1 u4 u
n

l1 l3 l8 l
n

u7

8

4 7

3
1
1

b

z

Figure 3: A double chain extended by a vertex z.
The vertex z is incident to u7 and l8, represented by
the blue point b in the grid. The brown chain path
represents the chain triangles. If we flip edges to z,
b will move along that path. A flip between chain
triangles (dotted edge replaced by the dashed one)
changes a bend in that path (from the dotted one).

Lemma 3 Let P be a polygon that completely con-

tains P
D

and has hl1, . . . , lni and hu
n

, . . . , u1i as part
of its boundary, and let T1 and T2 be two triangu-

lations that contain the upper extreme triangulation

and the lower extreme triangulation of P
D

as sub-

triangulation, respectively. Suppose there is no ver-

tex in the interior of the wedge of P
D

. Then the flip

distance between T1 and T2 is at least (n� 1)2.

Take a polygon P z

D

and consider a triangulation T
of P z

D

. A chain edge is an edge of T between the upper
and the lower chain of D. A chain triangle is a trian-
gle that contains two chain edges. We use the chain
edges to define the chain path, an abstract path on
the n⇥ n grid. Let e1, e2, . . . , em be the chain edges,
sorted from left to right according to their intersec-
tions with a line ` that separates the upper from the
lower chain. For i = 1, . . . ,m, write e

i

= (u
v

, l
w

) and
set c

i

= (v, w). Note that, in particular, c1 = (1, 1),
which we use as the root of our setting. Since T is a
triangulation, any two consecutive edges e

i

, e
i+1 share

one endpoint, while the other endpoints are adjacent
on the corresponding chain. Thus, c

i+1 dominates c
i

and kc
i+1 � c

i

k1 = 1. The chain path is defined as
the path c1c2 . . . cm. See Figure 3 for an example.

The chain path is an x- and y-monotone path in
the n ⇥ n grid. We call its upper right endpoint b.
By observing the changes of the chain path by flips of
di↵erent types, the following lemma can be obtained.

Lemma 4 Let T be a triangulation of P z

D

. Then

T uniquely determines an x- and y-monotone path

(i.e., the chain path) in the n ⇥ n grid starting at

the root (1, 1). Conversely, any chain path uniquely

determines a triangulation of T . The possible flips of

T correspond to the following operations on the chain

path: (i) extend the right endpoint north or east; (ii)

shorten the path at the right endpoint; (iii) change an

east-north bend to an north-east bend, or vice versa.

116

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

3 Installing Sinks

We show how to reduce YRSA to our flip distance
problem. Let S be a set of N sinks with root at (1, 1)
on an (n�1)⇥(n�1) grid (recall that n is polynomial
in N). We describe how to construct a polygon P ⇤

D

for S. Our construction has two integral parameters
� and d. With foresight, we set � = 2N and d = nN .

Let P z

D

be the polygon from Section 2, but with �n
vertices on each chain. As we saw in Section 2, we can
interpret a triangulation of P z

D

as a a chain path in the
�n ⇥ �n grid. We imagine that the sinks of S are in
this grid, with their coordinates multiplied by �. For
each sink s = (x, y), we place a (rotated) small double
chain D

s

of size d such that l
�y

and l
�y+1 correspond

to the last point on the lower and upper chain of D
s

,
respectively. In addition, u

�x

is the only point in the
kernel of D

s

and u
�x

is also the only point in the
interior of the wedge of D

s

. We call the resulting
polygon P ⇤

D

. If � is large enough, the small double
chains D

s

do not interfere with each other, and P ⇤
D

is simple. Since the y-coordinates in S are pairwise
distinct, we create at most one double chain at each
edge of the lower chain of P z

D

. Observe that we have
some flexibility for the precise placement of the points
of each D

s

. Thus we can choose their placement in a
way that their coordinates are polynomial in n.
Next, we describe the source and target triangula-

tion for P ⇤
D

. The source triangulation T1 contains all
edges of P z

D

. The interior of P z

D

is triangulated such
that all edges are incident to z, i.e., b is at the root.
The small double chains are all triangulated with the
upper extreme triangulation. The target triangula-
tion T2 is defined similarly, but now all the small
double chains are triangulated with the lower extreme
triangulation (note that the choice of the upper and
lower chain is arbitrary for the small double chains).
Hence, each corresponding pair of small double

chains in T1 and T2 has flip distance (d � 1)2 due to
Lemma 3, unless the appropriate vertex on the upper
chain of P ⇤

D

is used. Intuitively, if d is large enough,
a shortest flip sequence will have to “traverse” each
sink, inducing an arborescence for S. Vice versa, ev-
ery arborescence for S gives a short flip sequence be-
tween T1 and T2.

Lemma 5 Let A be an arborescence for S of

length k. Then the flip distance on P ⇤
D

between T1

and T2 is at most 2�k + (4d� 2)N .

Next we consider the opposite direction of the cor-
respondence. In the proof of the following lemma, we
will describe a mapping from each triangulation T of
P ⇤
D

to a triangulation T
z

of P z

D

. For each sink s 2 S,
the corresponding chain triangle t

s

in T
z

is defined as
the chain triangle in P z

D

that allows the double chain
D

s

to be flipped quickly. We say that a flip sequence
�1 on P z

D

visits a sink s 2 S, if �1 has at least one

�
s

u
s

l
s

l0
s

T+

T
s

u
s

l
s

l0
s

�
s

�
s

u
s

l
s

l0
s

Figure 4: A part of a triangulation of P ⇤
D

and the two
corresponding triangulations T

z

and T
s

.

triangulation T that contains the corresponding chain
triangle t

s

. We call �1 a flip traversal for S if (i) the
sequence �1 begins and ends in the same triangulation
T
z

such that T
z

corresponds to b lying on the root; (ii)
the sequence �1 visits every sink in S.

Lemma 6 Let � be a flip sequence on P ⇤
D

from T1

to T2 with |�| < (d � 1)2. Then there exists a flip

sequence �1 on P z

D

such that �1 is a flip traversal for

S with |�1| |�|� (4d� 4)N .

Sketch of Proof. Let T ⇤ be a triangulation of P ⇤
D

.
Let D

s

be a small double chain placed between the
vertices l

s

and l0
s

with u
s

being the vertex in the kernel
of D

s

. We define �
s

as the triangle that is either
the inner triangle (i.e., all three sides are diagonals)
incident to two vertices of D

s

or the triangle that is
incident to both convex vertices of D

s

but is not an
ear. Note that in the first case the third vertex might
be u

s

and that in the latter case the third vertex has
to be u

s

. Due to the structure of P ⇤
D

there always
exists exactly one such triangle �

s

per sink. Let the
polygon Pus

Ds
consist of the double chain D

s

extended
by the vertex u

s

, and let T
s

denote a triangulation of
it. We define a mapping of any triangulation T ⇤ of
P ⇤
D

to a triangulation T
z

of P z

D

and to triangulations
T
s

for all sinks s. The triangulation T
z

contains every
triangle that has all three vertices in P z

D

. For each
triangle r that has two vertices on P z

D

and one on
the left chain of D

s

, we replace the apex on D
s

by l
s

.
The analogous is done if the apex of a triangle r is on
the right chain of D

s

; we replace that apex by l0
s

. For
every sink s, the triangle �

s

is known to have an apex
at a point u

i

of the upper chain. In T
z

, we replace
�

s

by the triangle l
s

l0
s

u
i

. Since these are exactly the
triangles needed for a triangulation of P z

D

and no two
triangles overlap, T

z

is indeed a triangulation of P z

D

.
Similarly, all triangles in T ⇤ with all three vertices on
Pus
Ds

are also in T
s

, and the triangles having two points
on D

s

and whose apex is not in Pus
Ds

get their apex at
u
s

in T
s

(note that this includes �
s

). See Figure 4.

Using a case analysis, one can show that each flip
changes at most one of the triangulations that the
original triangulation is mapped to. ⇤

117

29th European Workshop on Computational Geometry, 2013

4 Arborescences and Traces

Next, we define traces (domains drawn on the grid)
and relate them to flip traversals. A trace is drawn
on the �n ⇥ �n grid. It consists of edges and boxes:
an edge is a line segment of length 1 whose endpoints
have positive integer coordinates; a box is a square of
side length 1 whose corners have positive integer co-
ordinates. Similar to arborescences, we require that a
trace R (i) is (topologically) connected; (ii) contains
the root (1, 1); and (iii) from every grid point con-
tained in R there exists an x- and y-monotone path
to the root that lies completely in R. We say R is a
covering trace for S (or, R covers S) if every sink in
S is part of R.
Let �1 be a flip traversal as in Lemma 6. By

Lemma 4, we can interpret the sequence �1 as the evo-
lution of a chain path. This gives a covering trace R
for S in the following way. For every flip in �1 that ex-
tends the chain path, we add the corresponding edge
to R. For every chain flip in �1, we add the cor-
responding box to R. Afterwards, we remove from
R all edges that coincide with a side of a box in R.
Clearly, R is (topologically) connected. Since �1 is a
flip traversal for S, every sink is covered by R (i.e.,
incident to a box or edge in R). Note that every grid
point p in R is connected to the root by an x- and y-
monotone path on R, since at some point p belonged
to a chain path in �1. Hence, R is indeed a trace, the
unique trace of �1.
Next, we define the cost of a trace R, cost(R), so

that if R is the trace of a flip traversal �1, then cost(R)
gives a lower bound on |�1|. An edge has cost 2. Let
B be a box in R. A boundary side of B is a side that
is not part of another box. The cost of B is 1 plus the
number of boundary sides of B. Then, cost(R) is the
total cost over all boxes and edges in R.

Proposition 7 Let �1 be a flip traversal and R a

trace for �1. Then cost(R) |�1|.

Observation 1 Any shortest path tree A
�1 in R for

the root w.r.t. S is an arborescence.

If �1 contains no chain flips, the corresponding trace
R has no boxes, but it may not be acyclic. However,
due to Observation 1 it contains an arborescence A

�1 ,
in particular with 2|A

�1 | cost(R).

Lemma 8 Let �1 be a flip traversal of S. Then there

exists a covering trace R for S in the �n ⇥ �n grid

such that R does not contain a box and such that

cost(R) |�1|.

Corollary 9 Let � be a flip sequence on P ⇤
D

from T1

to T2 with |�| 2�k + (4d� 2)N . Then there exists

a rectilinear Steiner arborescence for S of length at

most k.

Sketch of Proof. Since there is always an arbores-
cence on S of length less than 2nN , we may assume
that k < 2nN . We can use Lemma 6, and then ap-
ply Lemma 8 to the resulting sequence to obtain an
arborescence A of length at most �k +N . It is well-
known that there exists a minimal arborescence A0

for S whose length is a multiple of �. Thus, since
� > N , we get that A0 has length at most �k, so the
corresponding arborescence for S on the original grid
has length at most k. ⇤

Together with Lemma 5, this implies Theorem 1.

References

[1] O. Aichholzer, W. Mulzer, and A. Pilz. Flip Dis-
tance Between Triangulations of a Simple Poly-
gon is NP-Complete. ArXiv e-prints, Sept. 2012.
arXiv:1209.0579.

[2] P. Bose and F. Hurtado. Flips in planar graphs. Com-

put. Geom., 42(1):60–80, 2009.

[3] D. Eppstein. Happy endings for flip graphs. JoCG,
1(1):3–28, 2010.

[4] S. Hanke, T. Ottmann, and S. Schuierer. The edge-
flipping distance of triangulations. J.UCS, 2(8):570–
579, 1996.

[5] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in
triangulations. Discrete Comput. Geom., 22:333–346,
1999.

[6] C. L. Lawson. Transforming triangulations. Discrete

Math., 3(4):365–372, 1972.

[7] A. Lubiw and V. Pathak. Flip distance between two
triangulations of a point-set is NP-complete. In Proc.

24

th
CCCG, pages 127–132, Charlottetown, Canada,

August 2012.

[8] A. Pilz. Flip distance between triangulations of a
planar point set is APX-hard. Submitted, preprint
available at arXiv:1206.3179, 2012.

[9] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W.
Shor. The rectilinear Steiner arborescence problem.
Algorithmica, 7:277–288, 1992.

[10] W. Shi and C. Su. The rectilinear Steiner arbores-
cence problem is NP-complete. In Proc. 11

th
An-

nual ACM-SIAM Symposium on Discrete Algorithms,
pages 780–787, 2000.

[11] D. Sleator, R. Tarjan, and W. Thurston. Rotation
distance, triangulations and hyperbolic geometry. J.

Amer. Math. Soc., 1:647–682, 1988.

[12] J. Urrutia. Algunos problemas abiertos. In N. Coll
and J. Sellares, editors, Proc. IX ECG, pages 13–24.
Univ. De Girona, July 2001.

118

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Selecting the Aspect Ratio of a Scatter Plot

Based on Its Delaunay Triangulation

Martin Fink⇤ Jan-Henrik Haunert⇤ Joachim Spoerhase⇤ Alexander Wolff⇤

Abstract

Scatter plots are diagrams that visualize sets of points
in two dimensions. They allow users to detect corre-
lations and clusters in the data. Whether a user can
accomplish these tasks highly depends on the aspect

ratio selected for the plot, i.e., the ratio between the
horizontal and the vertical extent of the diagram. We
argue that an aspect ratio is good if the Delaunay tri-
angulation of the scatter plot has some nice geometric
property, e.g., a large minimum angle or a small total
edge length. In order to find an optimum aspect ratio
according to a given criterion we present an algorithm
that efficiently maintains the Delaunay triangulation
of the point set when traversing all aspect ratios.

1 Introduction

Scatter plots are diagrams that visualize sets of points
in the plane to allow humans to find patterns, clus-
ters, and trends in the data. When drawing a scatter
plot, one is usually free to choose its aspect ratio, that
is, the ratio between its horizontal and its vertical ex-
tent. With a bad choice, however, humans may fail
in recognizing a pattern in the data. While the auto-
matic selection of a good aspect ratio for a line chart
has been intensively discussed [1–3,8,9], methods that
select the aspect ratio for a scatter plot are missing.

Most methods for aspect-ratio selection rely on
properties of the line segments displayed in the di-
agram. To apply a line-segment-based method to
scatter plots, Cleveland et al. [2] suggested to con-
sider “virtual line segments”, which humans may per-
ceive though they do not physically exist. The vir-
tual line segments may be the segments of a (virtual)
polyline connecting all data points, the segments of
a regression (poly-)line, or, as suggested by Talbot et
al. [8] in order to deal with pairs of variables without a
functional relationship, the segments of contour lines
yielded by a kernel density estimator (KDE).

Our main concern with their method is that the
KDE result (and the final aspect ratio) heavily de-
pends on the aspect ratio of the input data: it makes
a difference whether the input data is given, for ex-
ample, in degree Fahrenheit or in degree Celsius. To

⇤
Lehrstuhl für Informatik I, Universität Würzburg, Ger-

many, URL: www1.informatik.uni-wuerzburg.de/en/staff

overcome this deficiency, we define—based on the out-
put diagram visible to the user (and thus on the as-
pect ratio chosen)—whether two points are linked via
a virtual edge. We argue that the aspect ratio is good
if the virtual edges have nice properties. We define
a virtual line segment for each edge of the Delaunay
triangulation D(P) of the set P of points displayed.
This generally defines a meaningful (usually termed
the natural) neighborhood for P : if for two points
u, v 2 P there exists a point w 2 R2 such that both
u and v are nearest neighbors of w in P , then there
exists an edge {u, v} in D(P).

We now need to choose the aspect ratio of a scatter
plot such that the displayed points have a nice De-
launay triangulation, for example, one of minimum
total edge length. To solve this problem, we present
an algorithm that traverses the space of aspect ratios
while efficiently maintaining the Delaunay triangula-
tion. This is closely related to the problem of main-
taining a Delaunay triangulation for a set of continu-
ously moving points. In fact, our setting corresponds
to the special case where each point moves along a
horizontal line at an individual but constant speed.

Roos [5] described a data structure for maintain-
ing a dynamic Delaunay triangulation which takes
O(log n) time per topological change of the triangu-
lation. His result requires that the movement of the
points meets a (weak) technical assumption that holds
for many natural scenarios such as movement along
parametric polynomial curves. The question of how

many topological changes a dynamic Delaunay trian-
gulation can undergo (under some weak and natural
assumptions on the movement) is an important field of
research. Recently, Rubin [6] showed that there are at
most O(n2+✏

) topological changes for a large class of
movements (including our scenario). We argue that
in our case there are in fact only O(n2

) topological
events. Since updating the Delaunay triangulation re-
quires O(log n) time, we can traverse all possible topo-
logical Delaunay triangulations in O(n2

log n) time.

2 Problem Statement

Given a set Q = {q1, q2, . . . , qn} ⇢ R2 of points, we
search for a scale factor s 2 R+ defining the set P of
displayed points, i.e., the resulting scatter plot. We
denote the coordinates of each point qi 2 Q by xi and
yi and require the scatter plot P to contain the point

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be

considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a

journal.

119

http://www1.informatik.uni-wuerzburg.de/en/staff

29th European Workshop on Computational Geometry, 2013

(s · xi, yi/s). This ensures that the bounding box of
P and the bounding box of Q have the same area.

In order to choose a good scale factor, we define
various criteria. Our main approach is to measure the
quality of a scatter plot with a function f : S ! R,
where S is the set of all possible scatter plots for the
given point set. Then, we search for a scale factor
whose corresponding scatter plot maximizes f .

All our measures are based on the Delaunay tri-
angulation of the point set. A characterization of the
Delaunay triangulation is that it maximizes the small-

est angle among all triangulations. The natural idea
is to use this measure also over different scale factors,
i.e., to define f(P) as the value of the smallest angle
of the Delaunay triangulation of P . We will see that
we can find the scale factor optimizing this criterion.
Nevertheless, there are also other criteria that make
sense, and which we can, at least, approximate:
• maximize the mean inradius of triangles of D(P),
• maximize the total compactness of triangles of
D(P); the compactness of triangle � with peri-
meter c(�) and area A(�) is

p
A(�)/c(�) [4],

• minimize the total uncompactness of triangles of
D(P); the uncompactness is c(�)/

p
A(�) [4],

• minimize the total length of all edges of D(P).

3 Algorithm

Finding an optimum scale factor s can be seen as a
continuous process. We continuously increase s start-
ing with s = 1. In doing so, the Delaunay triangu-
lation undergoes topological changes at certain event

points which we keep track of. We output the scale
factor at which our objective function is optimized.
Symmetrically, we traverse all scale factors s < 1.

Our algorithm consists of two layers. The first layer
steps through the discrete set of event points in the
order in which they occur in the above described pro-
cess. The second layer optimizes between consecutive
event points si and si+1, where the topological struc-
ture of the Delaunay triangulation does not change.
Each of our optimization measures is a continuous
function of s 2 [si, si+1]. We can then compute the
scale factor (or an approximation of it) at which this
function is maximized within [si, si+1]. Doing this for
all such intervals allows us to determine the globally
optimal scale factor (or an approximation).

Recall that a triangulation D(P) of a point set P =

{p1, . . . , pn} is Delaunay if the circumcircle of each
triangle of D(P) is empty, that is, it does not contain
points of P in its interior (c1). Alternatively, for any
edge pipj of D(P), there must exist an empty circle
whose boundary contains pi and pj (c2).

Maintaining the Delaunay triangulation through

scale space Since the number of points on the con-
vex hull is constant over the whole scale space, the

same holds for the number of triangles and edges.
Hence, for each triangle (or edge) that disappears
from the Delaunay triangulation at some event point
sh, a new triangle (or edge) is created and vice versa.
For the sake of simplicity, we assume in what follows
that no five points are co-circular at any scale factor.

Consider an event point sh at which some triangle
disappears from D(P). According to criterion (c1)
there is at least one point pl that enters the circumcir-
cle C(pi, pj , pk) of the triangle at sh. More precisely,
the interior of C(pi, pj , pk) contains pl at any s > sh
but not at s = sh where pl is on the boundary.

The following lemma (whose proof we skip) charac-
terizes the situations where topological changes occur.

Lemma 1 Assume that the Delaunay triangulation

undergoes a topological change at event point sh.

Then there is a quadrilateral pi, pj , pk, pl in the De-

launay triangulation with diagonal pipk such that pl
enters the circle C(pi, pj , pk) at sh.

Consider a point pl entering the circumcircle of a
triangle �pipjpk at event point sh between pi and pk
as described in Lemma 1. If we replace edge pipk with
edge pjpl at event point sh, we obtain a new triangu-
lation. We call this operation a flip. The crucial ob-
servation is that if no further flips are to be performed
at sh, the current Delaunay triangulation is valid at
sh + ✏ for sufficiently small ✏ > 0. Also note that the
flip of pipk corresponds to the co-circularity of the
unique quadrilateral pipjpkpl that contains pipk.

Our algorithm determines the sequence s1, . . . , sm
of event points one by one in increasing order start-
ing with s1 := 1. Given an event point si and the
corresponding Delaunay triangulation D(P (si)), we
face the problem of computing the next event point
si+1, that is, the smallest scale factor larger than si
at which we have to perform flips. Note that any flip
that we have to perform at si+1 corresponds to the co-
circularity of the unique quadrilateral of D(P (si+1))

containing the edge flipped. In other words, for every
edge, we have to compute the smallest scale factor
larger than si at which the corresponding quadrilat-
eral becomes co-circular (if any). For each edge, this
event point can be computed in constant time by solv-
ing a system of four linear equations [5].

Our algorithm traverses the sequence of event
points s1, . . . , sm in increasing order as follows. Ini-
tially, we compute the Delaunay triangulation at s1 =

1 and set up a priority queue Q that maintains, for
each edge of the current triangulation, the event point
at which this edge has to be flipped. We then itera-
tively compute the sequence of event points. First, we
get the next event point t by extracting from queue Q
the next scale factor t at which some edge e has to be
flipped. When e is flipped, the queue Q has to be up-
dated accordingly. We must update the event points

120

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

at which the four edges of the quadrilateral containing
e have to be flipped.

Let’s analyze the running time of the algorithm.
The initialization step takes O(n logn) time for the
Delaunay triangulation and O(n) time for building
the priority queue. For each flip, we spend O(log n)
time for extracting the minimum of Q and updating
the four edges on the corresponding quadrilateral.

It remains to determine the maximum number of
flips performed by the algorithm. Consider the sit-
uation of Lemma 1 where we flip the edge pipk at
event point sh. For every scale factor s > sh, the
circle C(pi, pj , pk) contains pl in its interior. By crite-
rion (c2) we can conclude that the edge pipk can not
be part of a Delaunay triangulation for any s > sh.
Since there are at most O(n2

) potential edges, and ev-
ery edge that is flipped cannot be re-inserted into the
Delaunay triangulation, there are only O(n2

) flips.

Theorem 2 We traverse the sequence s1, . . . , sm of

event points in increasing order and compute for 1
i m� 1 the Delaunay triangulation valid in the in-

terval [si, si+1] in a total running time of O(n2
log n).

The event points can be scattered quite unevenly
over the scale space. It is therefore not sufficient to
consider only the event points as potential solutions.

Finding an approximate solution We describe our
method for minimizing the uncompactness cD of the
Delaunay triangulation D. It can be applied to the
other objective functions in a similar manner.

Fix an interval [si, si+1] of consecutive event points
and fix an arbitrarily small error parameter ✏ > 0.
Our goal is to find an (1 + ✏)-approximate solution
for cD, that is, a scale factor sa for which cD(sa)
(1 + ✏)cD(s⇤) where s⇤ is the globally optimal scale
factor. Given an edge e of D, its length le(s) de-
pends on the scale factor. It is easy to see that
le((1 + ✏)s) (1 + ✏)le(s). As the area is constant,
for the uncompactness c� of a triangle � it also holds
that c�((1+ ✏)s) (1+ ✏)c�(s), and similarly the to-
tal uncompactness cD(s) =

P
�2D c�(s) is bounded.

We restrict ourselves to scale factors between 1

and C for some large constant C, which is sufficient
for practical purposes. Let s1, . . . , sm denote the se-
quence of event points (between 1 and C) and let
sm+1 := C. Now consider a fixed interval [si, si+1]

with i = 1, . . . ,m. Our algorithm computes cD(·) for
all test values tj := si+1/(1 + ✏)j where j 2 N and
tj 2 [si, si+1]. Let tj⇤ be the test value at which cD(·)
is minimized and let s⇤ be an optimum scale factor in
the interval [si, si+1]. Using the above bound, it can
be shown that cD(tj⇤) (1+ ✏)cD(s⇤), that is, we ob-
tain a (1 + ✏)-approximation for the current interval;
hence, taking the optimum over all intervals, we can
find a (1 + ✏)-approximation. Let’s summarize.

Theorem 3 For any fixed ✏ > 0, we can compute a

(1 + ✏)-approximate solution for minimizing the un-

compactness measure in O(n3
) time. Taking ✏ into

account the running time is O(n(n2
+ 1/ log(1 + ✏))).

Maximizing the minimum angle We sketch an effi-
cient exact algorithm for determining a globally op-
timal scale factor for the objective of maximizing the
smallest angle of a Delaunay triangulation.

Each angle � (formed by two edges) that occurs
during traversing the scale space can be described as
a function of the scale s. Its domain is an interval
[l� , r�], the intersection of the life times of the edges.
Let A be the set of all angles (functions) that appear
at some scale factor in the Delaunay triangulation,
and let env(A) be the lower envelope of A. Determin-
ing the scale factor that maximizes the smallest angle
of the Delaunay triangulation amounts to determining
the maximum of env(A).

Consider some angle � 2 A, and let pipj and pjpk
be the edges defining �. Now consider a coordinate
system whose origin is located at pj . Then � > ⇡/2
for any s if pi and pk lie in diagonally opposite quad-
rants. As we are only interested in the lower envelope,
we can safely remove all such angles from A.

Under this assumption, it is not hard to verify that
any � 2 A can be expressed as

�(s) = c1⇡ + arctan

�
c2s/(c3s

2
+ 1)

�

where c1 2 {0, 1} and c2, c3 2 R are easily computable
constants that only depend on the edges defining �
but not on s. Elementary calculations reveal that two
functions of the above form can have at most one in-
tersection. Let m = O(n2

) be the number of angles
in A. Because any two functions in A intersect at
most once, it is known from the theory of Davenport–
Schinzel sequences that the lower envelope env(A)

has complexity (number of distinct curve segments)
at most �3(m) = O(m↵(m)) [7] where ↵ denotes the
functional inverse of the Ackermann function.

Agarwal and Sharir [7] show that the lower enve-
lope of m partially defined functions can be computed
in O(�r+1(m) logm) time if any two functions inter-
sect at most r times. Hence, their algorithm runs in
O(n2

log n) time in our case. For each curve segment,
the maximum can be computed in constant time. As
the curve complexity is O(n2↵(n2

)), we conclude.

Theorem 4 The globally optimal scale factor for the

objective of maximizing the smallest angle can be

computed in O(n2
log n) time.

4 Experimental Results

We implemented our algorithms in Java. For maxi-
mizing the minimum angle, we used a simplified ver-
sion of our exact algorithm that is slower but easier

121

29th European Workshop on Computational Geometry, 2013

normal distrib. four clusters noisy sine rough trend defect grid

m
ax

.m
in

.a
ng

le
m

ax
.m

ea
n

in
ra

di
us

m
in

.t
ot

al
le

ng
th

m
in

.
un

co
m

pa
ct

.

Table 1: Test results for 4 optimization criteria on 5 generated instances (outputs scaled to fit into the boxes).

to implement. For the other criteria, we used the ap-
proximation algorithm with ✏ = 0.01.

Table 1 shows results on five test instances: a clus-
ter of points normally distributed around a center;
four such clusters next to each other; points sampled
along a sine function with normally distributed dis-
tance to it; the same for a linear trend; nine points
lying on a grid with the exception of one of them that
is moved a bit away from the grid point. We omitted
the results for maximizing the compactness as they
were quite similar to the ones for minimizing the to-
tal length (yet more stretched in y-direction for the
sine and rough linear trend).

As visible for the four clusters and the noisy sine,
the total length and especially the inradius criterion
often tend to stretch the plot too much. The angle
criterion, and, to a lesser degree, the uncompactness
criterion are sensitive to small changes, see the de-
fect grid. Over all tests, however, the uncompactness
minimization showed the best results.

5 Conclusion and Future Work

Our tests confirm that selecting the aspect ratio of a
scatter plot based on the Delaunay triangulation is a
promising approach.

References

[1] W. S. Cleveland. A model for studying display meth-
ods of statistical graphics. J. Comput. Graph. Statist.,
2(4):323–343, 1993.

[2] W. S. Cleveland, M. E. McGill, and R. McGill. The
shape parameter of a two-variable graph. J. Am. Stat.
Assoc., 83(289–300), 1988.

[3] J. Heer and M. Agrawala. Multi-scale banking to 45�.
IEEE T. Vis. Comput. Gr., pages 701–708, 2006.

[4] A. M. MacEachren. Compactness of geographic shape:
Comparison and evaluation of measures. Geografiska
Annaler. Ser. B, Human Geogr., 67(1):53–67, 1985.

[5] T. Roos. Voronoi diagrams over dynamic scenes. Dis-
crete Appl. Math., 43(3):243–259, 1993.

[6] N. Rubin. On topological changes in the Delaunay
triangulation of moving points. In Proc. 28th ACM
Symp. Comput. Geom. (SoCG’12), pages 1–10, 2012.

[7] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge
University Press, 1995.

[8] J. Talbot, J. Gerth, and P. Hanrahan. Arc length-
based aspect ratio selection. IEEE T. Vis. Comput.
Gr., 17(12):2276–2282, 2011.

[9] J. Talbot, J. Gerth, and P. Hanrahan. An empirical
model of slope ratio comparisons. IEEE T. Vis. Com-
put. Gr., 18(12):2613–2620, 2012.

122

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Computational Aspects of Triangulations with Bounded Dilation

Wolfgang Mulzer⇤ Paul Seiferth⇤

Abstract

Let T be a triangulation on a planar point set S. If
T has bounded dilation, then the shortest path dis-
tance between any two vertices approximates their
Euclidean distance. We examine if such triangula-
tions can be used to design e�cient algorithms for
various geometric problems.
First, we show that given a triangulation with

bounded dilation, one can find the closest pair of
points in S in linear time on a pointer machine.
Afterwards, we consider an algorithm by Krznaric

and Levcopoulos to compute a hierarchical clustering
for S in linear time, once the EMST of S is known.
We study how their result can be generalized to MSTs
of triangulations with bounded dilation. It turns out
that their algorithm remains (almost) correct for any
such MST. In general, however, the resulting running
time might be superlinear. We identify a su�cient
condition for a linear time bound and construct a tri-
angulation without this condition as counterexample.
It remains open to identify interesting classes of

bounded-dilation triangulations with this property.

1 Introduction

Delaunay triangulations (DT) constitute perhaps the
most famous and most well-studied proximity struc-
ture. Given a planar point set S, the DT of S encodes
many aspects of the distances between the points in
S, and it enables us to compute in linear time many
other structures on S, such as the Euclidean mini-
mum spanning tree (EMST) and thus the closest pair
of points in S, the Gabriel graph, the nearest-neighbor
graph, a quadtree, or a well-separated pair decompo-
sition (see, e.g., [5] and the references therein). But
what exactly is it that makes DTs so powerful? How
much structure is needed in order to represent the
proximity information in S?
A very general family of triangulations that in-

cludes the DT is given by triangulations of bounded
dilation. In these triangulations, the shortest path
distance between any two vertices approximates their
Euclidean distance by a constant factor. Examples of
other triangulations with bounded dilation are given
by the minimum weight and the greedy triangula-

⇤
Institut für Informatik, Freie Universität Berlin, Germany,

{mulzer, pseiferth}@inf.fu-berlin.de. Supported in part

by DFG project MU/3501/1.

tion [2]. We would like to explore how strong this
information is, compared to the DT, and if it can be
exploited algorithmically.
As an introductory example we show that the clos-

est pair of points in S can be found in linear time,
once a triangulation with bounded dilation is known.
Afterwards, we consider an algorithm by Krznaric

and Levcopoulos (KL) for computing a hierarchical
clustering for a planar point set S in linear time, given
the Euclidean minimum spanning tree EMST(S) [3].
In particular, KL use the c-clustering : a subset U ✓ S
is called a c-cluster for some constant c � 1 if the dis-
tance d(U, S \ U) is greater than c · rdiam(U), where
rdiam(U) is the diameter of the axis-parallel bounding
rectangle for U . The set of all c-clusters for S consti-
tutes a laminar family, i.e., two distinct c-clusters are
either disjoint or one is a proper subset of the other.
Thus, the set of all c-clusters can be naturally rep-
resented as a c-cluster tree whose nodes correspond
to the c-clusters and whose leaves correspond to the
points in S. A relaxed version of these trees that
is more flexible, but retains the essential properties,
are (c1, c2)-cluster trees, introduced by Mulzer and
Lö✏er [5]: let 1 c1 c2 be constants. We require
that every c2-cluster is represented in the tree, but
allow other clusters to be inserted in the hierarchy, as
long as they are at least c1-clusters.

KL presented an algorithm to compute a c-cluster
tree for S from EMST(S) in linear time and showed
that c-cluster trees can be used to speed up the com-
putation of various structures for S, e.g. a quadtree
for S and the (approximated) single and complete
linkage clustering [3,4]. The correctness proof is based
on a characterization of c-clusters in terms of the
EMST of S. We show that a similar characterization
holds for MSTs of triangulations with bounded dila-
tion. This enables us to argue that the KL-algorithm
is also correct for such triangulations. To achieve lin-
ear running time, KL need a property of the EMST,
which unfortunately does not hold for MSTs of gen-
eral bounded-dilation triangulations. We construct a
counterexample to illustrate this issue.

2 Preliminaries and Notation

Let G = (V,E) be a graph and U ✓ V . The
induced subgraph G[U] on U is the graph on ver-
tex set U that contains exactly those edges from G
with both endpoints in U . Furthermore, we define

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

123

29th European Workshop on Computational Geometry, 2013

IG(U) := {uv 2 E(G) | u 2 U and v /2 U} as all
edges with exactly one endpoint in U .
Let T be a planar triangulation. The dilation of

two vertices u, v of T is the ratio of the shortest path
distance dT (u, v) between u and v in T and their Eu-
clidean distance. When considering the maximum of
these ratios we obtain the dilation �(T) of T , i.e.,
�(T) := maxu6=v2V (T) dT (u, v)/|u, v|.

3 Finding the Closest Pair in Linear Time

To get familiar with the bounded dilation property,
we show how to use it to speed up the computation
of the closest pair CP(S) of a point set S. Let T
be a triangulation on S and d := �(T). Note that
the shortest edge xy of T approximates |CP(S)| by a
multiplicative factor of d, and thus we know |xy|/d
|CP(S)| |xy|. In order to find CP(S), we examine
all paths of length at most d|xy|. This can be done
by using Dijkstra’s shortest path algorithm for each
vertex v of T , but stopping if a path exceeds length
d|xy|.

Algorithm 1 Computing CP(S)

1: Closest-pair(T ,d)
2: Find the shortest edge xy in E(T).
3: Delete all edges in E(T) with length > d · |xy|.
4: Closest pair {p, q} {x, y}
5: for all w 2 V (T) do
6: Use Dijkstra’s algorithm to find the set of ver-

tices C that are connected with w through a path
of length at most d · |xy|.

7: for all v 2 C do
8: if |wv| < |pq| then
9: {p, q} {w, v}

10: end if
11: end for
12: end for
13: return {p, q}

Theorem 1 Given a bounded-dilation triangulation

T , Algorithm 1 computes CP(S) in linear time.

Proof. Let xy be the shortest edge of T . The correct-
ness follows from the fact that we examine for each
vertex v all paths of length less than d · |xy|. By the
dilation property we must encounter the closest pair.
For the running time we argue that there are only a

constant number of edges with length less than d · |xy|
incident to any vertex. Let v 2 S and let Dv be the
disk centered at v with radius |xy|/d. Observe that
there is no vertex w 2 S lying in Dv or otherwise, by
the dilation property, there must be a path between
w and v of length less than |xy|. But this would con-
tradict the minimality of xy.
Now, let u be an arbitrary vertex and let A be the

annulus centered at u with inner radius |xy| and outer

radius d|xy|. The area of A is O(|xy|). Since every
vertex v inside A has an empty disk Dv that covers a
constant fraction of A, there can be only a constant
number of such v’s.
Finally, consider the shortest path tree with root u

obtained by the execution Dijkstra’s algorithm. Let P
be path from the the root in the tree. When stopping
the computation of P once its length exceeds d|xy|,
the tree has depth at most d + 1. By the above dis-
cussion every inner node has constant degree. Thus,
the time spend for every vertex is some constant de-
pendent on d only and the overall running time is
O(n). ⇤

4 Bounded-Dilation Triangulations and (c1, c2)-
cluster Trees

Let S be a planar point set. As mentioned in the in-
troduction, KL describe an algorithm for computing
a c-cluster tree for S from EMST(S) in linear time.
We explain how to extend this algorithm to triangula-
tions with bounded dilation. However, we will only be
able to obtain a (c1, c2)-cluster tree, which is slightly
weaker, though su�cient for all practical purposes.
But first, we give some idea of how the KL-algorithm
works: the key insight lies in the following characteri-
zation of c-clusters in terms of the EMST [3, Obs. 5].

Observation 2 Let S be a planar point set and G =
EMST(S). A subset U ✓ S is a c-cluster if and only if

G[U] is connected and all edges in IG(U) have length

greater than c · rdiam(U).

We explain how KL use Observation 2 to find for a
given vertex v the smallest c-cluster U that contains
it, i.e., the parent of v in the c-cluster tree. For this,
we start at v and explore the EMST until we find an
appropriate subgraph that fulfills Observation 2.

Algorithm 2 Computing the parent c-cluster for v.

1: ParentCluster(G, v):
2: Set U {v}
3: Queue Q {shortest edge incident to v}
4: Set P {edges incident to v that are not in Q}
5: Set D {v}
6: while Q 6= ; do
7: remove the first edge uw from Q (with u 2 U)
8: add w to U
9: update the xy-extremes in D

10: add each edge wz (except for wu) to P
11: move edges in P of length < c · rdiam(U) to Q
12: end while
13: return c-cluster U

Initially, the set U contains only the vertex v, and
the algorithm adds to U the closest neighbor w of v
in the EMST G. Then, as long as IG(U) contains

124

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

an edge uw with |uw| < c · rdiam(U) (and u 2 U),
the endpoint w is added to U . Afterwards, all edges
in IG(U) have length at least c · rdiam(U), so Obser-
vation 2 guarantees that U is a c-cluster. Note that
IG(U) is represented by P and Q, where Q contains
the short edges in IG(U) and P the long edges.
By extending Algorithm 2, we can obtain the whole

c-cluster tree: every time we find a c-cluster U , the in-
duced subgraph G[U] is contracted to obtain a smaller
graph G0. Algorithm 2 is then applied to G0. We
must make sure that all child clusters of U are iden-
tified before the contraction. This is achieved by an
appropriate recursion whenever we try to extend U
by a vertex that belongs to some child cluster of U
(this can be detected e�ciently). See [3] for details.
We now show that Observation 2 also holds for gen-

eral triangulations with bounded dilation, albeit with
a slightly weaker conclusion. More precisely, the KL-
algorithm produces a (c1, c2)-cluster tree when ap-
plied to such triangulations (see [6] for details).

Lemma 3 Let T be a triangulation on a planar point

set S with constant dilation d. Let G = MST(T) and
c2 > d. Furthermore, let U ✓ S be a subset of S
such that G[U] is connected. If every edge in IG(U)
has length greater than c2 · rdiam(U), then U is a

c1-cluster for c1 = 2(c2 � 1)/(d+ 1).

Proof. Let A := {b 2 R2 | d(U, b) < (c2 �
1)rdiam(U)} be the region with distance less than
(c2 � 1)rdiam(U) from U (marked by the dashed line
in Fig. 1). We will show that all vertices in S\A have
distance at least c1 · rdiam(U) from U . Let a 2 S \U
be a vertex inside A. We claim that a is not incident
to U :

Claim 4 The triangulation T contains no edge be-

tween a and U .

Proof. Suppose there is an edge va 2 E(T) with v 2
U . As d(U, a) < (c2 � 1)rdiam(U), the edge va has
length less than c2 · rdiam(U). Thus, va is not an
edge of G, since we assumed that all edges in IG(U)
are longer than c2 ·rdiam(U). Since G is connected, it
contains a path from v to a in G. This path must use
an edge e 2 IG(U). Replacing e by va yields a shorter
spanning tree, contradicting the minimality of G. ⇤

The vertex a is not incident to U in T , so the shortest
path P from v to a in T uses an edge of IT (U). This
implies that P must leave A at some point. Since
a 2 A, the path P must reenter A. Let h be the
distance between the point where P reenters A and a
(see Figure 1). So,

dT (v, a) � (c2 � 1) rdiam(U) + h. (1)

By the triangle inequality, we have
(c2 � 1) rdiam(U) h + |va| and therefore

(c
2

� 1)rdiam(U)

a

U

� h

|va
|�

(c
2

�
1)
rd
ia
m
(U
)

� (c
2

� 1)rdiam(U)

v

P

Figure 1: The shortest path from v to a has length at
least 2(c2 � 1) rdiam(U)� |va|.

h � (c2 � 1) rdiam(U) � |va|. Plugging this
into (1), we get dT (v, a) � 2(c2 � 1) rdiam(U)� |va|.
Since T has dilation d, it follows that

d · |va| � 2(c2 � 1) rdiam(U)� |va|
) |va| � (2(c2 � 1)/(d+ 1)) rdiam(U).

Thus, for every a 2 S \ U , we have d(U, a) � (2(c2 �
1)/(d + 1)) rdiam(U) = c1 · rdiam(U), so U is a c1-
cluster. ⇤

5 Running Time

To argue that their algorithm has linear running time
KL used the following generalization of the fact that
the EMST of a point set S has constant degree [3]:

Lemma 5 Let G = EMST(S), U ✓ S, and c � 1. If

G[U] is connected, then the number of edges in IG(U)
with length greater than c · rdiam(U) is constant.

Given the same property for the MSTs of bounded-
dilation triangulations, the analysis of the complete
adapted algorithm would follow the one for the KL-
algorithm. Unfortunately, Lemma 5 does not hold
for for such MSTs in general: for every m 2 N, we
construct a triangulation Tm such that (i) Tm has di-
lation at most 2; and (ii) the MST of Tm has a vertex
of degree m. Since a single vertex can have arbitrarily
high degree, this holds also for each subgraph.
Let w be a vertex and set ↵ := ⇡/6. Choose

m vertices v1, . . . , vm in clockwise order such that
\viwvi+1 = ↵/m and |wvi| = 3i�1. We add the
edges wv1, wv2, . . . , wvm to Tm. In order to ensure
that these edges belong to G = MST(Tm), we need
some edges that intersect the line segments vivi+1.
Otherwise, these segments would have to be in Tm and
also in G. Thus, we place m�1 vertices u1, . . . , um�1

on the circle with center w and radius r = 3m such

125

29th European Workshop on Computational Geometry, 2013

w

u4u3u2u1

v5

v4

v3

v2

v1

Figure 2: A triangulation with bounded dilation that
produces a MST (blue edges) with a vertex of arbi-
trarily high degree.

that for each i the line wui bisects the angle \viwvi+1.
To complete Tm, we add the following edges for each
1 i m� 1: (i) wui; (ii) viui; (iii) vi+1ui; and (iv)
uiui+1. See Figure 2 shows T5 (not drawn to scale).

By construction, we have |viui�1|, |viui| > |wvi| for
all i, so all edges wvi are in G and w has degree m.
It remains to show that Tm has bounded dilation.
Indeed, any two nonadjacent vertices a, b in Tm are
connected by a path with at most two edges and w
as intermediate vertex. We show that the dilation be-
tween a and b is at most 2. There are three cases:
Case 1: a = ui and b = uj with i < j. Let
� := \uiwuj . Then |uiuj | = 2r sin(�/2). The length
of the path ui, ui+1, . . . , uj is bounded by the length
of the arc between ui and uj with center w, i.e.,
dT (ui, uj) �r. Thus, the dilation between ui and
uj is at most (�r)/(2r sin(�/2)) 2, as � < ⇡/6.
Case 2: a = vi and b = vj . The largest dilation oc-
curs when vi and vj are consecutive, i.e., j = i + 1.
Then dT (vi, vi+1) = |wvi| + |wvi+1| = 4|wvi|, by
construction. By the triangle inequality |vivi+1| �
|wvi+1|� |wvi| = 2|wvi|. The dilation is at most 2.
Case 3: a = ui and b = vj . The largest dilation
occurs for j = m and i = m�2. A calculation similar

to Case 2 shows that the dilation is at most 2.
Thus, Tm has dilation at most 2, as claimed.

6 Conclusion

It remains as an open question, whether there are tri-
angulations with bounded dilation that yield MSTs
fulfilling Lemma 5, besides the Delaunay and the
greedy triangulation (where the MST is just the
EMST). These triangulations can be used to com-
pute a hierarchical clustering of the point set in lin-
ear time. Unfortunately, the third popular bounded-
dilation triangulation, the minimum weight triangu-
lation, is NP-hard to compute and thus cannot be
considered as reasonable input.
A very general candidate would be triangulations

that fulfill the diamond property, i.e., there exists an
angle ↵ > 0 such that for any edge e in the triangu-
lation one of the two isosceles triangles with base e
and base angle ↵ must be empty. On the one hand,
such triangulations have bounded dilation [2], on the
other hand they admit a constant-degree subgraph G0

that still has bounded dilation (though with a slightly
larger constant) and can be found in linear time [1].
Thus, G0 is not concerned by the given counterexam-
ple.
Finally, note that all steps related to the correct-

ness of the adapted KL-algorithm in Section 4 work
with a larger class of, not only triangulations, but even
general planar straight-line graphs with bounded di-
lation. Thus, we can extend our question and ask
what kind of planar straight-line graphs yield span-
ning trees with the necessary properties.

References

[1] P. Bose, M. H. M. Smid, and D. Xu. Delaunay and
diamond triangulations contain spanners of bounded
degree. IJCGA, 19(2):119–140, 2009.

[2] G. Das and D. Joseph. Which triangulations approxi-
mate the complete graph? In Proc. International Sym-
posium on Optimal Algorithms, pages 168–192. 1989.

[3] D. Krznaric and C. Levcopoulos. Computing hierar-
chies of clusters from the Euclidean minimum span-
ning tree in linear time. In Proc. 15th FSTTCS, pages
443–455. 1995.

[4] D. Krznaric and C. Levcopoulos. Computing a
threaded quadtree from the Delaunay triangulation in
linear time. Nordic J. Comput., 5(1):1–18, 1998.

[5] M. Lö✏er and W. Mulzer. Triangulating the square
and squaring the triangle: Quadtrees and Delau-
nay triangulations are equivalent. SIAM J. Comput.,
41(4):941–974, 2012.

[6] P. Seiferth. Computational aspects of triangulations
with constant dilation. Master’s thesis, FU Berlin,
2012.

126

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Exploiting Air-Pressure to Map Floorplans on Point Sets

Stefan Felsner⇤

Abstract. We prove a conjecture of Ackerman,

Barequet and Pinter. Every floorplan with n seg-

ments can be embedded on every set of n points

in generic position. The construction makes use of

area universal floorplans also known as area univer-

sal rectangular layouts.

The notion of area used in our context depends on

a nonuniform density function. We, therefore, have

to generalize the theory of area universal floorplans

to this situation. The method is then used to prove

a result about accommodating points in floorplans

that is slightly more general than the conjecture of

Ackerman et al.

1 Introduction

In our context a floorplan is a partition of a rectan-
gle into a finite set of interior-disjoint rectangles. A
floorplan is generic if it has no cross, i.e., no point
where four rectangles of the partition meet. A seg-
ment of a floorplan is a maximal nondegenerate inter-
val that belongs to the union of the boundaries of the
rectangles. Segments are either horizontal or vertical.
The segments of a generic floorplan are internally dis-
joint. Two floorplans F and F 0 are weakly equivalent
if there exist bijections � : SH(F) ! SH(F 0) and
� : SV (F) ! SV (F 0) between their horizontal and
vertical segments such that segment s has an endpoint
on segment t in F i↵ �(s) has an endpoint on �(t).
A set P of points in IR

2 is generic if no two points
from P have the same x or y coordinate. Section 2
provides a more comprehensive overview of definitions
and notions related to floorplans.

b)a)

Figure 1: A generic set of six points and a generic
floorplan with six segments.

Let P be a set of n points in a rectangle R and let F
be a generic floorplan with n segments. A cover map
from F to P is a floorplan F 0 weakly equivalent to F
with outer rectangle R such that every segment of F 0

contains exactly one point from P . Figure 2 shows an
example.

⇤Institut für Mathematik, Technische Universität Berlin.
Work was partially supported by DFG grant FE-340/7-2 and
ESF EuroGIGA projects COMPOSE and GraDR.

Figure 2: Two cover maps from the floorplan of
Fig. 1.b to the point set of Fig. 1.a.

In this paper we answer a question of Ackerman
et al. [1] by proving Theorem 1. The proof of the
theorem and some variants and generalizations is the
subject of Section 4.

Theorem 1 If P is a generic set of n points and F
is a generic floorplan with n segments, then there is a

cover map from F to P .

The proof is based on on results about area rep-
resentations of floorplans. The following theorem is
known, it has been proven with quite di↵erent meth-
ods, see [12], [10], [4].

Theorem 2 Let F be a floorplan with rectangles

R
1

, . . . , Rn+1

, let A be a rectangle and let w :
{1, . . . , n + 1} ! IR

+

be a weight function withP
i w(i) = area(A). There exist a unique floorplan

F 0
contained in A that is weakly equivalent to F such

that the area of the rectangle �(Ri) in F 0
is exactly

w(i).

In Section 3 we prove the generalization of Theo-
rem 2 that will be needed for the proof of Theorem 1.
In the generalized theorem (Theorem 3) the weight of
a rectangle is measured as integral over some density
function instead of the area.

2 Floorplans and Graphs

A floorplan is a partition of a rectangle into a finite set
of interiorly disjoint rectangles. From a given floor-
plan F we can obtain several graphs and additional
structure. We hint at some of these and close the sec-
tion by introducing notions of equivalence for floor-
plans.

The skeleton graph G
skel

(F) of F has the corners of
rectangles of F as vertices. The edges of G

skel

(F) are
the connecting line segments.

The rectangular dual of F is the graph G⇤(F)
whose vertices are the rectangles of F and edges join-
ing pairs of rectangles that share a boundary segment.

The full paper is available as [5].

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

127

29th European Workshop on Computational Geometry, 2013

The transversal structure (also known as regular
edge labeling) associated to an floorplan F is an orien-
tation and coloring of the edges of the extended dual
G⇤

+

(F). Transversal structures have been studied in
[8], [9], and in [11]. It is known that every transversal
structure on an inner triangulation G of a 4-gon is
induced by a floorplan.

The segment contact graph G
seg

(F) of a floorplan
F is the bipartite planar graph whose vertices are the
segments of F and edges correspond to contacts be-
tween segments. From Figure 3 we see that G

seg

(F)
is indeed planar and that the faces of G

seg

(F) are in
bijection with the rectangles of F and are uniformly
of degree 4. Therefore G

seg

(F) is a maximal bipartite
planar graph, i.e., a quadrangulation.

R G
seg

(R)

Figure 3: A floorplan F and two drawings of its seg-
ment contact graph G

seg

(F).

The separating decomposition associated to a
floorplan is an orientation and coloring of the edges
of the segment contact graph. Figure 4 shows an ex-
ample. Separating decompositions have been studied
in [3], [7], and [6]. To us they are of interest because
every separating decomposition is induced by a floor-
plan F .

t

s

t

s

Figure 4: A floorplan F and the separating decompo-
sition induced by F on its segment contact graph Q.

2.1 Notions of equivalence for floorplans

Definition 1 Two floorplans are weakly equivalent if
they induce the same separating decomposition.

Definition 2 Two floorplans are strongly equivalent
if they induce the same transversal structure.

Eppstein et al. [4] use the term layout instead of
floorplan. Their equivalent layouts correspond to
strongly equivalent floorplans and order-equivalent
layouts to weakly equivalent floorplans. Asinowski
et al. [2] study independent notions of R-equivalence
and S-equivalence for floorplans.

3 Realizing Weighted Floorplans via Air-Pressure

In this section we sketch the proof of a generaliza-
tion of Theorem 2 to situations where the “area” of

a rectangle is replaced by the mass defined through a
density distribution.
Let µ : [0, 1]2 ! IR

+

be a density function on the

unit square with mass 1, i.e.,
R
1

0

R
1

0

µ(x, y)dxdy = 1.
We assume that µ can be integrated over axis aligned
rectangles and all fibers µx and µy can be integrated
over intervals. Moreover, we require that integrals
over nontrivial rectangles and intervals are nonzero.
The mass of an axis aligned rectangle R ✓ [0, 1]2 is
defined as m(R) =

RR
R µ(x, y)dxdy.

Theorem 3 Let µ : [0, 1]2 ! IR

+

be a density func-

tion on the unit square. If F is a floorplan with rect-

angles R
1

, . . . , Rn+1

and w : {1, . . . , n + 1} ! IR

+

a positive weight function with

Pn+1

1

w(i) = 1 then

there exists a unique floorplan F 0
in the unit square

that is weakly equivalent to F such thatm(Ri) = w(i)
for each rectangle Ri.

The proof follows the air-pressure paradigm as pro-
posed by Izumi,Takahashi and Kajitani [10]. We first
describe the idea: Consider a realization of F in the
unit square and compare the mass m(Ri) to the in-
tended mass w(i). The quotient of these two values
can be interpreted as the pressure inside the rectan-
gle. Integrating this pressure along a side of the rect-
angle yields the force by which Ri is pushing against
the segment that contains the side. The di↵erence of
pushing forces from both sides of a segment yields the
e↵ective force acting on the segment. The intuition
is that shifting a segment in direction of the e↵ective
force yields a better balance of pressure in the rectan-
gles. We show that iterating such improvement steps
drives the realization of F towards a situation with
m(Ri) = w(i) for all i, i.e., the procedure converges
towards the floorplan F 0 whose existence we want to
show.
In [10] the air-pressure paradigm was used for situ-

ations where the mass of a rectangle is its area. The
authors observed fast convergence experimentally but
they had no proof of convergence. In the full paper
we provide such a proof for the more general case of
weights given by integrals over a density function.
A proof of Theorem 3 could also be given along the

lines of the proof of Theorem 2 that has been given
by Eppstein et al. in [4]. The proof there is quite
compact. It has, however, the disadvantage that it is
purely existential.

Let Ri = [xl, xr] ⇥ [yb, yt] be a rectangle of F .
The pressure p(i) in Ri is the fraction of the in-
tended mass w(i) and the actual mass m(Ri), i.e.,

p(i) = w(i)
m(Ri)

. Let s be a segment of F and let Ri

be one of the rectangles with a side in s. Let s be
vertical with x-coordinate xs and let s \ Ri span the
interval [yb(i), yt(i)]. The (undirected) force imposed
on s by Ri is the pressure p(i) of Ri times the density
dependent length of the intersection.

f(s, i) = p(i)

Z yt(i)

yb(i)

µxs(y)dy.

128

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

The force acting on s is obtained as a sum of the
directed forces imposed on s by incident rectangles.

f(s) =
X

Ri left of s

f(s, i)�
X

Ri right of s

f(s, i).

Symmetric definitions apply to horizontal segments.

Balance for rectangles and segments

Definition 3 A segment s is in balance if f(s) = 0.
A rectangle Ri is in balance if p(i) = 1, i.e., ifm(Ri) =
w(i).

Lemma 4 If all rectangles Ri of F are in balance,

then all segments are in balance.

Proof. Since all rectangles are in balance we can
eliminate the pressures from the definition of the
f(s, i). With this simplification we get for a vertical
segment s

f(s) =
X

Ri left

Z yt(i)

yb(i)

µxs(y)dy�
X

Rj right

Z yt(j)

yb(j)

µxs(y)dy.

Hence f(s) = Ms � Ms = 0, where Ms is the inte-
gral of the fiber density µxs along s. The symmetric
argument applies to horizontal segments.

Interestingly, the converse of the lemma also holds.

Proposition 1 If all segments of F are in balance,

then all rectangles are in balance.

The proof has been omitted in this extended ab-
stract.

Balancing segments and optimizing the entropy

Proposition 2 If a segment s of F is unbalanced,

then then we can keep all the other segments at their

position and shift s parallel to a position where it

is in balance. The resulting floorplan F 0
is weakly

equivalent to F .

The proof has been omitted in this extended ab-
stract.

Definition 4 The entropy of a rectangle Ri of F is

defined as �w(i) log p(i). The entropy of the floorplan

F is

E =
X

i

�w(i) log p(i)

The proof of Theorem 3 is completed in five steps:

(1) The entropy E is always nonpositive.

(2) E = 0 if and only if all rectangles Ri of F are
in balance.

(3) Shifting an unbalanced segment s into its bal-
ance position increases the entropy.

(4) The process of repeatedly shifting unbalanced
segments into their balance position makes F
converge to a floorplan F 0 such that the entropy
of F 0 is zero.

(5) The solution is unique.

4 Accommodating Floorplans on Point Sets

Let P be a generic set of n points in a rectangle R.
Let F be a generic floorplan and S be a subset of the
segments of F of size n. A cover map from (F, S) to P
is a floorplan F 0 with outer rectangle R that is weakly
equivalent to F such that every segment from S0 =
�(S) contains exactly one point from P . The main
result in this paper is the following generalization of
Theorem 1.

Theorem 5 If P is a generic set of n points in a rect-

angle R and F is a generic floorplan with a prescribed

subset S of the segments of size n, then there is a cover

map F 0
from (F, S) to P .

The idea for the proof is to use Theorem 3 as a
tool. To this end we first transform the point set P
into a suitable density distribution µ = µP inside R.
This density is defined as the sum of a uniform dis-
tribution µ

1

with µ
1

(q) = 1/area(R) for all q 2 R
and a distribution µ

2

that represents the points of P .
Choose some � > 0 such that for all p, p0 2 P we have
|xp � xp0 | > 3� and |yp � yp0 | > 3�, this is possible
because P is generic. Define µ

2

=
P

p2P µp where

µp(q) takes the value (�2⇡)�1 on the disk D
�

(p) of
radius � around p and value 0 for q outside of this
disk.
For a density ⌫ over R and a rectangle R ✓ R we

let ⌫(R) be the integral of the density ⌫ over R. Using
this notation we can write µ

1

(R) = 1 and µp(R) = 1
for all p 2 P , hence the total mass of R is µ(R) =
1 + n.
Next we transform the floorplan F into a floorplan

FS depending on the set S of segments that has to
cover the points of P . To this end we replace ev-
ery segment in S by a thin rectangle, see Figure 5.
In [2] this doubling of a segment is call inflation. Let
S be the set of new rectangles obtained by infating
segments from S.

b)a)

Figure 5: Floorplans F with as prescribed subset S
of segments (bold and gray) and the floorplan FS ob-
tained by doubling the segments of S.

Define weights for the rectangles of FS as follows.
If FS has r rectangles we define w(R) = 1 + 1/r if
R 2 S and w(R) = 1/r for all the rectangles of FS

that came from rectangles of F . Note that the total
weight,

P
R w(R) = 1+n, is in correspondence to the

total mass µ(R).
The data R with µ and FS with w constitute, up

to scaling of R and w, a set of inputs for Theo-
rem 3. From the conclusion of the theorem we ob-
tain a floorplan F 0

S weakly equivalent to FS such that

129

29th European Workshop on Computational Geometry, 2013

m(R) =
RR

R
µ(x, y)dxdy = w(R) for all rectangles R

of F 0
S .

The definition of the weight function w and the
density µ is so that F 0

S should be close to a cover
map from (F, S) to P : Only the rectangles R 2 S
that have been constructed by inflating segments may
contain a diskD

�

(p) and each of these rectangles may
contain at most one of the disks. This suggests a
correspondence S $ P . However, a rectangle R 2 S
may use parts of several discs to accumulate mass. To
find a correspondence between S and P we define a
bipartite graph G whose vertices are the points in P
and the rectangles in S:
• A pair (p,R) is an edge of G i↵ R \D

�

(p) 6= ;
in F 0

S .

The proof of the theorem is completed by proving two
claims:

• G admits a perfect matching.

• From F 0
S and a perfect matching M in G we can

produce a floorplan F 0 that realizes the cover
map from (F, S) to P .

For the first of the claims we check Hall’s matching
condition: Consider a subset A of S. Since FS is real-
izing the prescribed weights we have m(A) = µ(A) =P

R2A µ(R) =
P

R2A w(R) = |A|(1 + 1/r). Since
µ
1

(A) < 1 and µp(A) 1 for all p 2 P there must
be at least |A| points p 2 P with µp(A) > 0, these
are the points that have an edge to a rectangle from
A in G. We have thus shown that every set A of in-
flated segments is incident to at least |A| points in G,
hence, there is an injective mapping ↵ : S ! P such
that R \D

�

(↵(R)) 6= ; in F 0
S for all R 2 S.

The construction of the floorplan F 0 that realizes
the cover map from (F, S) to P is done in four steps
indicated in Figure 6.

b)a) c) d)

Figure 6: a) A solution F 0
S for the instance from Fig. 1.

The arrows indicate a matching ↵. b) Segments s 2 S
shifted to their optimal position in Rs. c) Enlarged
segments recover the contacts. d) Some segments
s are moved outside Rs to cover the corresponding
points ↵(Rs). Small final adjustments (clipping and
enlarging) yield F 0.

The topic of [1] was the study of the number Z(P)
of rectangulations of a generic point set P . This is
the total number of cover maps from floorplans with n
segments to a generic point set P with n points. The-
orem 5 implies that this number is at least as large as
the number of weak equivalence classes of floorplans.
This is the Baxter number Bn+1

which is known to
be of order ⇥(8n+1/(n+ 1)4). In [1] an upper bound
for Z(P) of order O(20n/n4) is shown. To improve
this bound remains an intriguing problem.

References

[1] E. Ackerman, G. Barequet, and R. Y. Pin-
ter, On the number of rectangulations of a pla-
nar point set, J. Combin. Theory Ser. A, 113
(2006), pp. 1072–1091.

[2] A. Asinowski, G. Barequet, M. Bousquet-
Mélou, T. Mansour, and R. Pinter, Orders
induced by segments in floorplan partitions and
(2-14-3,3-41-2)-avoiding permutations, 2010.

[3] H. de Fraysseix and P. Ossona de Mendez,
On topological aspects of orientation, Discr.
Math., 229 (2001), pp. 57–72.

[4] D. Eppstein, E. Mumford, B. Speckmann,
and K. Verbeek, Area-universal and con-
strained rectangular layouts, SIAM J. Comput-
ing, 41 (2012), pp. 537–564.

[5] S. Felsner, Exploiting air-pressure
to map floorplans on point sets, 2012.
http://page.math.tu-berlin.de/

~

felsner/

Paper/flop.pdf.

[6] S. Felsner, É. Fusy, M. Noy, and D. Or-
den, Bijections for Baxter families and related
objects, Journal of Comb. Theory A, 18 (2011),
pp. 993–1020.

[7] S. Felsner, C. Huemer, S. Kappes, and
D. Orden, Binary labelings for plane quadran-
gulations and their relatives, Discr. Math. and
Theor. Comp. Sci., 12:3 (2010), pp. 115–138.

[8] É. Fusy, Combinatoire des cartes planaires
et applications algorithmiques, PhD the-
sis, LIX Ecole Polytechnique, 2007.
http://www.lix.polytechnique.fr/

~

fusy/

Articles/these_eric_fusy.pdf.

[9] É. Fusy, Transversal structures on triangula-
tions: A combinatorial study and straight-line
drawings, Discr. Math., 309 (2009), pp. 1870–
1894.

[10] T. Izumi, A. Takahashi, and Y. Kajitani,
Air-pressure model and fast algorithms for zero-
wasted-area layout of general floorplan, IEICE
Trans. Fundam. Electron., Commun. and Comp.
Sci., E81–A (1998), pp. 857–865.

[11] G. Kant and X. He, Regular edge labeling of
4-connected plane graphs and its applications in
graph drawing problems, Theor. Comput. Sci.,
172 (1997), pp. 175–193.

[12] S. Wimer, I. Koren, and I. Cederbaum,
Floorplans, planar graphs, and layouts, IEEE
Transactions on Circuits and Systems, 35 (1988),
pp. 267 –278.

130

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Book-Embeddings of Iterated Subdivided-Line Graphs

Toru Hasunuma ∗

Abstract

We introduce a new operation “Γ” on graphs called
the subdivided-line graph operation and define the
n-iterated subdivided-line graph Γn(G). We then
present upper and lower bounds on the pagenumber
of Γn(G). Our upper bound depends only on G and
is independent of the number n of iterations.

Using the subdivided-line graph operation, we can
construct Sierpiński-like graphs. Applying our results
on iterated subdivided-line graphs, we obtain upper
bounds on the pagenumbers of the Sierpiński graphs
which are at most two times the optimums.

1 Introduction

A book consists of a line called the spine, and half
planes called pages sharing the spine as a common
boundary. A k-page book-embedding of a graph G =
(V,E) is defined by an assignment of the vertices to
distinct points on the spine, i.e., a vertex-ordering σ
: V (G) !→ {1, 2, . . . , |V (G)|}, and an assignment of
the edges to one of k pages so that no two edges as-
signed to the same page cross, i.e., an edge-assignment
ρ : E(G) !→ {1, 2, . . . , k} such that for each i ∈
{1, 2, . . . , k} and any two edges {u, v}, {x, y} ∈ ρ−1(i),
it does not hold that σ(u) < σ(x) < σ(v) < σ(y). The
minimum number of pages for a book-embedding of G
is the pagenumber pn(G) of G. Figure 1 shows an ex-
ample of a 3-page book-embedding of a graph, where
the spine is drawn as the horizontal line, normal lines
above (resp., below) the spine indicate the edges as-
signed to the first (resp., second) page, and the edge
drawn as a thick line is assigned to the third page.

1 v2 v3 v4 v5v

Figure 1: A 3-page book-embedding of a graph.

Book-embeddings are motivated by several areas
of computer science [3, 9, 11]. In particular, book-
embeddings of interconnection networks have appli-
cations to the Diogenes approach proposed by Rosen-

∗Institute of Socio-Arts and Sciences, The University of
Tokushima, hasunuma@ias.tokushima-u.ac.jp

berg [9] to fault-tolerant processor arrays. Also, Wood
[11] showed that book-embeddings can be applied to
three-dimensional graph drawings. Until now, book-
embeddings have been studied for many graph classes:
complete (bipartite) graphs, butterfly networks, trees,
grids, X-trees, (incomplete) hypercubes, de Bruijn
and Kautz graphs, shuffle-exchange graphs, planar
graphs, genus-g graphs, bandwidth-k graphs, k-trees,
and iterated line digraphs (e.g., see [4] for the refer-
ences of these results).

In this paper, we newly introduce an operation “Γ”
called the subdivided-line graph operation and de-
fine the n-iterated subdivided-line graph Γn(G) as the
graph obtained from G by iteratively applying the op-
eration n times. We then study book-embeddings of
iterated subdivided-line graphs and present upper and
lower bounds on pn(Γn(G)). In particular, our upper
bound depends only on G and is independent of the
number n of iterations.

123

121

112

122

211

212

221

223232233322323332333 222

331

313

311

133

131

113

111

231

213

321

312

132

Figure 2: The Sierpiński graph S(3, 3).

The Sierpiński graphs were introduced by Klavžar
and Milutinović [7]. Figure 2 shows the Sierpiński
graph S(3, 3) (see Section 2 for the precise definition).
The Sierpiński graph S(n, k) has a recursive struc-
ture, i.e., S(n, k) can be constructed from k copies of
S(n− 1, k) by joining vertices with degree k − 1 in a
fashion of the complete graph with k vertices. Since
S(n, k) is not regular, several regular variations called
the extended Sierpiński graphs S+(n, k), S++(n, k)
were also introduced by Klavžar and Mohar [8]. Be-
cause of their interesting self-similar structures with
relations to the problem of the Tower of Hanoi, vari-
ous properties on the Sierpiński-like graphs have been
investigated (e.g., see [6, 8]). On the other hand, the
WK-recursive networks have independently been pro-
posed by Vecchia and Sanges [10] as interconnection
networks, and their topological properties have been
investigated in [2]. The WK-recursive network and
the Sierpiński graph have very similar structures, and

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

131

29th European Workshop on Computational Geometry, 2013

the difference between them is the existence of “open
edges” incident to each extreme vertex in the WK-
recursive network. By deleting such open edges, they
become isomorphic.

Using the subdivided-line graph operation, we can
construct Sierpiński-like graphs. Namely, the class of
iterated subdivided-line graphs generalizes the class
of Sierpiński graphs. Applying our results on iter-
ated subdivided-line graphs, upper and lower bounds
on the pagenumbers of the Sierpiński graphs are ob-
tained. Our upper bounds for the Sierpiński graphs
are at most two times the optimums.

2 Preliminaries

Throughout the paper, a graph may have self-loops
but not multiple edges, unless otherwise stated. Let
G = (V,E) be a graph. The number of self-loops in
G is denoted by !(G). For v ∈ V (G), let NG(v) and
EG(v) be the set of vertices adjacent to v and the set
of edges incident to v in G, respectively. The degree
d(v) of v in G is |EG(v)|, i.e., d(v) = |EG(v)|. Note
that in this paper, if v has a self-loop, then we count it
one in d(v) instead of two. The complete graph with
k vertices is denoted by Kk. The Sierpiński graph
S(n, k) is the graph with the vertex set consisting of
all n-tuples of k numbers 1, 2, . . . , k and in which two
vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) are adja-
cent if and only if there exists an integer j, where
1 ≤ j ≤ n, such that ui = vi for 1 ≤ i < j, uj #= vj ,
and ui = vj , vi = uj for j +1 ≤ i ≤ n. For 1 ≤ i ≤ k,
a vertex (i, i, . . . , i) is called an extreme vertex. An
extended Sierpiński graph S+(n, k) is obtained from
S(n, k) by adding a new vertex and joining it to ev-
ery extreme vertex, while another extended Sierpiński
graph S++(n, k) is constructed from k + 1 copies of
S(n−1, k) by joining their extreme vertices in aKk+1-
fashion.

3 The Subdivided-Line Graph Operation

The line graph L(G) of G is the graph whose vertex
set is E(G) and in which two distinct vertices {u, v}
and {x, y} are adjacent if and only if they are adjacent
in G, i.e., {u, v}∩{x, y} #= ∅. Besides, a vertex {w,w}
corresponding to a self-loop in G also has a self-loop
in L(G). Let e = {x, y} ∈ E(G). Then, let Ge be the
graph with V (Ge) = V (G) ∪ {ve}, where ve #∈ V (G),
and E(Ge) = (E(G) \ {{x, y}}) ∪ {{x, ve}, {ve, y}}.
We say that Ge is obtained from G by elementary
subdividing the edge e. The barycentric subdivision
B(G) ofG is the graph obtained fromG by elementary
subdividing every edge of G except for self-loops.

Definition 1 Let G be a graph. The subdivided-line
graph Γ(G) of G is defined to be the line graph of the
barycentric subdivision of G. i.e., Γ(G) = L(B(G)).

yy

yyy

xyu xyv
xuy
xuu

xvu xvy
xvv

uxx vxx
vxu
vux

uvv vuu
uvx
uxv

xuv

xyy

yyx
yxy
yxx

xy

xu

ux

vu

vx

yx

u v

x

y

uv

xv

Figure 3: G, Γ(G), and Γ2(G), where the
vertex-labeling of Γ2(G) follows those for iterated
subdivided-line graphs.

When we consider “Γ” as an operation on graphs,
we call it the subdivided-line graph operation. Each
vertex in Γ(G) can be denoted by the ordered pair of
vertices. Namely, for each non-loop edge {u, v} of G,
there exist two corresponding vertices uv, vu in Γ(G).
For a self-loop {w,w} of G, the only corresponding
vertex in Γ(G) is ww. Note that a vertex of the form
ww also has a self-loop in Γ(G). Two distinct ver-
tices uv, xy in Γ(G) are adjacent if and only if either
u = x, or u = y and v = x (see the middle graph in
Figure 3). The edge set of Γ(G) is naturally divided
into two categories. An edge joining vertices of the
forms uv and vu is corresponding to the original edge
{u, v} in G, while an edge joining vertices uv and ux,
where v #= x, is newly generated in Γ(G). Then, we
call edges of the former type original edges and edges
of the latter type generated edges. Note that a self-
loop at a vertex ww is an original edge. The subgraph
of Γ(G) induced by the set of generated edges is the
disjoint union of complete graphs, i.e., ∪v∈V (G)Kd(v).
We denote by K(v) the complete graph induced by
a set {{vw, vw′} | w,w′ ∈ NG(v), w #= w′} of gen-
erated edges. Original edges of the form {vw,wv},
where w ∈ NG(v), are injectively incident to vertices
of K(v). Thus, every vertex of K(v) has degree d(v).
Using the subdivided-line graph operation, we de-

fine the iterated subdivided-line graphs.

Definition 2 The n-th iterated subdivided-line
graph Γn(G) of G is the graph obtained from G by
iteratively applying the subdivided-line graph opera-
tion n times.

For n ≥ 1, each vertex of Γn(G) can be expressed by
a sequence v0v1 · · · vn of vertices of G, where v1 · · · vn
is any sequence on NG(v0). Intuitively, we can say
that each vertex v in G is expanded to d(v)n vertices
in Γn(G). Thus, Γn(G) has

∑

v∈V (G) d(v)
n vertices.

Two vertices u0u1 · · ·un and v0v1 · · · vn are adjacent
if and only if there exists an integer 0 ≤ h ≤ n
such that u0 · · ·uh−1 = v0 · · · vh−1, uh #= vh, and
uj = vh, vj = uh for h < j ≤ n (see the right graph
in Figure 3). Such an h for adjacent two vertices

132

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

u0u1 · · ·un and v0v1 · · · vn is the level of the edge join-
ing the vertices. Note that any edge with level n is a
generated edge, while any edge with level h < n is an
original edge corresponding to an edge in Γh(G). For
any vertex v0v1 · · · vn in Γn(G), the degree is equal to
d(v0). Hence, Γn(G) has 1

2 (|!(G)|+
∑

v∈V (G) d(v)
n+1)

edges. Note that !(G) = !(Γn(G)). Besides, a vertex
v0v1 · · · vn is incident to d(v0) − 1 edges with level n
and one edge with level h < n.
Let δG and ∆G denote the minimum degree and

the maximum degree of G, respectively. Also, let
diam(G), κ(G), and κ̄(G) denote the diameter, the
vertex-connectivity, and the edge-connectivity of G,
respectively. As fundamental properties of iterated
subdivided-line graphs, it holds that δΓn(G) = δG,
∆Γn(G) = ∆G, diam(Γn(G)) ≤ 2n(diam(G) + 1) − 1,
and κ(Γn(G)) = κ̄(Γn(G)) = κ̄(G) ([5]).

4 Upper and Lower Bounds on the Pagenumbers
of Iterated Subdivided-Line Graphs

Theorem 1 Let n ≥ 1. If ∆G ≤ 2, then
pn(Γn(G)) = 1. If ∆G = 3, then pn(Γn(G)) ≤
pn(G) + 1. If ∆G ≥ 4, then

⌈

∆G

2

⌉

≤ pn(Γn(G)) ≤
⌈

∆G

2

⌉

+max

{

pn(G),

⌈

∆G

2

⌉}

.

Proof. If ∆G = 1, i.e., G ∼= K2, then Γn(G) ∼= K2.
When∆G = 2, Γn(G) is either a cycle or a path with a
self-loop at each end-vertex and thus pn(Γn(G)) = 1.
For ∆G ≥ 3, we show that pn(K∆G) ≤ pn(Γn(G)) ≤
pn(K∆G)+max {pn(G), pn(K∆G)}. Clearly, pn(K3) =
1. Besides, pn(Kk) = %k

2 & for k ≥ 4, which has been
shown in [1]. In what follows, we consider the case
that ∆G ≥ 4, i.e., pn(K∆G) = %∆G

2 &. The case that
∆G = 3 follows from the same discussion by simply
replacing %∆G

2 & by 1.

The lower bound of %∆G
2 & follows from the fact that

Γn(G) contains K∆G . To show the upper bound, we
inductively construct a (

⌈

∆G
2

⌉

+max
{

pn(G),
⌈

∆G
2

⌉}

)-
page book-embedding of Γn(G). Let σ and ρ be the
vertex-ordering and edge-assignment for a pn(G)-page
book-embedding of G, respectively. We define the
vertex-ordering σ1 of Γ(G) as follows. Let v ∈ V (G)
and NG(v) = {w1, w2, . . . , wd(v)} such that σ(w1) <
· · · < σ(wt) ≤ σ(v) < σ(wt+1) < · · · < σ(wd(v)).
Define σ1(vwi) = M(v) + t − i + 1 for 1 ≤ i ≤ t and
σ1(vwi) = M(v)+d(v)−i+t+1 for t < i ≤ d(v), where
M(v) =

∑

1≤j<σ(v) d(σ
−1(j)). Under this vertex-

ordering, we assign the edges of Γ(G) to pages as
follows. Each original edge is assigned to the same
page according to the edge-assignment ρ. Any two
original edges of Γ(G) cross if and only if the cor-
responding edges of G cross. Thus, all the original
edges are correctly assigned to pn(G) pages. For each
K(v), the edges are assigned to pages with labels from

w1 w2 w4w3

w2v v w3

w4vw1v

GΓ () :2

Γ()G :

G :

v

Figure 4: Parts of book-embeddings of G, Γ(G), and
Γ2(G) with∆G = 4, where normal (resp., thick) edges
above the spine are assigned to the first (resp., second)
page, and normal (resp., thick) edges below the spine
are assigned to the third (resp., fourth) page.

pn(G) + 1 to pn(G) + %d(v)
2 & according to the %d(v)

2 &-
page book-embedding ofKd(v). For any twoK(v) and
K(v′), any edge in K(v) and any edge in K(v′) do not
cross. Therefore, we totally need pn(G)+

⌈

∆G
2

⌉

pages.

We divide the set of pages used for our book-
embedding into two classes A and B. Namely,
let A = {1, 2, . . . ,max

{

pn(G),
⌈

∆G
2

⌉}

} and B =

{max
{

pn(G),
⌈

∆G
2

⌉}

+ 1, . . . ,max
{

pn(G),
⌈

∆G
2

⌉}

+
⌈

∆G
2

⌉

}. Now, let n ≥ 2 and assume that Γn−1(G)

can be embedded in max
{

pn(G),
⌈

∆G
2

⌉}

+
⌈

∆G
2

⌉

pages
such that all the edge with level n − 1 are as-
signed to pages in B (resp., A) if n is even (resp.,
odd). Let σn−1 and ρn−1 be the vertex-ordering
and edge-assignment for such a book-embedding of
Γn−1(G), respectively. Define the vertex-ordering
σn for Γn(G) as follows. Let v = v0v1 · · · vn−1 ∈
V (Γn−1(G)) and NG(v0) = {w1, w2, . . . , wd(v0)} such
that σn−1(v0 · · · vn−2w1) < · · · < σn−1(v0 · · · vn−2wt)
< σ(v) < σn−1(v0 · · · vn−2wt+1) < · · · <
σn−1(v0 · · · vn−2wd(v0)). Then we order the ver-
tex v0 · · · vn−1vn−1 which corresponds to the orig-
inal edge incident to v as the first vertex in the
d(v0) vertices of K(v). The remaining vertices are
ordered similarly to the case n = 1. Let M(v) =
∑

1≤j<σn−1(v)
d(p(σ−1

n−1(j))), where for each vertex

u = u0u1 · · ·un−1 of Γn−1(G) p(u) denotes the
vertex u0 of G. Then, we define σn as follows.
σn(v0 · · · vn−1vn−1) = M(v) + 1, σn(v0 · · · vn−1wi) =
M(v)+ t− i+2 for 1 ≤ i ≤ t, and σn(v0 · · · vn−1wi) =
M(v) + d(v0)− i+ t+ 1 for t < i ≤ d(v0). Then, we
assign all the generated edges to pages in A (resp.,

B) according to the %d(v0)
2 &-page book-embedding of

K(v0v1 · · · vn−1) for each vertex v0v1 · · · vn−1 if n is
even (resp., odd). Assignment of all the original edges

133

29th European Workshop on Computational Geometry, 2013

Figure 5: Γi(K3
1) for i ≤ 3 and Γi(K4) for i ≤ 2.

are the same as ρn−1. By the vertex-ordering σn, any
two original edges of Γn(G) cross if and only if the cor-
responding edges of Γn−1(G) cross. Since each vertex
of the form v0v1 · · · vn−1vn−1 is ordered as the first in
the d(v0) vertices of K(v0v1 · · · vn−1), any generated
edge and any original edge do not cross. Besides,
for any two vertices v0v1 · · · vn−1 and v′0v

′
1 · · · v′n−1

of Γn−1(G), any edge in K(v0v1 · · · vn−1) and any
edge in K(v′0v

′
1 · · · v′n−1) do not cross. Therefore,

Γn(G) can be embedded in a book without increas-
ing the number of pages used in the book-embedding
of Γn−1(G) (see Figure 4). !

5 Book-Embeddings of Sierpiński-Like Graphs

Let S◦(n, k) be the graph obtained from the Sierpiński
graph S(n, k) by adding a self-loop to each extreme
vertex. Then, we have the following lemma, where
Kk

1 and K◦
k denote the graph with one vertex and k

self-loops and the complete graph with a self-loop at
each vertex, respectively. Figure 5 shows examples for
S◦(n, 3) and S++(n, 3).

Lemma 2 It holds that Γn(Kk
1) = Γn−1(K◦

k)
∼=

S◦(n, k) and Γn−1(Kk+1) ∼= S++(n, k) for n ≥ 1.

From Theorem 1 and Lemma 2, the following
results are obtained. The lower bound of 2 on
pn(S(n, 3)) follows from the fact that S(n, 3) is not
outerplanar for n ≥ 3.

Theorem 3 Let n ≥ 1. It holds that pn(S(n, 3)) = 2
for n ≥ 3 and

⌈

k
2

⌉

≤ pn(S(n, k)) ≤ 2
⌈

k
2

⌉

for k ≥ 4.

By the constructions of book-embeddings shown
in Theorem 1, each vertex vivi · · · vi of Γn−1(K◦

k) is
placed as the first in the kn−1 vertices of the form
viw1w2 · · ·wn−1, wj ∈ V (K◦

k), 1 ≤ j < n. Be-
sides, S++(n, k) can be obtained from S(n, k) and
S(n − 1, k) by joining their extreme vertices. From
these observations, we can decrease the upper bound

in Theorem 1 by one for S++(n, k) if k is even and
k ≥ 4. Since S+(n, k) can be obtained from S++(n, k)
by contracting one copy of S(n − 1, k) into a single
vertex, we have the similar upper bound for S+(n, k).

Theorem 4 Let n ≥ 1. It holds that pn(S+(n, 3)) =
pn(S++(n, 3)) = 2,

⌈

k
2

⌉

≤ pn(S+(n, k)) ≤ 2
⌈

k
2

⌉

for

k ≥ 4, and
⌈

k
2

⌉

≤ pn(S++(n, k)) ≤ 2
⌈

k
2

⌉

for k ≥ 4.

Acknowledgments

The author is grateful to the reviewers for their helpful
comments. One of them kindly suggests using the
concept of a barycentric subdivision of a graph.

References

[1] F. Bernhart and P.C. Kainen, The book thickness
of a graph, J. Combin. Theory Ser. B 27 (1979)
320–331.

[2] G-H. Chen and D-R. Duh, Topological proper-
ties, communication, and computation on WK-
recursive networks, Networks 24 (1994) 303–317.

[3] F.R.K. Chung, F.T. Leighton, and A.L. Rosen-
berg, Embedding graphs in books: a layout prob-
lem with application to VLSI design, SIAM J.
Algebraic Discrete Methods 8 (1987) 33–58.

[4] T. Hasunuma, Improved book-embeddings of in-
complete hypercubes, Discrete Applied Math. 157
(2009) 1423–1431.

[5] T. Hasunuma, Structural properties of iterated
subdivided-line graphs, in preparation.

[6] A.M. Hinz and P. Parisse, Coloring Hanoi and
Sierpiński graphs, Discrete Math. 312 (2012)
1521–1535.

[7] S. Klavžar and U. Milutinović, Graphs S(n, k)
and a variant of the Tower of Hanoi problem,
Czechoslovak Math. J. 47 (122) (1997) 95–104.

[8] S. Klavžar and B. Mohar, Crossing numbers of
Sierpiński-like graphs, J. Graph Theory 50 (2005)
186–198.

[9] A.L. Rosenberg, The Diogenes approach to
testable fault-tolerant arrays of processors, IEEE
Trans. Comput. C-32 (1983) 902–910.

[10] G.D. Vecchia and C. Sanges, A recursively scal-
able network VLSI implementation, Future Gen-
erat. Comput. Syst. 4 (1988) 235–243.

[11] D.R. Wood, Bounded degree book embeddings
and three-dimensional orthogonal graph draw-
ing, Proc. GD2001, LNCS vol. 2265, pp.312–327,
2002, Springer.

134

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Area Requirement of Graph Drawings with Few Crossings per Edge

Emilio Di Giacomo∗ Walter Didimo∗ Giuseppe Liotta∗ Fabrizio Montecchiani∗

Abstract

In this paper we study how to compute compact
straight-line drawings of planar graphs with a lim-
ited number of crossings per edge. We prove that
every outerplanar graph can be drawn in O(n logn)
area using a sub-linear number of crossings per edge,
and that for any given number ε > 0, every outer-
planar graph admits an O(n1+ε) area drawing with
O(n1−ε) crossing per edge. The drawing algorithms
run in linear time and can be also generalized to an-
other meaningful sub-family of series-parallel graphs
with bounded vertex-degree.

1 Introduction

Many papers in the literature are devoted to the
study of area requirement of planar straight-line draw-
ings of graphs. In 1990, de Fraysseix et al. [2] and
Schnyder [14], independently discovered two alterna-
tive techniques for computing a planar straight-line
drawing of an n-vertex planar graph in O(n2) area.
In [2] it is also proved that this bound is worst-case
optimal for the family of planar graphs, as there are
infinitely many planar graphs that require quadratic
area to be drawn in the plane without edge cross-
ings. Since then, several attempts have been done
to prove the existence of straight-line planar draw-
ings with o(n2) area for specific sub-families of pla-
nar graphs. Shiloach [15] and Crescenzi et al. [1] es-
tablished O(n logn) area bounds for n-vertex trees.
Garg and Rusu [11] proved that any n-vertex tree
with vertex-degree O(

√
n) admits a planar straight-

line drawing in O(n) area. Other than trees, two
meaningful sub-families of planar graphs that have
been widely studied in terms of area requirement are
outerplanar graphs and series-parallel graphs. An out-
erplanar graph is a planar graph that admits a pla-
nar drawing such that all vertices are on the external
face. Series-parallel graphs form a super-class of the
outerplanar graphs; they are recursively obtained by
applying two kinds of operations, called “series” and
“parallel” compositions (see [5] for a formal defini-
tion). Frati and Di Battista [4] proved that every n-
vertex outerplanar graph admits a planar straight-line
drawing in O(n1.48) area. Later on, Frati [10] proved

∗Dipartimento di Ingegneria Elettronica e
dell’Informazione, Università degli Studi di Perugia, Italy,
{digiacomo,didimo,liotta,montecchiani}@diei.unipg.it

that every n-vertex outerplanar graph with vertex-
degree at most d has a planar straight-line drawing in
O(dn logn); this second bound improves the previous
one only if d = O(n0.48/ logn). Despite these upper
bounds, it is still unknown whether an outerplanar
graph can be always drawn in linear area. Concern-
ing the area requirement of planar straight-line draw-
ings of n-vertex series-parallel graphs, only a super-
linear lower bound is known, namely Ω(n2

√
logn) [9]

(note that the function f(n) = n2
√
logn is such that

f(n) = ω(n logn) and f(n) = o(n2)). A natural ques-
tion that arises from the results mentioned above is
whether allowing some edge crossings may help to re-
duce the area of a drawing of a planar graph. How-
ever, so far, only few papers have been devoted to
the study of non-planar drawings of planar graphs
with the aim of obtaining compact drawings. Namely,
Wood [16] showed that, for any fixed positive inte-
ger k > 0, all k-colorable graphs have a straight-
line drawing in linear area; this implies that planar
graphs always admit linear-area straight-line drawings
with crossing edges. However, the technique by Wood
can give rise to edges that contain a linear number
of crossings. More recently, algorithms for comput-
ing linear-area drawings of bounded treewidth graphs
without h mutually crossing edges (where h is a given
positive integer) have been described in [6], but these
drawings may still contain edges with a linear number
of crossings.

In this paper, we study compact straight-line
drawings of planar graphs with “few” crossings per
edge, proving that drawing area bounds better than
O(n1.48) and O(dn logn) are achievable for all out-
erplanar graphs and for another sub-family of series-
parallel graphs with specific properties, if we allow
a sub-linear number of crossings per edge. More pre-
cisely, we prove that every n-vertex outerplanar graph
admits a straight-line drawing with O(n

logn) crossings

per edge in O(n logn) area. Also, we prove that for
any given ε > 0, every n-vertex outerplanar graph
admits a straight-line drawing with O(n1−ε) cross-
ings per edge in O(n1+ε) area, which gives a clear
trade-off scheme between area and edge crossings.
Both these results are based on a more general draw-
ing algorithm, which runs in linear time and which
can be applied to other sub-families of planar graphs
that admit a “level” drawing with specific properties.
In particular, the drawing area bounds obtained for
the outerplanar graphs apply for another meaning-

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

135

29th European Workshop on Computational Geometry, 2013

ful sub-family of series-parallel graphs with bounded
degree, known as flat series-parallel graphs [5]. It
is worth recalling that drawings of graphs with at
most k crossings per edge are usually called k-planar
drawings, and their properties have been widely stud-
ied in the literature in terms of edge density (see,
e.g., [7, 12, 13]). We finally recall that looking for com-
pact drawings with non-constant number of crossings
per edge is also motivated by the fact that k-planar
straight-line drawings of series-parallel graphs may re-
quire Ω(n2

√
logn) area, for any fixed integer constant

k > 0, as proved in [6].
The basic ingredients and an outline of our drawing

strategy are described in Section 2. The area require-
ment of planar drawings of outerplanar graphs with
a sub-linear number of crossings per edge is studied
in Section 3, and the extension of the results to flat
series-parallel graphs is discussed in Section 4. Con-
clusions and open problems are in Section 5.

a b dc

e f

g h

i

(a)

a

e b

g
f

h
d c

i

0

1

2

3

4

(b)

Figure 1: (a) A planar straight-line grid drawing Γ
of an outerplanar graph G, where all vertices are on
the external face. The area of Γ is 4× 5 = 20. (b) A
proper level drawing of G with respect to the vertex
leveling L(G) = {0, 1, 2, 3, 4} such that: !(0) = {a},
!(1) = {e, b}, !(2) = {g, f}, !(3) = {h, d, c}, !(4) =
{i}; in the drawing all levels are not folded.

2 The General Drawing Strategy: Leveling and
Folding

We assume familiarity with graph drawing terminol-
ogy [3]. A leveling of a graph G is a labeling of
all vertices of G with non-negative integer numbers
L = {0, . . . , r} such that for each j ∈ L there is at
least one vertex labeled j. Each j ∈ L is called the
level j of the leveling, and all vertices with label j
are the vertices of level j. A leveling of G is denoted
as L(G) and the set of vertices of level j is denoted
by !(j). Let Γ be a straight-line grid drawing of a
graph G with a leveling L(G). For each vertex v, we
denote by x(v) and y(v) the x-coordinate and the y-

coordinate of v, respectively. Drawing Γ is called a
proper level drawing of G with respect to the level-
ing L(G), if it has the following properties (see Fig-
ure 1(b) for an example of a proper level drawing):
L1: All vertices of the same level j have the same
y-coordinate, which we simply denote by y(j). L2:
For each edge (u, v), |y(u) − y(v)| ≤ 1. L3: For any
two levels j < l, all vertices of level l are to the right
of all vertices of level j. L4: If u and v are any two
vertices of Γ that are consecutive in the left-to-right
order, then x(v) − x(u) = 1 (i.e., the vertices occupy
n consecutive x-coordinates in the integer grid). Let
l be a level of a leveling L(G) = {0, . . . , r} such that
0 < l < r, and let Γ be a proper level drawing of L(G).
We say that l is folded in Γ if y(l− 1) = y(l+1). The
first and the last level of L(G) are never folded in Γ.

0

1

2

a

e b

g

h d c

f

i

3

4

(a)

0

1

2

a

e b

g

h d c

f

3
i

4

(b)

Figure 2: Two different proper level drawings of G
with respect to same vertex leveling as in Figure 1(b):
(a) level 2 is folded while the others are not folded;
(b) both levels 2 and 3 are folded, while the others
are not folded.

Our general drawing strategy for a graph G works
into two main phases: Leveling: Find a leveling
L(G) and a suitable proper level drawing Γ of G
with respect to L(G), without folded levels. Fold-
ing: Construct from Γ another proper level drawing
Γ′, having a suitable subset of folded levels. Phase
Folding constructs Γ′ from Γ by applying a sequence
of folding operations. Each time a folding operation
is applied, a new proper level drawing is obtained
from the previous one, which contains one more folded
level. More precisely, suppose that Γ0 is a proper level
drawing of a graph G with respect to some leveling
L(G), and let j be a level of L(G) that is not folded
in Γ0. Applying a folding operation on level j to the
drawing Γ0, we transform Γ0 into a new proper level
drawing Γ1 in such a way that: (i) the left-to-right
order of the vertices in Γ0 and Γ1 is the same; (ii)
every level l %= j that is folded (resp. not folded) in
Γ0 is also folded (resp. not folded) in Γ1; (iii) level j
is folded in Γ1. Hence, Γ1 has one folded level more

136

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

than Γ0, i.e., the level j. Notice that, by definition,
the ordering of the folding operations in a sequence
that transforms a drawing Γ into another drawing Γ′

does not matter. We now prove the following lemma,
one of the main ingredients of our final results.

Lemma 1 Let G be an n-vertex graph with a given
leveling L(G) and let d ≥ 0 be an integer constant.
Let Γ be a proper level drawing of G with respect
to L(G), such that Γ is d-planar and has no folded
levels. Let k(n) : N → N be any function such that
k(n) ∈ O(n) and k(n) > d for every n ≥ n0, for some
n0 ≥ 0. Then, there exists a proper level drawing
Γ′ of G with respect to L(G), such that: (i) Γ′ has

O(k(n)) crossings per edge; (ii) Γ′ has area O(n2

k(n)).

Such a drawing can be computed in O(n) time.

Sketch of Proof. et L = {0, . . . , r} be the levels of
L(G). For each level 0 < j < r, denote by Mj the
maximum between the number of edges that connect
vertices of level j to vertices of level j − 1 and the
number of edges that connect vertices of level j to
vertices of level j + 1. Drawing Γ′ is obtained from
Γ through a Folding phase that applies a suitable
sequence of folding operations. Namely, starting from
Γ it suffices to iteratively apply a folding operation
on every level 0 < j < r such that Mj ≤ k(n)−d

2 .

If Mj ≤ k(n)−d
2 , we say that j satisfies the folding

condition (only when k(n) > d for every n ≥ n0).
First of all, observe that the folding operation does
not change the number and the type of crossings in
the subgraph induced by the vertices of two consec-
utive levels. Indeed, these crossings depend only on
the left-to-right ordering of the vertices on the two
levels, and this ordering is preserved by the folding
operation. Hence, in Γ′ the subgraph induced by any
two consecutive levels is still d-planar. We prove that
in Γ′ each edge is crossed at most k(n) times. Con-
sider an edge e = (u, v). By Property L2 either u, v
belong to the same level (in which case edge e does
not cross edges in Γ′, as otherwise it would overlap
some vertices and Γ would not be a valid drawing) or
they belong to consecutive levels. Assume that u is a
vertex of level j and that v is a vertex of level j + 1.
We distinguish between two cases: Case 1: j is not
folded in Γ′. In this case two further sub-cases are
possible: (a) If also j + 1 is not folded, then e can
only be crossed by edges going from level j to level
j + 1, hence it crosses at most d < k(n) other edges
by hypothesis. (b) If j + 1 is folded, then (u, v) can
also cross edges going from level j + 1 to level j + 2;
however, since j+1 satisfies the folding condition, the
number of these edges is at most k(n)−d

2 , and hence

(u, v) contains at most k(n)−d
2 + d = k(n)+d

2 ≤ k(n)
crossings. Case 2: j is folded in Γ′. Also in this
case we have two further sub-cases: (a) If j +1 is not
folded, then e can only cross (at most d) edges going

from level j to level j + 1 and edges going from level
j − 1 to level j, which are at most k(n)−d

2 , because
j satisfies the folding condition. Hence e contains at
most k(n) crossings. (b) If j + 1 is folded, then e can
cross at most d edges going from level j to level j+1,
at most k(n)−d

2 edges going from level j − 1 to level

j, and at most k(n)−d
2 edges going from level j + 1 to

level j +2. Hence, it contains at most k(n) crossings.
We now prove the bound on the area of Γ′. Let A(n)
and A′(n) denote the areas of Γ and Γ′, respectively
and let h(Γ) and h(Γ′) denote the height of Γ and
Γ′, respectively. By the properties of a proper level
drawing, and since Γ has no folded levels, we have
A(n) = (r + 1)n. In order to bound the area A′(n)
we observe that if l (0 < l < r) is a folded level of
Γ′, then y(l − 1) = y(l + 1), which means that at
least two levels (i.e., i− 1 and i+1) occupy the same
horizontal line in Γ′, thus reducing by at least one
the number of horizontal lines used in Γ. Hence, if
Γ′ has h∗ folded levels, then h(Γ′) ≤ h(Γ) − h∗, i.e.,
the height of Γ′ is at most the number of levels that
are not folded in Γ′. We have our first inequality:
A′(n) ≤ (h∗ + 2)n. Let m be the number of edges
of G, and let m∗ be the number of edges of G that
are incident to the h∗ non-folded levels, distinct from
0 and r. By construction, for each of the h∗ levels
there are more than k(n)−d

2 edges incident to vertices
of this level. Also, since each edge is shared by at
most two of the h∗ levels, we have a second inequality:
m∗ > h∗

2
k(n)−d

2 = h∗(k(n)−d)
4 . It is known [13] that,

for a d-planar graph, m ≤
√
16.875 d n, thus, m∗ ≤

m ≤
√
16.875 d n. Hence, we have: h∗ < 4

√
16.875 d n
k(n)−d .

Plugging this third inequality into the first one, we

get A′(n) < 4
√
16.875 d n2

k(n)−d + 2n. Since k(n) ∈ O(n)

and d is a constant, we have A′(n) = O(n2

k(n)). !

3 Outerplanar graphs

Outerplanar graphs are drawn using the general strat-
egy described in Section 2. We prove the following.

Theorem 2 Let G be an outerplanar graph with n
vertices: (i) G admits a straight-line grid drawing
with O(n

logn) crossings per edge in O(n logn) area;

(ii) For any ε > 0, G admits a straight-line grid draw-
ing with O(n1−ε) crossings per edge in O(n1+ε) area;
(iii) These drawings can be computed in linear time.

Sketch of Proof. According to the general strategy
of Section 2, a leveling L(G) and a proper level draw-
ing Γ of G with respect to L(G) are first computed.
From a result by Felsner et al. [8], it is known that
a level drawing Γ can be constructed in linear time
such that d = 0 (the details of this construction are
omitted for space reasons).

137

29th European Workshop on Computational Geometry, 2013

Assume now that k(n) : N → N is a function such
that k(n) = Θ(n

logn). According to Lemma 1, we can

compute in linear time from Γ a k(n)-planar straight-
line grid drawing Γ′ whose area is O(n logn). Anal-
ogously, given any function k(n) : N → N such that
k(n) = Θ(n1−ε), by Lemma 1 we can transform in lin-
ear time Γ into a k(n)-planar straight-line grid draw-
ing Γ′ with O(n1+ε) area. !

4 Flat Series-parallel graphs

It is known that outerplanar graphs are series-parallel
graphs. Another meaningful sub-family of series-
parallel graphs, is the class of the so-called flat series-
parallel graphs. They are those series-parallel graphs
without two parallel components that share a pole and
that are not in a series composition. A formal defi-
nition of flat series-parallel graphs is provided in [5].
We prove the following.

Theorem 3 Let d > 0 be a given integer constant
and let G be a flat series-parallel graph with n ver-
tices and vertex-degree at most d: (i) G admits a
straight-line grid drawing with O(n

logn) crossings per

edge in O(n logn) area; (ii) For any ε > 0, G admits
a straight-line grid drawing with O(n1−ε) crossings
per edge in O(n1+ε) area; (iii) These drawings can
be computed in linear time.

Sketch of Proof. As for the outerplanar graphs, we
first define a leveling L(G) and a proper level drawing
Γ of G with respect to L(G). In [6] it is shown how to
compute Γ of G so that, if the degree of each vertex
is at most d, an edge can cross at most d other edges.
The details of this technique, based on a BFS visit of
the minimal decomposition tree of G, are omitted for
space reasons.

Assume now that k(n) : N → N is a function
such that k(n) = Θ(n

logn). According to Lemma 1,

we can compute in linear time from Γ a k(n)-planar
straight-line grid drawing Γ′ whose area is O(n logn).
Analogously, given k(n) : N → N such that k(n) =
Θ(n1−ε), by Lemma 1 we can transform in linear time
Γ into a k(n)-planar straight-line grid drawing Γ′ with
O(n1+ε) area. !

5 Conclusions and Open Problems

Studying the trade-off between crossings and area
requirement is a new promising research direction,
which poses many interesting and challenging prob-
lems. The following open questions naturally arise
from our results: Theorem 2 shows that straight-line
drawings of outerplanar graphs in O(n logn) area al-
ways exist, which contain O(n

logn) crossings per edge.
Is it possible to achieve the same area bound using

a logarithmic or even a constant number of crossings
per edge? Theorem 3 proves the same bounds as The-
orem 2 for a meaningful sub-family of series-parallel
graphs with bounded degree. Does every series-
parallel graph always admit a straight-line drawing
with a sub-linear number of crossings per edge in
O(n logn) area? We recall there are infinitely many
series-parallel graphs that require ω(n logn) area if
drawn with constant number of crossings per edge,
even using bent edges [6].

References

[1] P. Crescenzi, G. Di Battista, and A. Piperno. A note
on optimal area algorithms for upward drawings of
binary trees. CGTA, 2:187–200, 1992.

[2] H. de Fraysseix, J. Pach, and R. Pollack. How to draw
a planar graph on a grid. Combinatorica, 10:41–51,
1990.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tol-
lis. Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice-Hall, 1999.

[4] G. Di Battista and F. Frati. Small area drawings of
outerplanar graphs. Algorithmica, 54:25–53, 2009.

[5] E. Di Giacomo. Drawing series-parallel graphs on
restricted integer 3D grids. In GD, volume 2912 of
LNCS, pages 238–246. Springer, 2004.

[6] E. Di Giacomo, W. Didimo, G. Liotta, and F. Mon-
tecchiani. h-quasi planar drawings of bounded
treewidth graphs in linear area. In WG, volume 7551
of LNCS, pages 91–102. Springer, 2012.

[7] P. Eades and G. Liotta. Right angle crossing graphs
and 1-planarity. In GD, volume 7034 of LNCS, pages
148–153. Springer, 2011.

[8] S. Felsner, G. Liotta, and S. K. Wismath. Straight-
line drawings on restricted integer grids in two and
three dimensions. JGAA, 7(4):363–398, 2003.

[9] F. Frati. Lower bounds on the area requirements of
series-parallel graphs. DMTCS, 12(5):139–174, 2010.

[10] F. Frati. Straight-line drawings of outerplanar graphs
in O(dn log n) area. CGTA, 45(9):524–533, 2012.

[11] A. Garg and A. Rusu. Straight-line drawings of gen-
eral trees with linear area and arbitrary aspect ratio.
In ICCSA (3), volume 2669 of LNCS, pages 876–885.
Springer, 2003.

[12] S.-H. Hong, P. Eades, G. Liotta, and S.-H. Poon.
Fáry’s theorem for 1-planar graphs. In COCOON,
volume 7434 of LNCS, pages 335–346. Springer, 2012.

[13] J. Pach and G. Tóth. Graphs drawn with few cross-
ings per edge. Combinatorica, 17(3):427–439, 1997.

[14] W. Schnyder. Embedding planar graphs on the grid.
In SODA, pages 138–148. SIAM, 1990.

[15] Y. Shiloach. Arrangements of Planar Graphs on the
Planar Lattice. PhD thesis, Weizmann Institute of
Science, 1976.

[16] D. R. Wood. Grid drawings of k-colourable graphs.
CGTA, 30(1):25–28, 2005.

138

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Distributed universal reconfiguration of 2D lattice-based modular robots

Ferran Hurtado⇤ Enrique Molina⇤ Suneeta Ramaswami† Vera Sacristán⇤

Abstract

We prove universal reconfiguration (i.e., reconfigura-
tion between any two robotic systems with the same
number of modules) of 2-dimensional lattice-based
modular robots by means of a distributed algorithm.
To the best of our knowledge, this is the first known
reconfiguration algorithm that applies in a general set-
ting to a wide variety of particular modular robotic
systems, and holds for both square and hexagonal
lattice-based 2-dimensional systems. All modules ap-
ply the same set of local rules (in a manner similar to
cellular automata), and move relative to each other.
Reconfiguration is carried out while keeping the robot
connected at all times. The total number of time
steps, moves and communication required for the re-
configuration is linear in the number of modules.

1 Introduction

1.1 Goal

We solve the following problem for 2-dimensional
lattice-based modular robotic systems: Given two
connected configurations with the same number of
modules, reconfigure one into the other by means of a
distributed algorithm. As far as we know, this is the
first general reconfiguration algorithm encompassing
both square and hexagonal regular lattices, and us-
ing a general framework that does not exploit specific
characteristics of any particular robotic system. A
large set of robotic prototypes fit this framework.
In our framework, a robot is a connected configu-

ration of homogeneous modules that are located in a
2-dimensional lattice. Each module can attach to and
detach from a neighboring module, and can change
its position to a neighboring empty grid position in
the lattice by attaching to a neighboring module and
moving with respect to it. Each module has constant
size memory, can perform constant size computations,

⇤Departament de Matemàtica Aplicada II, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain.
{ferran.hurtado,vera.sacristan}@upc.edu, Enrique-
Molina@hotmail.com. F.H. and V.S. were partially supported
by projects MTM2012-30951, MTM2009-07242, Gen. Cat.
DGR 2009SGR1040, and ESF EUROCORES programme
EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-
2011-4306, for Spain.

†Department of Computer Science, Rutgers University,
Camden, U.S.A. rsuneeta@camden.rutgers.edu. Partially sup-
ported by NSF grant CCF-0830589.

and can send or receive constant size messages to or
from its neighboring modules. One designated mod-
ule needs linear memory to store the information of
the goal shape and to perform computations required
for the reconfiguration algorithm.
Within this framework, our algorithm is distributed

and local. It consists of a set of rules, each one having
a priority, a precondition, and an action or postcon-
dition. Rules are identical for all modules, and are
simultaneously executed by all of them. The term
“local” here means that each module communicates
with modules lying within a small neighborhood in
order to execute the algorithm. In the procedure we
propose, all modules know when they have reached
their final destination.

1.2 Related work

Our approach builds on the seminal work of Beni [2],
who proposed the conceptual model of cellular robotic
systems, inspired by cellular automata. Since then,
several authors have developed distributed algorithms
for reconfiguring specific square lattice-based modu-
lar robot designs and shapes [8], as well as generic
strategies for locomotion, reconfiguration and self-
repairing for particular shapes [4, 10]. Simulta-
neously, locomotion and reconfiguration have been
proved for some class of shapes within the hexagonal
setting [6, 7, 16, 15, 9, 1], as well as for 3-dimensional
lattices [3]. Local rules have also been used in the
framework of a general metamodules’ theory [5]. Re-
cently, specific sets of rules have been proposed to
produce reconfigurations between particular shapes of
M-TRAN which are lattice-based [11]. To the best of
our knowledge, this last work presents the first execu-
tion of a distributed local rules strategy on real robot
units, hence proving its realizability beyond experi-
mental simulation.

2 The model

In the square lattice setting, a module is any robotic
unit located in a 2-dimensional square grid. We rep-
resent modules by squares occupying one grid cell,
although their actual shape need not be a square.
A module can independently attach to and detach
from each of its 4 direct grid neighboring modules, if
present. A robot is a connected set of identical mod-
ules. By “connected” we mean that the adjacency

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

139

29th European Workshop on Computational Geometry, 2013

graph of the robot configuration (a node in the cen-
ter of each module and a straight line edge for each
attachment among modules) is connected.
Modules cannot move on their own, but they can

move relative to each other. To be more precise, a
module may perform four relative motions, illustrated
in Figure 1, where the dark colored module is perform-
ing the move. The first two moves are of the change

(a) (b) (c) (d)

Figure 1: Change position moves: (a) slide (b) convex
transition. Change attachments moves: (c) concave tran-
sition (d) opposite transition. All moves may apply in
any of the 4 directions (N, S, E, W) relative to the mov-
ing module.

position type: a module performing slide or convex

transition translates itself from its current lattice po-
sition to a neighboring one. The last two moves are
of the change attachments type: a module perform-
ing concave transition or opposite transition changes
its attachment from one neighbor to another without
modifying its lattice position.
In our framework, the modules of the robot are

indistinguishable, and each module is given and ap-
plies the same set of rules. In order to do so, we as-
sume each module has a (simple) processor and some
(small) memory, knows its own orientation (N, S, E,
W) and state (active or passive), can detect whether
it is attached to a neighbor, can send and receive
(short) messages to and from neighbors, and is able to
perform (elementary) operations with a few counters
and text strings. For our reconfiguration algorithm,
only one module needs to store the final configura-
tion, which is a linear amount of information. This
module, called the leader, can be either determined
in advance or chosen by the set of modules [12].
As stated above, all modules run the same prede-

fined set of rules. Each rule has the following struc-
ture: a priority, a precondition, and an action or post-
condition. Priorities, represented as small integers,
are used by the module to decide which of possibly
several rules that apply to its situation is executed.
A precondition is any constant size boolean combina-
tion of the following: compare priorities, check neigh-
boring empty/filled positions, check own connections,
match states/text or counters/integers, and compare
calculation results with counters, messages and inte-
gers. A postcondition can be any and combination
of the following: change position (slide, convex tran-
sition), change attachments (concave transition, op-
posite transition), modify state, compute and update
counters, and send messages.
In our model, changing position only requires the

goal lattice position to be free. This assumption could
be a potential limitation because the atomic robot
units of several current prototypes need some extra
empty space to produce slide and convex transition.
Nevertheless, by appropriately grouping atomic robot
units into meta-modules, we have been able to en-
sure that our moves can be safely made without extra
free space requirements in three general models of re-
configurable robots: the expand/contract model, the
sliding model, and the rotating model.

3 Overview of Reconfiguration Strategy

The solution we present is distributed because each
module acts on its own without the need of a central
controller, other than to get the reconfiguration pro-
cess started. Our solution is parallel as all modules act
in parallel. Our solution is local because each mod-
ule only needs to communicate with modules within a
small neighborhood when checking rule preconditions.
In this context, the neighborhood of a module consists
of all modules lying in grid positions within the sec-
ond annulus around it. Finally, we should mention
that our reconfiguration strategy (and our simulator)
is intended to run in a synchronized framework. An
asynchronous version can be obtained by means of a
shaking hands strategy, at a cost of increased commu-
nication among the modules.
The overall strategy behind our algorithm is to

move modules along the boundary of the robot to
reconfigure in two stages. We first reconfigure the
robot from its initial shape into a canonical shape
(the strip configuration) and then from the canonical
to the final shape. The modules do not need to know
the robot’s complete initial shape. However, the goal
shape needs to be known at least by the leader. In
particular, our solution to reconfigure from the canon-
ical to goal shape requires the leader to assign a final
destination location for each module in the canonical
configuration. Our solution is based on the following
general operating principles:

1. A particular spanning tree of the robot’s adja-
cency graph, called the scan tree, is built so that
all leaves of the tree lie on the boundary of the
robot (see Figure 2). At the beginning, all mod-
ules are considered to be static. At any given
instant, only leaf modules can start moving, i.e.,
go from static to active. Once a module is active,
its node is cut from the spanning tree.

2. The movement of the active modules along the
boundary of the static robot always follows the
right hand rule (turn right along the robot
boundary) when reconfiguring from the initial to
canonical shape, and the left hand rule when re-
configuring from the canonical to goal shape.

140

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

3. Moving modules are not allowed to climb (move
relative to) other moving modules. This is a rea-
sonable assumption in order to avoid unbounded
acceleration and unpredictable collisions.

4. Every module is assigned a number when con-
structing the above stated spanning tree. Gen-
erally speaking, this number corresponds to the
DFS (depth first search) order numbering of the
nodes of the scan tree of the initial shape for the
initial to canonical reconfiguration, or the goal
shape for the canonical to goal reconfiguration.
This number is used to guide the moves of the
modules and also to prove the correctness of our
solution.

Figure 2: Left: the scan tree of a configuration without
holes. Right: the scan tree of a configuration with holes.

Rules for advancing modules during reconfiguration
must take care of various types of conflicts:

Activation conflicts occur when an active module
tries to move to a position where it would attach to
a static leaf which simultaneously becomes active. In
this case, priority needs to be given either to the ac-
tivation of the leaf or to the moving module. Any
of the two choices is appropriate, as long as it stays
consistent during the reconfiguration.

Collision conflicts occur when two active modules
intend to move to the same lattice position. Priority
is given to the module with lower DFS order number.

Obstruction conflicts occur when an active mod-
ule would like to move into a lattice position which is
already occupied by an active module. In this case,
deadlocked situations could be created if the bound-
ary of the static shape forms bottlenecks. See Figure 3
for an illustration. We avoid deadlocks by means of
specific “jumping rules” that have higher priority than
the regular advancing ones. Jumping at a bottleneck
allows a module to advance more than one position
along the boundary of the static shape in one step to
avoid entrance into the “cul-de-sac” region. Deciding
which modules should jump and at which bottlenecks
is crucial in our strategy. These decisions are made
by comparing the DFS number of the static modules
that form the bottleneck. The active module uses
the DFS numbers to determine whether it is about to
enter or exit the corresponding cul-de-sac. The recon-

L L L

A

B
L

A

B

A

B

A

B

L
L

L

B

A L

B

A

A

B

A

B

Figure 3: First row: The two possible bottleneck types
in square lattices (left) and the hexagonal lattices (right).
The continuous line schematizes the boundary of the robot
shape. Second and third rows: The active module x (de-
picted as a red/dark disc) is attached to the static module
A and decides whether to jump, i.e., attach to B and de-
tach from A. The decision is based on whether B belongs
to a branch in the tree previous, in DFS order, to that
of A (second row) or the same branch as that of A (third
row). This allows x to determine if it is about to enter
or exit the cul-de-sac and consequently, whether or not to
jump at the bottleneck. L is the position of the root of
the tree, i.e., the leader. The continuous lines schematize
the branches of the tree involved in the bottleneck A, B.

figuration from the strip to the goal shape essentially
reverses the forward (initial shape to strip) reconfigu-
ration procedure. Modules march from the rightmost
end of the strip following the left hand rule and the
goal shape is constructed in a clockwise depth-first
manner. However, two additional issues need to be
addressed in the reverse reconfiguration. The main
di↵erence between the forward and backward proce-
dures is that modules in the strip must be sent to
their final goal destination in the order given by the
depth-first traversal of the final shape. Therefore, the
jumping rules need to be modified to make sure that
no jump changes the order of the active modules when
they march along the boundaries of the static struc-
ture. In addition, it is also necessary to ensure that
for robot shapes with holes, no active module gets
trapped within the wrong hole or outside its desti-
nation hole because of premature closing of the hole
during the reconfiguration procedure.

4 Main result

We state, without proof, some lemmas used to show
the final result stated in Theorem 4.

Lemma 1 At all times along the reconfiguration,

the static tree, although pruned, stays a scan-tree,

and the numbering of the modules along its external

boundary increases counterclockwise from the leader

up to the first leaf.

A deadlock loop is a sequence of active modules
a1, . . . , ak such that each ai intends to occupy the
lattice position of module ai�1 (indices are mod k).

141

29th European Workshop on Computational Geometry, 2013

Lemma 2 The algorithm outlined in Section 3 can-

not create deadlock loops.

The above lemma, together with the invariant es-
tablished in Lemma 1, is used to prove the following:

Lemma 3 The algorithm outlined in Section 3 makes

every module move past the leader when reconfiguring

to the strip.

Theorem 4 Given two robotic systems with the

same number of modules, the algorithm outlined in

Section 3 reconfigures one shape into the other.

If executed synchronously, any reconfiguration of a
robotic system of nmodules is done inO(n) time steps
with O(n) basic moves per module, using O(1) force
per module, O(1) size memory and computation per
module (except for one module, which needs O(n) size
memory to store the information of the goal shape),
and O(n) communication per module.

5 Simulations

We have implemented our rules [13] for square lat-
tices in a synchronized simulator [14], and have ap-
plied them to a large set of reconfigurations (Figure 4
shows a screen shot). We are currently working on
the hexagonal lattice simulations.

Figure 4: A screen shot of the simulation. Dark blue
modules are static, green modules are active, and the yel-
low horizontal strip on the right is being formed.

References

[1] J. Bateau, A. Clark, K. McEachern, E. Schutze, and
J. Walter. Increasing the e�ciency of distributed
goal-filling algorithms for self-reconfigurable hexag-
onal metamorphic robots. In Proc. of the Interna-
tional Conference on Parallel and Distributed Tech-
niques and Applications, 2012.

[2] G. Beni. The concept of cellular robotic system. In
Proc. of the IEEE International Symposium on Intel-
ligent Control, pages 57–62, 1988.

[3] H. Bojinov, A. Casal, and T. Hogg. Emergent struc-
tures in modular self-reconfigurable robots. In Proc.
of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1734–1741, 2000.

[4] Z. Butler, K. Kotay, D. Rus, and K. Tomita.
Generic decentralized control for lattice-based self-
reconfigurable robots. Int. J. Robot. Res., 23:919–
937, 2004.

[5] D. J. Dewey, M. P. Ashley-Rollman, M. De Rosa,
S. C. Goldstein, T. C. Mowry, S. S. Srinivasa, P. Pil-
lai, and J. Campbell. Generalizing metamodules to
simplify planning in modular robotic systems. In
Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1338–
1345, 2008.

[6] A. Dumitrescu, I. Suzuki, and M. Yamashita. For-
mations for fast locomotion of metamorphic robotic
systems. Int. J. Robot. Res., 23(6):583–593, 2004.

[7] A. Dumitrescu, I. Suzuki, and M. Yamashita. Mo-
tion planning for metamorphic systems: Feasibility,
decidability, and distributed reconfiguration. IEEE
Trans. Robot. Autom., 20(3), 2004.

[8] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu,
H. Asama, Y. Kuroda, and I. Endo. Self-organizing
collective robots with morphogenesis in a vertical
plane. In Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), pages 2858–
2863, 1998.

[9] P. Ivanov and J. Walter. Layering algorithm
for collision-free traversal using hexagonal self-
reconfigurable metamorphic robots. In Proc. of
IEEE/RSJ International Conference on Robots and
Systems (IROS), pages 521–528, 2010.

[10] K. Kotay and D. Rus. Generic distributed assembly
and repair algorithms for self-reconfiguring robots. In
Proc. of the IEEE International Conference on Intel-
ligent Robots and Systems (IROS), volume 3, pages
2362–2369, 2004.

[11] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji,
T. Hasuo, and S. Murata. Distributed self-
reconfiguration of M-TRAN III modular robotic sys-
tem. Int. J. Robot. Res., 27:373–386, 2008.

[12] C. Nichitiu, J. Mazoyer, and E. Rémila. Algorithms
for leader election by cellular automata. J. Algo-
rithms, 41(2):302–329, 2001.

[13] O. Rodŕıguez. Simulating distributed action of mod-
ular robots. Degree thesis, Facultat d’Informàtica
de Barcelona, Universitat Politècnica de Catalunya,
Barcelona, Spain, 2013 (in Catalan).

[14] R. Wallner. A system of autonomously self-
reconfigurable agents. Diploma thesis, Institute for
Software Technology, Graz University of Technology,
Graz, Austria, 2009.

[15] J. E. Walter, J. L. Welch, and N. M. Amato. Con-
current metamorphosis of hexagonal robot chains into
simple connected configurations. IEEE Trans. Robot.
Autom., 18(6):945–956, 2002.

[16] J. E. Walter, J. L. Welch, and N. M. Amato.
Distributed reconfiguration of metamorphic robot
chains. Distributed Computing, 17:171–189, 2004.

142

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

The Number of Different Unfoldings of Polyhedra

Takashi Horiyama∗ Wataru Shoji†

1 Introduction

An unfolding (also called an edge unfolding, a net or
a development) of a polyhedron is a simple polygon
obtained by cutting along the edges of the polyhedron
and unfolding it into a plane. The cut edges of an edge
unfolding of a polyhedron form a spanning tree of the
1-skeleton (i.e., the graph formed by the vertices and
the edges) of the polyhedron (See, e.g., [8, Lemma
22.1.1]). Since Kirchhoff’s matrix-tree theorem gives
the number of spanning trees for any graph, we can
obtain the number of unfoldings for any polyhedron.
For example, a cube has 384 unfoldings (i.e., 384 ways
of cut edges).
Different cut edges, however, may have isomorphic

unfoldings. In Figure 1, (a) and (b) have different
cut edges (depicted in bold lines), while their unfold-
ings have the same shape depicted in (c). In actual,
24 unfoldings of a cube are isomorphic to Figure 1(c).
Later in this paper, we consider two cases for counting
the number of unfoldings. (1) The number of labeled
unfoldings: edges have labels and we distinguish un-
foldings according to their cut edges. (2) The number
of nonisomorphic unfoldings: we identify isomorphic
unfoldings even if they have different edge labels. The
384 labeled unfoldings of a cube are classified into 11
essentially different (i.e., nonisomorphic) unfoldings.

As mentioned later in related work, the number of
unfoldings are of great interest for their wide area of
applications. As for the counting for concrete polyhe-
dra, most of the results are on the numbers of labeled
unfoldings, since they are obtained by the matrix-tree
theorem. On the other hand, few are on the numbers

e
4

e
1

e
3

e
5

e
6

e
2

e
7

e
8

e
9

e
10

e
11

e
12

e
4

e
1

e
3

e
5

e
6

e
2

e
7

e
8

e
9

e
10

e
11

e
12

(c)(a) (b)

Figure 1: Different cut edges (a) and (b) have isomor-
phic unfoldings.

∗Information Technology Center, Saitama University,
Japan, horiyama@al.ics.saitama-u.ac.jp

†Graduate School of Science and Engineering, Saitama Uni-
versity, Japan, shoji@al.ics.saitama-u.ac.jp

of nonisomorphic unfoldings (e.g., those of Platonic
solids [3, 9, 11], and Archimedean n-gonal prism with
n = 3 to 14 [14]), while they also have rich store of
mathematical knowledge.

Our Contribution. In this paper, we address how
to count the number of nonisomorphic unfoldings for
any polyhedron. The naive way for counting noni-
somorphic unfoldings is to enumerate all labeled un-
foldings and to omit isomorphic unfoldings. Unfor-
tunately, a dodecahedron and an icosahedron have
5,184,000 labeled unfoldings, respectively, and the
test for the isomorphism is tough. (The test may be
required

(5,184,000
2

)

times.) We here note that unfold-
ings in this paper may have overlaps. (In [10], some
overlapping unfoldings of some Archimedean solids
are given.) Similar story happened on Platonic solids:
When the numbers of thier nonisomorphic unfoldings
were first obtained in about 40 years ago [3, 9, 11], we
could not distinguish whether they are overlapping or
not. In quite recent years, by enumerating all unfold-
ings, it is proved that any edge unfolding of Platonic
solids is a flat nonoverlapping simple polygon [10, 13].

For counting the number of nonisomorphic un-
foldings, we follow the basic idea in [9, 11], that is,
to use Burnside’s lemma [7]: given a polyhedron P ,
the number of nonisomorphic unfoldings is obtained
by u(Γ) = 1

|AutΓ|
∑

g∈AutΓ |{T ∈ T | T = gT}|,
where Γ is the 1-skeleton of P , u(Γ) is the number
of nonisomorphic spanning trees of Γ, AutΓ is
the automorphism group of Γ, g is a permutation
in AutΓ, and T is the set of spanning trees of
Γ. Although we can compute this equation by
checking T = gT (i.e., T has the same structure
with the permuted tree gT) for every g ∈ AutΓ
and T ∈ T, it is impractical for large T (e.g., |T | =
21, 789, 262, 703, 685, 125, 511, 464, 767, 107, 171, 876,
864, 000 for a truncated icosidodecahedron).

To overcome this situation, we follow the second
idea in [4], that is, to use a quotient graph. A quo-
tient graph Q(Γ, g) is intuitively obtained by iterative
contraction of two vertices u and v in Γ satisfying
u = g(v) (the edges are also contracted in the simi-
lar manner). By analyzing the structure of Q(Γ, g),
we can obtain |{T ∈ T | T = gT}| without checking
T = gT for each T ∈ T. In [4], they analyzed three
cases which is necessary to obtain the number of non-
isomorphic unfoldings of the five Platonic solids (in
3-dimensions) and the six regular convex polytopes in
4-dimensions. In this paper, we extend the technique

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

143

29th European Workshop on Computational Geometry, 2013

so that we can apply it to any polyhedron.
Another contribution of this paper is the num-

bers of nonisomorphic unfoldings of all regular-faced
convex polyhedra (i.e., Platonic solids, Archimedean
solids, Johnson-Zalgaller solids, Archimedean prisms,
and antiprisms). Furthermore, the numbers of noniso-
morphic unfoldings of Catalan solids, bipyramids and
trapezohedra are obtained, since they are the duals of
Archimedean solids, prisms, antiprisms, and the dual
of a solid has the same number of unfoldings with the
original one.

For example, while a truncated icosahedron
(and also a pentakis dodecahedron) has 375,291,
866,372,898,816,000 (approximately 375 exa) labeled
unfoldings, it has 3,127,432,220,939,473,920 (ap-
proximately 3 exa) nonisomorphic unfoldings. A
truncated icosidodecahedron (and also a disdyakis
triacontahedron) has 21,789,262,703,685,125,511,464,
767,107,171,876,864,000 (approximately 21,789,262,
703,685,125 yotta) labeled unfolding, and has 181,
577,189,197,376,045,928,994,520,239,942,164,480 (ap-
proximately 181,577,189,197,376 yotta) nonisomor-
phic unfoldings.

Related work. In computational chemistry,
fullerenes are of interest. Buckminsterfullerene (also
known as icosahedral C60, soccerballene, or trun-
cated icosahedron) has 375,291,866,372,898,816,000
labeled unfoldings [5]. Handballene (also know
as truncated dodecahedral C60, or truncated do-
decahedron) and Archimedean (also known as
truncated icosidodecahedral C120, or truncated icosi-
dodecahedron) have 4,982,259,375,000,000,000 and
21,789,262,703,685,125,511,464,767,107,171,876,864,
000 labeled unfoldings, respectively [6]. In [13],
the number of nonisomorphic unfoldings of a trun-
cated octahedron is estimated to be approximately
2,300,000.

Akiyama et al. [1] are interested in the tessella-
tion by unfoldings of polyhedra with regular polygonal
faces, and the number of labeled unfoldings are inves-
tigated in their first step. [1] gives the number of la-
beled unfoldings of a cubotahedron, a truncated tetra-
hedron, and 17 out of 92 Johnson-Zalgaller solids.

Archimedean prisms and Archimedean antiprisms
are also of interest. n-gonal prism and n-gonal an-
tiprism has n

2 {(2 +
√
3)n + (2 −

√
3)n − 2} [2] and

2n
5 {(2+

√
3)n+(2−

√
3)n−2} [12] labeled unfoldings,

respectively. As for the number of their nonisomor-
phic unfoldings, only the cases for n-gonal prism with
n = 3 to 14 are known [14].

2 Preliminaries

Let Γ, V (Γ), E(Γ), AutΓ, T (Γ) (or T in short) and Tg
for g ∈ AutΓ, respectively, denote the 1-skeleton of a
given polyhedron P , the set of vertices of Γ, the set of
edges of Γ, the (symmetry) automorphism group of Γ,

1, 3, 8

4, 6

2, 7, 5

1 2

34

5 6

78

g = (1, 3, 8) (2, 7, 5)

Q(Γ, g)

Figure 2: Quotient graph Q(Γ, g) for a rotation g =
(1, 3, 8)(2, 7, 5).

the set of spanning trees of Γ, and {T ∈ T | T = gT}.
Given a permutation g ∈ AutΓ, Fix g is the subgraph
of Γ on which g acts as the identity. In other words,
The edges and vertices of Fix g is defined as follows:
V (Fix g) = {v ∈ V (Γ) | g(v) = v}, E(Fix g) =
{(u, v) ∈ E(Γ) | u, v ∈ V (Fix g)}. If g has no fixed
point, i.e., V (Fix g) = ∅, we use notation Fix g = ∅.
Let α(g) denote the number of g-invariant edges in Γ,
i.e., |{(u, v) ∈ E(Γ) | (u, v) = (g(u), g(v)) or (u, v) =
(g(v), g(u))}|.
The quotient graph Q(Γ, g) is defined as follows.

The orbit θv of vertex v ∈ V (Γ) is the set of vertices
{u ∈ V (Γ) | u = gn(v), n ∈ Z}. Let Ω be the set
of orbits of length > 1. Then, the set U of vertices
of Q(Γ, g) is defined as follows: U = Ω if Fix g = ∅
holds. Otherwise, U = Ω ∪ {V (Fix g)}. Let π be the
natural projection

π : V → U

{

v → V (Fix g) (if v ∈ V (Fix g)),
v → θv (otherwise).

Let E′ denote the set {(u, v) ∈ E(Γ) | π(u) '= π(v)}.
The projection π induces a map: π̃ : E′ → F :
(u, v) → (π(u),π(v)). The quotient graph Q(Γ, g) is
defined as multigraph (U,F), in which all edges in the
same orbit of E′ corresponds to an edge in F .

Figure 2 illustrates the quotient graph Q(Γ, g) for
a rotation g = (1, 3, 8)(2, 7, 5). The order of g
is 3. We can observe that V (Fix g) = {4, 6},
E(Fix g) = ∅. Since we have two orbits {1, 3, 8}
and {2, 7, 5}, the set of vertices of Q(Γ, g) is U =
{{1, 3, 8}, {2, 7, 5}, {4, 6}}. Since we have two orbits
of edges {(1, 2), (3, 7), (8, 5)} and {(1, 5), (3, 2), (8, 7)},
Q(Γ, g) has two edges between {1, 3, 8} and {2, 7, 5}.

In [4], in order to obtain |Tg | for any g of regu-
lar convex polytopes in dimension ≤ 4, the following
three facts are used:

Theorem 1 ([4])

(1) Let g be of prime oder p and let Fix g '= ∅. Then,
|Tg | = |T (Fix g)| · |T (Q(Γ, g))|.

(2) Let g be of order 2 with Fix g = ∅. Then, |Tg | =
|T (Q(Γ, g))| · α(g).

(3) If Fix g '= ∅ and Fix g is not connected, |Tg | = 0
holds.144

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

3 The number of nonisomorphic unfoldings

We extend Theorem 1 so as to obtain |Tg | for any g
of any polyhedron. Our extended theorem consists of
the following four facts. The first one is a straightfor-
ward extension of Theorem 1(1), and the fourth one
is new.

Theorem 2

(1) Let Fix g != ∅ and all vertices not in V (Fix g)
have orbits of the same length. Then, |Tg | =
|T (Fix g)| · |T (Q(Γ, g))|.

(2) Let g be of order 2 with Fix g = ∅. Then, |Tg | =
|T (Q(Γ, g))| · α(g).

(3) If Fix g != ∅ and Fix g is not connected, |Tg | = 0
holds.

(4) If Fix g = ∅ and α(g) = 0, |Tg | = 0 holds.

In the rest of this section, we show that |Tg | can be
obtained by any permutation in the symmetry group
AutΓ of any polyhedra.

Theorem 3 Let P be a polyhedron, and AutΓ be
the symmetry group of P . Then, for any permutation
g ∈ AutΓ, either of the four cases in Theorem 2 holds.

4 Regular-faced convex polyhedra

By applying the proposed method to all regular-
faced convex polyhedra, the numbers of nonisomor-
phic unfoldings are obtained. The results for the
Archimedean solids and the Johnson-Zalgaller solids
are listed in Tables 1 and 2. For Archimedean prisms
and antiprisms, we have the following results.

Theorem 4 The number of nonisomorphic unfold-
ings of an n-gonal Archimedean prism is

1
8
√
3

{

2
√
3n+

√
3(2 +

√
3)n

+(2 +
√
3)"

n
2 #(4 + 2

√
3)

+ (2−
√
3)"

n
2 #(2

√
3− 4)

+
√
3((2−

√
3)n − 2)

}

(n is odd),
1
24

{

6n+ 3(2 +
√
3)n

+4
√
3(2 +

√
3)

n
2

− 4
√
3(2−

√
3)

n
2

+3(2−
√
3)n − 6

}

(n is even).

Theorem 5 The number of nonisomorphic unfold-
ings of an n-gonal Archimedean antiprism is

1
10

{

(1+
√
5

2)4n + (1+
√
5

2)−4n − 2
}

+ (3+
√
5)n−(3−

√
5)n

2n+1
√
5 .

References

[1] J. Akiyama, T. Kuwata, S. Langerman, K.
Okawa, I. Sato, G. C. Shephard: Determination

of All Tessellation Polyhedra with Regular Polyg-
onal Faces, Proc. of the China-Japan Joint Con-
ference on Computational Geometry, Graphs and
Applications, LNCS 7033, pp. 1–11, 2011.

[2] G. F. T. Boesch, Z. R. Bogdanowicz: The Num-
ber of Spanning Trees in a Prism, Inter. J. Com-
put. Math., vol. 21, pp. 229–243, 1987.

[3] S. Bouzette, F. Vandamme: The regular Dodec-
ahedron and Icosahedron unfold in 43380 ways,
Unpublished manuscript.

[4] F. Buekenhout, M. Parker: The Number of Nets
of the Regular Convex Polytopes in Dimension
≤ 4, Disc. Math., vol. 186, pp. 69–94, 1998.

[5] T. J. N. Brown, R. B. Mallion, P. Pollak, B. R.
M. de Castro, J. A. N. F. Gomes: The number of
spanning trees in buckminsterfullerene, Journal
of Computational Chemistry, vol. 12, pp. 1118–
1124, 1991.

[6] T. J. N. Brown, R. B. Mallion, P. Pollak, A.
Roth: Some Methods for Counting the Spanning
Trees in Labelled Molecular Graphs, examined in
Relation to Certain Fullerenes, Discrete Applied
Mathematics, vol. 67, pp. 51–66, 1996.

[7] A. Burnside: Theory of Groups of Finite Order,
Cambridge University Press, 1911.

[8] E. D. Demaine and J. O’Rourke. Geometric Fold-
ing Algorithms: Linkages, Origami, Polyhedra.
Cambridge University Press, 2007.

[9] C. Hippenmeyer: Die Anzahl der inkongruenten
ebenen Netze eines regulären Ikosaeders, Elem.
Math., 34, 61–63, 1979.

[10] T. Horiyama and W. Shoji: Edge unfoldings of
Platonic solids never overlap, Proc. of the 23rd
Canadian Conference on Computational Geome-
try, pp. 65–70, 2011.

[11] M. Jeger: Über die Anzahl der inkongruenten
ebenen Netze des Würfels und des regulären Ok-
taeders, Elemente der Mathematik, vol. 30, pp.
73–83, 1975.

[12] D. J. Kleitman, B. Golden: Counting trees in a
certain class of graphs, Am. Math. Monthly, vol.
82, pp. 40–44, 1975.

[13] S. Pandey, M. Ewing, A. Kunas, N. Nguyen,
D. H. Gracias, G. Menon: Algorithmic design
of self-folding polyhedra, Proc. Natl. Acad. Sci.
USA, 108 (50), 19885–19890, 2011.

[14] N. J. A. Sloane: Sequence A103535, The On-Line
Encyclopedia of Integer Sequences.

145

29th European Workshop on Computational Geometry, 2013

Table 1: The number of edge unfoldings of Archimedean solids, where the entries without citation are newly
obtained in this paper.

Name #(Labeled unfoldings) #(Nonisomorphic unfoldings)

Cuboctahedron 331,776 [1] 6,912

Icosidodecahedron 208,971,104,256,000 1,741,425,868,800

Truncated tetrahedron 6,000 [1] 261

Truncated octahedron 101,154,816 2,108,512

Truncated cube 32,400,000 675,585

Truncated icosahedron 375,291,866,372,898,816,000 [5] 3,127,432,220,939,473,920

Truncated dodecahedron 4,982,259,375,000,000,000 [6] 41,518,828,261,687,500

Rhombicuboctahedron 301,056,000,000 6,272,012,000

Rhombicosidodecahedron 201,550,864,919,150,779,950,956,544,000 1,679,590,540,992,923,166,257,971,200

Truncated cuboctahedron 12,418,325,780,889,600 258,715,122,137,472

Truncated icosidodecahedron 21,789,262,703,
685,125,511,464,767,107,171,876,864,000 [6] 181,577,189,

197,376,045,928,994,520,239,942,164,480

Snub cube 89,904,012,853,248 3,746,001,752,064

Snub dodecahedoron 438,201,
295,386,966,498,858,139,607,040,000,000

7,303,
354,923,116,108,380,042,995,304,896,000

Table 2: The number of edge unfoldings of Johnson-Zalgaller solids, where the entries without citation are newly
obtained in this paper.

#(Labeled unfoldings) #(Nonisomorphic
unfoldings)

J01 45 8
J02 121 15
J03 1,815 [1] 308
J04 24,000 3,030
J05 297,025 29,757
J06 78,250,050 7,825,005
J07 361 [1] 63
J08 3,509 448
J09 30,976 3,116
J10 27,216 3,421
J11 403,202 40,321
J12 75 9
J13 1,805 99
J14 1,728 156
J15 31,500 2,010
J16 508,805 25,574
J17 207,368 13,041
J18 1,609,152 [1] 268,260
J19 227,402,340 28,427,091
J20 29,821,320,745 2,982,139,245
J21 8,223,103,375,490 822,310,337,549
J22 37,158,912 [1] 6,193,152
J23 15,482,880,000 1,935,360,000
J24 5,996,600,870,820 599,660,087,082
J25 1,702,422,879,696,000 170,242,287,969,600
J26 1,176 [1] 152
J27 324,900 [1] 27,195
J28 29,859,840 [1] 1,867,560
J29 30,950,832 [1] 1,934,427
J30 2,518,646,460 125,939,163
J31 2,652,552,060 132,627,603
J32 699,537,024,120 69,953,702,412
J33 745,208,449,920 74,520,844,992
J34 193,003,269,869,040 9,650,165,403,136
J35 301,896,210 [1] 25,158,925
J36 302,400,000 [1] 25,203,000
J37 301,988,758,680 18,874,379,520
J38 270,745,016,304,350 13,537,250,963,730
J39 272,026,496,000,000 13,601,327,004,000
J40 75,378,202,163,880,700 7,537,820,216,388,070
J41 75,804,411,381,317,500 7,580,441,138,131,750
J42 20,969,865,292,417,385,400 1,048,493,264,659,994,295
J43 21,115,350,368,078,435,000 1,055,767,519,017,973,725
J44 5,295,528,588 [1] 882,609,105
J45 13,769,880,349,680 1,721,235,971,518
J46 32,543,644,773,848,180 3,254,364,517,723,165
J47 9,324,488,558,669,593,960 1,864,897,711,733,918,792
J48 2,670,159,599,304,760,178,000 267,015,959,942,030,583,130
J49 672 173
J50 5,544 1,401

#(Labeled unfoldings) #(Nonisomorphic
unfoldings)

J51 42,336 3,549
J52 16,744 4,201
J53 153,816 38,526
J54 75,973 [1] 19,035
J55 709,632 [1] 88,776
J56 707,232 [1] 176,967
J57 6,531,840 [1] 544,680
J58 92,724,962 9,272,497
J59 1,651,482,010 82,580,526
J60 1,641,317,568 410,335,964
J61 28,745,798,400 4,790,966,400
J62 28,080 7,050
J63 1,734 289
J64 8,450 1,409
J65 1,245,456 [1] 207,576
J66 54,921,311,280 6,865,163,910
J67 90,974,647,120,896 5,685,916,514,256
J68 68,495,843,558,495,480,625,000 6,849,584,355,849,548,062,500

J69 936,
988,158,859,771,579,003,317,600

46,
849,407,942,992,327,926,343,838

J70 930,
303,529,996,712,062,599,302,400

232,
575,882,499,181,854,544,317,560

J71 12,479,653,
904,364,665,921,377,091,740,032

2,079,942,
317,394,110,986,896,181,956,672

J72 206,686,
735,580,507,426,149,463,308,960

20,668,
673,558,050,742,614,946,330,896

J73 211,950,
222,127,067,401,293,093,928,960

10,597,
511,106,353,370,064,654,696,448

J74 211,595,
653,377,414,999,219,839,524,608

52,898,
913,344,353,749,804,959,881,152

J75 216,255,
817,875,464,148,759,178,607,616

36,042,
636,312,577,358,126,529,767,936

J76 21,
081,520,904,394,872,104,529,280

2,
108,152,090,439,487,210,452,928

J77 21,
635,458,027,234,604,842,992,000

2,
163,545,802,723,460,484,299,200

J78 21,
638,184,348,166,814,636,938,752

10,
819,092,174,083,407,318,469,376

J79 22,
171,247,351,297,062,278,807,776

11,
085,623,675,648,531,139,403,888

J80 2,163,645,669,729,922,583,040 108,182,283,486,496,129,152
J81 2,094,253,294,125,015,611,392 523,563,323,531,253,902,848
J82 2,151,245,812,763,713,106,752 1,075,622,906,381,856,553,376
J83 197,148,908,795,401,104 32,858,151,465,900,184
J84 8,640 1,109
J85 1,291,795,320 [1] 80,742,129
J86 84,480 21,204
J87 652,846 326,423
J88 2,002,440 500,959
J89 32,373,600 8,094,150
J90 519,556,800 64,950,268
J91 870,912 108,936
J92 235,726,848 39,287,808

146

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Computational Complexity of Piano-Hinged Dissections

Zachary Abel⇤ Erik D. Demaine† Martin L. Demaine† Takashi Horiyama‡ Ryuhei Uehara§

Abstract

We prove NP-completeness of deciding whether a
given loop of colored right isosceles triangles, hinged
together at edges, can be folded into a specified rect-
angular three-color pattern. By contrast, the same
problem becomes polynomially solvable with one color
or when the target shape is a tree-shaped polyomino.

1 Introduction

One of the simplest and most practical physical fold-
ing structures is that of a hinge, as in most doors
or attaching the lid to a grand piano. Frederickson
[4] introduced a way to make folding structures out
of such hinges that can change their shape between
“nearly 2D” shapes. The basic idea is to thicken a
(doubly covered) 2D polygon by extruding it orthog-
onally into a height-2" 3D prism, divide that prism
into two height-" layers, further divide those layers
into "-thickened polygonal pieces, and hinge the pieces
together with hinges along shared edges. The goal in
a piano-hinged dissection is to find a connected hing-
ing of "-thickened polygonal pieces that can fold into
two (or more) di↵erent 2"-thickened polygons.
Piano-hinged dissections are meant to be a more

practical form of hinged dissections, which typically
use point hinges and thus are more di�cult to build
[4]. Although hinged dissections have recently been
shown to exist for any finite set of polygons of equal
area [1], no such result is known for piano-hinged dis-
sections.
Here we study a family of simple piano-hinged dis-

sections, which we call a piano-hinged loop: 4n iden-
tical "-thickened right isosceles triangles, alternating
in orientation, and connected into a loop by hinges
on the bottoms of their isosceles sides; see Figure 1.
Frederickson [4, chapter 11] mentions without proof
that this piano-hinged dissection can fold into any
(2"-thickened) n-omino, that is, any connected edge-
to-edge joining of n unit squares.

⇤

MIT Department of Mathematics, 77 Massachusetts Ave.,

Cambridge, MA 02139, USA, zabel@math.mit.edu

†

MIT Computer Science and Artificial Intelligence Labora-

tory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,

mdemaine}@mit.edu

‡

Information Technology Center, Saitama University,

horiyama@al.ics.saitama-u.ac.jp

§

School of Information Science, JAIST, uehara@jaist.ac.jp

Three commercial puzzles, shown in Figure 2, con-
sist of piano-hinged loops. GeoLoop is a piano-hinged
loop with n = 6 that was patented by Kenneth
Stevens in 1993/1994 [6] and sold by Binary Arts1

in 1996. The pieces alternate between two colors, and
by a checkerboard property of the piano-hinged loop,
the resulting squares of any polyomino will alternate
in color (on either side), so this puzzle is e↵ectively
uncolored. Ivan’s Hinge is a piano-hinged loop with
n = 4 that was patented by Jan Essebaggers and Ivan
Moscovich in 1993/1994 [3] and sold by Paradigm
Games in the mid-to-late 1990s [4] and recently by
Fat Brain Toys2. Each piece is colored irregularly
with one of two colors, and the goal in this puzzle
is to make not only the specified tetromino shape but
also the specified two-color pattern. Tony’s Hinge is a
variation of Ivan’s Hinge, sold by Kellogg Company in
1988 but also copyright by Ivan Moscovitch and made
by Paradigm Games. It uses colored images and re-
quires putting certain images in particular places, in
addition to the color constraints.

Our results. In this paper, we investigate the com-
putational complexity of folding colored and uncol-
ored piano-hinged loop puzzles into n-ominoes.
First we consider the uncolored piano-hinged loop,

as in GeoLoop. For completeness, we prove Frederick-
son’s claim that this loop can realize any 2"-thickened
n-omino, by mimicking a simple inductive argument
for hinged dissections of polyominoes from [2]. For
the special case of tree-shaped polyominoes, where the
dual graph of edge-to-edge adjacencies among unit
squares forms a tree, we prove further that the folding
of the piano-hinged loop is unique up to cyclic shifts
of the pieces in the loop.
Next we consider colored piano-hinged loops, as in

Ivan’s Hinge. For tree-shaped polyominoes, the pre-
vious uniqueness result implies that the problem can
be solved in O(n2) time by trying all cyclic shifts. (In
particular, this observation makes the n = 4 case of
Ivan’s Hinge easy to solve in practice, as each tetro-
mino has either 1 or 4 spanning trees to try.) For
general polyominoes, we prove that the problem is
NP-complete even if the number of colors is 3, each
piece is colored uniformly one color, and the target
shape is a rectangle.

1
Binary Arts changed its name to ThinkFun (http://www.

thinkfun.com) in 2003.

2
http://www.fatbraintoys.com

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

147

zabel@math.mit.edu
horiyama@al.ics.saitama-u.ac.jp
uehara@jaist.ac.jp
http://www.thinkfun.com
http://www.thinkfun.com
http://www.fatbraintoys.com

29th European Workshop on Computational Geometry, 2013

p0

p1

p2

p3

p4

p5

q0

q1

q2

q3

q4

q5

q0
p0

p1

q1

p2

q2p3q3

p4

p5

q4

q5

q0
p0

p1

q1

q5

p5

p2 q4

q2
q1

p3

p4

q0
p0

p1

q1

q5

p5

p2

q2

q3

valley fold

mountain fold

put it flat

q0
p0

p1

q1

q5

p5

p2 q4

q2
q1

p3

p4 mountain fold

q0
p0

p1

q1

q5

p5

p2 q4

q3

(a)

(b) (c) (d)

(e)

(f)

Figure 1: Piano-hinged loop with n = 3 (a), and two sequences of folding operations that result in a doubly
covered straight tromino (b, c, d) or L tromino (b, e, f). Gray denotes the back side of the pieces.

Figure 2: GeoLoop, Ivan’s Hinge, and Tony’s Hinge.

2 Preliminaries

A piano-hinged loop consists of a loop
of 4n consecutive isosceles right triangles
p0, q0, p1, q2, . . . , p2n�1, q2n�1, as shown in Fig-
ure 1. Every two consecutive triangular pieces share
one of two isosceles edges. The pi’s have a common
orientation (collinear hypotenuses when unfolded),
as do the qi’s, and these two orientations di↵er from
each other. Each shared edge is a piano hinge on the
back side that permits bending inward (bringing the
two back sides together).

In a folded state of the piano-hinged loop into a
doubly covered polyomino, (1) each piano hinge is
flat (180�) or folded inward (360�); and (2) each unit
square of the polyomino consumes exactly four trian-
gles, with two triangles on the front and two on the
back side. Thus, in any folded state, the exposed sur-
face consists of all front sides of the pieces, while the

back sides of all pieces remain hidden on the inside.
Therefore, we can ignore the color of the back side of
each piece, so for simplicity we can assume that each
piece has a uniform color (instead of a di↵erent color
on each side). Let c(pi) and c(qi) denote the color of
piece pi and qi.

For the resultant polyomino P of n unit squares,
we define the connection graph G(P) = (V,E) as fol-
lows: V consists of n unit squares, and E contains an
edge {u, v} if and only if squares u and v are adjacent
(share an edge) in P . Having {u, v} 2 E is a nec-
essary but not su�cient condition for there to be a
hinge connecting the four pieces representing square
u to the four pieces representing square v; if there is
such a hinge, we call u and v joined.

The uncolored piano-hinged loop problem asks
whether a given polyomino can be constructed as (the
silhouette of) a folded state of a given piano-hinged
loop. The “silhouette” phrasing allows the folding to

148

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

have unjoined squares, which are adjacent in the poly-
omino but not attached by a hinge in the folded state.
The colored piano-hinged loop problem asks whether
a given colored polyomino pattern can be similarly
constructed from a given colored piano-hinged loop.
The piano-hinged loop has a simple checkerboard-

ing property:

Observation 1 Consider two adjacent squares u and
v in a polyomino P , obtained as a folded state of a
piano-hinged loop. Without loss of generality, assume
that the top side of u contains (the front side of) tri-
angle pi. Then (1) the other triangle of u on front
side is pj for some j, (2) the backside of u contains
two qs, (3) the front side of v contains two ps, and (4)
the backside of v contains two qs.

Ivan’s Hinge has a group of triangles that are
monochromatic as assumed above, and a group of tri-
angles with di↵erent colors on their front and back
sides. However, these groups directly correspond to
the parity classes in Observation 1. Hence, for each
unit square, the front side consists of two triangles
from the same group, and the back side consists of
two triangles from the other group. Thus, from a the-
oretical point of view, we can again e↵ectively assume
that the pieces are monochromatic. (Practically, the
di↵ering colors can vary the color patterns, which can
help visually.)

3 Uncolored Piano-Hinged Loop

We begin with the universality theorem of GeoLoop,
claimed by Frederickson [4]:

Theorem 1 ([4]) Any polyomino P of n unit

squares can be realized as a folded state of the piano-

hinge loop of 4n pieces.

Once we fix the spanning tree T of G(P), we claim
that the folded state is uniquely determined up to
cyclic shift of the pieces. Both this corollary and the
previous theorem follow from a simple argument of
repeatedly pruning leaves in the graph of joinings.

Corollary 2 Let P be any polyomino of n unit

squares such that G(P) is a tree. Then it can

be uniquely folded from the piano-hinge loop of 4n
pieces, up to cyclic shift of the pieces.

For a given tree-shaped polyomino, the piano-hinge
loop traverses the tree in the same manner as a depth-
first search without crossing. That is, if we imagine
that we are in the maze in the form of the tree, and
traverse the maze by the right-hand rule, then we tra-
verse each edge twice, and this is the order followed
by the piano-hinge loop. This intuition will be useful
in some proofs in this paper.

4 General Piano-Hinged Loop

Consider a polyomino P in which pieces pi and qi
have colors c(pi) and c(qi), respectively. When the
connection graph G(P) is a tree (or the spanning tree
ofG(P) is explicitly given), we still have a polynomial-
time algorithm to solve the problem:

Theorem 3 Let P be any polyomino of n unit

squares such that G(P) is a tree T . Then the gen-

eral piano-hinge loop problem can be solved in O(n2)
time.

Next we turn to the case that P is a general poly-
omino, where the problem is NP-complete:

Theorem 4 The colored piano-hinge loop problem is

NP-complete, even if the number of colors is 3 and the

target polyomino is a rectangle.

Proof outline: We prove NP-hardness by reducing
from 3-PARTITION, defined as follows.

3-PARTITION (cf. [5])
INSTANCE: A finite set A = {a1, a2, . . . , a3m}

of 3m weighted elements with w(aj) 2 Z+, where
w(aj) gives the weight of aj , and a bound B 2 Z+

such that each aj satisfies B/4 < w(aj) < B/2 andP3m
j=1 w(aj) = mB.
QUESTION: Can A be partitioned into m disjoint

sets A(1), A(2), . . . , A(m) such that
P

aj2A(i) w(aj) =
B for 1 i m?

If A has a solution, then each A(i) must contain ex-
actly three items, because B/4 < w(aj) < B/2, for
all i and j.
Figure 3 outlines the construction. Our piano-hinge

loop L consists of two parts (Figure 3(a)). The first
part is a series of black triangles that form m empty
bins, such that each bin should be filled by B gray
unit squares. The second part is a sequence of gray
and white triangles. The ith run of 4ai consecutive
grey triangles in the sequence represents the weight of
an element ai for each i. White triangles will be used
to place the grey items arbitrary into bins. The key
point is that each run of gray triangles must be put
into exactly one bin, and the grey triangles cannot
be split into two or more di↵erent bins. Using this
property, we simulate 3-PARTITION. Figure 4 shows
one of the gadgets from the full proof.
Adding 3m⇥ (b+ 3)� 1 black squares in the lower

right of Figure 3(b), we can make the desired shape a
rectangle of size 15m⇥ (12m+ b+ 3). ⇤

References

[1] T. G. Abbott, Z. Abel, D. Charlton, E. D. De-
maine, M. L. Demaine, and S. D. Kominers.

149

29th European Workshop on Computational Geometry, 2013

12m 3m

12m

b+3

base part

item part

(a)

(b)

4w(a1)
4w(a2)

4w(a3m)

Figure 3: Outline of the construction

valley fold

valley fold

valley
 fold

valley
 fold

(a) (b) (c)

flip and pile

Figure 4: Crossover gadget

Hinged dissections exist. Discrete & Computa-
tional Geometry, 47(1):150–186, 2012.

[2] E. D. Demaine, M. L. Demaine, D. Eppstein, G. N.
Frederickson, and E. Friedman. Hinged dissection
of polyominoes and polyforms. Computational Ge-
ometry: Theory and Applications, 31(3):237–262,
June 2005.

[3] J. Essebaggers and I. Moscovich. Triangle hinged
puzzle. European Patent EP0584883. Filed Au-
gust 25, 1993. Awarded March 2, 1994.

[4] G. N. Frederickson. Piano-hinged Dissections:
Time to Fold! A K Peters, 2006.

[5] M. R. Garey and D. S. Johnson. Computers and
Intractability — A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[6] K. V. Stevens. Folding puzzle using triangular
blocks. United States Patent 5,299,804. Filed Jan-
uary 19, 1993. Awarded April 5, 1994.

150

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Coding Ladder Lotteries∗

Tomoki Aiuchi†‡ Katsuhisa Yamanaka†§ Takashi Hirayama†¶ Yasuaki Nishitani†‖

Abstract

A ladder lottery, known as the “Amidakuji” in Japan,
is a common way to choose a permutation randomly.
In this paper, we consider a problem of coding opti-
mal ladder lotteries. We first propose two codes: a
route-based code and a line-based code for an opti-
mal ladder lottery with n vertical lines and b horizon-
tal lines. The lengths of two codes are n(n − 1) bits
and n + 2b− 1 bits, respectively. As a by-product of
coding, we derive an upper bound on the number of
ladder lotteries with n vertical lines and b horizontal
lines. Furthermore, by improving the line-based code,
we propose a more compact code. The length of the
improved code is n + 2b − 1 bits in the worst case.
However we experimentally show that the improved
code is more compact than the two codes.

1 Introduction

In this paper we consider a problem of coding ladder
lotteries. A ladder lottery, known as the “Amidakuji”
in Japan, is a common way to choose a permutation
randomly. Formally, a ladder lottery L of a permu-
tation π = (p1, . . . , pn) is a network with n vertical
lines (lines for short) and many horizontal lines (bars
for short) each of which connects two consecutive ver-
tical lines. See Figure 1 for an example. The ith line
from the left is called line i. The top endpoints of lines
correspond to π. The bottom endpoints of lines cor-
respond to the identical permutation (1, . . . , n). Each
element pi in π starts the top endpoint of line i, and
goes down along the line, then whenever pi comes to
an endpoint of a bar, pi goes horizontally along the
bar to the other endpoint, then goes down again. Fi-
nally pi reaches the bottom endpoint of line pi. This
path is called the route of element pi.
A ladder lottery of a permutation π = (p1, . . . , pn)

is optimal if it consists of the minimum number of
bars among ladder lotteries of π. Let L be an optimal
ladder lottery of π with n lines and b bars. Then we
can observe that b is equal to the number of inversions

∗This work was supported by JSPS KAKENHI Grant Num-
ber 23700012.

†Department of Electrical Engineering and Computer Sci-
ence, Iwate University

‡Currently he is a member of Leadkonan
§yamanaka@cis.iwate-u.ac.jp
¶hirayama@cis.iwate-u.ac.jp
‖nisitani@cis.iwate-u.ac.jp

6 4 23 5

1 2 3 4 5

1

6

Figure 1: An optimal ladder lottery of (6,4,3,5,2,1).

of π, which is a pair (pi, pj) in π with pi > pj and
i < j. The ladder lottery in Figure 1 has thirteen bars,
and the corresponding permutation (6,4,3,5,2,1) has
thirteen inversions, so the ladder lottery is optimal.

Optimal ladder lotteries are related to pseudoline
arrangements. There is one-to-one correspondence
between optimal ladder lotteries of π = (n, . . . , 1),
namely a reverse permutation, and arrangements of n
pseudolines [5].

Coding pseudoline arrangements has been inves-
tigated to obtain upper bounds of the number of
pseudoline arrangements [2, 3]. Knuth [4] showed
that the number of arrangements of n pseudolines is
bounded by 20.792n

2

. Based on coding pseudoline ar-
rangements, Felsner [2] improved the upper bound to

20.697n
2

. Recently, Felsner and Valtr [3] improved to

20.657n
2

based on coding. To the best of our knowl-
edge, there is no previous work that addresses coding
ladder lotteries of any permutation.

In this paper we design several codes for optimal
ladder lotteries with n lines and b bars. A class of op-
timal ladder lotteries with n lines is a generalization of
a class of arrangements of n pseudolines. For an opti-
mal ladder lottery, b ≤

(n
2

)

holds, and b =
(n
2

)

holds if
and only if the optimal ladder lottery corresponds to
a reverse permutation, that is the optimal ladder lot-
tery correspond to an arrangement of n pseudolines.
We first propose two codes: a route-based code

and a line-based code. The lengths of two codes are
n(n− 1) bits and n+ 2b− 1 bits, respectively. Then,
by improving the line-based code, we propose an im-
proved code. We compare them in the sense that (1)
the length of a code is compact and (2) time complex-
ities of coding and decoding are efficient. Table 1 is
a comparison of proposed codes. The length of the
improved code is n + 2b − 1 bits in the worst case.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

151

29th European Workshop on Computational Geometry, 2013

Table 1: The lengths, coding time and decoding time
of our codes for a ladder lottery with n lines and b
bars.

Length Coding Decoding
(bits) time time

Route-based n(n− 1) O(n2) O(n2)
Line-based n+ 2b− 1 O(n+ b) O(n+ b)
Improved n+ 2b− 1 O(n+ b) O(n+ b)

However we experimentally show that the improved
code is more compact than the other codes. On the
other hand, as a by-product of coding, we derive an
upper bound on the number of ladder lotteries with
n lines and b bars.

Throughout of this paper, we assume that the end-
of-file is prepared as a special character. Hence the
codes proposed in this paper contain no end-of-file.

Due to space limitations, all proofs in this extended
abstract are omitted. They are contained in a full
version of the paper [1].

2 A Route-based Code

The coding idea for pseudoline arrangements by Fel-
sner [2] can be applied for optimal ladder lotteries. In
this section we propose a code which is straightfor-
wardly derived from his coding [2].

The coding idea is to represent each route as a bi-
nary code. The route turns left or right zero or more
times. We encode the directions (left or right) into a
binary code.

Let L be an optimal ladder lottery of a permutation
π = (p1, . . . , pn). Suppose a route of pi turns left or
right t(i) times. We note that t(i) ≤ n − 1 holds.
Define dij = ‘0’ if the jth direction of the route of pi
is left, and dij = ‘1’ if the jth direction of the route of
pi is right. We construct a binary code di1 . . . d

i
t(i) by

arranging dijs, and then append ‘0’s so that the length
of the code becomes n − 1 bits. We call the code a
route-code of pi.
We define a code for L. A route-based code, de-

noted by RC, for L is the code obtained by arranging
route-codes of p1, . . . , pn in this order. The length
of RC is n(n − 1) bits. For instance, a route-based
code for the optimal ladder lottery in Figure 1 is
“111111101001010110000100000000”.

Now we explain how to reconstruct the original lad-
der lottery from a route-based code.

Let RC be a route-based code for an optimal ladder
lottery L with n lines and b bars. Since we know the
length of RC is n(n − 1) bits, we can calculate the
value of n by computing the length of RC and hence
recognize the boundary between any two consecutive
route-codes. Let focus on the first bit in each route-

code. It represents the first direction of each route.
By arranging the first bits in route-codes, we define a
direction vector DV1 = (d11, . . . , d

n
1).

Now, we show that a bar can be reconstructed from
DV1. In DV1, j is flip if dj1 = ‘1’ and dj+1

1 = ‘0’ holds.
This represents an intersection, namely a bar, of the
two routes pj and pj+1. DV1 may contain multiple
flips. Among them we call the minimum flip the first
flip. Intuitively, the first flip in DV1 corresponds to
the upper-left bar in L.
Let j be the first flip. We reconstruct a bar in

which two routes of pj and pj+1 intersect. Then we
construct DV2 from DV1 by passing through the bar.
That is, we replace dj1 with dj2 and dj+1

1 with dj+1
2 , and

swap dj2 with dj+1
2 . DV2 represents the next directions

of routes after passing the bar corresponding to the
first flip in DV1. By repeatedly applying this process
for DV2, . . . , DVb, we can reconstruct all bars. Then,
we obtain DVb+1 consisting of only ‘0’s. A direction
vector may contain djn which is not defined in route-
code of pj . For convenience, we assume that djn = ‘0’.
The last direction vector DVb+1 contains only ‘0’s.

By maintaining a list of flips for each DVi, (1 ≤ i ≤
b), we can decode in O(n2) time.
Since a flip always corresponds to a bar and each

DVi (1 ≤ i ≤ b) contains at least one flip (See [1] for
details), we have the following theorem.

Theorem 1 We can encode an optimal ladder lot-
tery into a code of length n(n − 1) bits. Coding and
decoding can be done in O(n2) time.

3 A Line-based Code

We propose a new code for an optimal ladder lot-
tery in this section. This code focuses on lines in an
optimal ladder lottery. We represent each line as a
sequence of endpoints of bars.

A line-based code can be applied to a (non-optimal)
ladder lottery. However, for convenience, we deal with
only an optimal ladder lottery in this section. In the
next section we improve the line-based code by using
properties of an optimal ladder lottery.

Let L be an optimal ladder lottery with n lines and b
bars. We denote by V (i) = (v1, . . . , v|V (i)|) a sequence
of endpoints of bars on a line i from the top to the
bottom. We encode V (i) with C(i) = (c1 . . . c|V (i)|)
where cj = ‘0’ if vj is a right endpoint on a line i
and cj = ‘1’ if vj is a left endpoint on a line i. We
call C(i) a line-code for a line i. Finally we concate-
nate line-codes C(i) for i = 1, . . . , n in this order, and
insert ‘0’ between any consecutive two line-codes to
represent a boundary. We call the obtained code a
line-based code, and denote by LC. For example, a
line-based code for the ladder lottery in Figure 1 is
“1011011001001100110010001001000”.

152

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Now we explain how to reconstruct the original op-
timal ladder lottery from a line-based code. Let LC
be a line-based code for an optimal ladder lottery L.
In LC, a ‘0’ represents either a right endpoint of a

bar or a boundary of consecutive two line-codes. A
key of reconstruction is to recognize boundaries in a
line-based codes. If the boundaries in LC are recog-
nized, then it is easy to reconstruct each line i for
i = 1, . . . , n from the corresponding line-code.
We explain how to recognize boundaries. Since the

line 1 contains only left endpoints, the first consec-
utive ‘1’s correspond to C(1) and the first ‘0’ is the
boundary between C(1) and C(2). Now we assume
that the line i− 1 is reconstructed and the boundary
between line-codes C(i − 1) and C(i) is recognized .
Then, we know the number of left endpoints of bars
on a line i− 1. Since it equals to the number of right
endpoints of bars on a line i, we obtain the number of
‘0’s in C(i). Hence, the boundary between line-codes
C(i) and C(i+1) can be recognized in LC, and a line
i is reconstructed from C(i).

We estimate the length of LC for an optimal ladder
lottery with n lines and b bars. Since LC contains
2 bits for each bar and 1 bit for each boundary, its
length is n+ 2b− 1 bits.

Theorem 2 Let L be an optimal ladder lottery with
n lines and b bars. There exists a code for L of length
n+ 2b− 1 bits. Coding and decoding can be done in
O(n+ b) time.

Since a line-based code includes exactly b ‘1’s, the
number of every possible line-code for an optimal lad-
der lottery with n lines and b bars is at most

(

n+2b−1
b

)

.
We obtain the following corollary.

Corollary 3 The number of optimal ladder lotteries
with n lines and b bars is at most

(n+2b−1
b

)

.

4 Improvements

In this section we design a code by improving the
line-based code. The length of the proposed code is
at most n+ 2b− 1 bits. On the other hand, we show
that the code is more compact than the original line-
based code by an experiment in the next section.
First, we introduce three improvement ideas. By

combining the ideas, we propose a code.
Let L be an optimal ladder lottery with n lines and

b bars, and LC its line-based code.

Improvement 1

The first improvement idea is to save the line-code for
the line n. There are only right endpoints of bars on
n, and the number of right endpoints of bars on n is
equal to the number of left endpoints of bars on n−1.
Hence, even if the line-code for n and its preceding

(a)

lx rx

ly ry

i i+1

lx rx

ly ry

i i+1

x

y

lx rx

ly ry

i i+1
(b) (c)

x

y

x

y

Figure 2: Possible situations for consecutive two bars.

‘0’ corresponding to a boundary are omitted, we can
reconstruct the original optimal ladder lottery.

Improvement 2

We show a useful property of an optimal ladder lottery
for saving bits.

Let x, y be two consecutive bars with left endpoints
on a line i and right endpoints on a line i + 1 in an
optimal ladder lottery (See Figure 2). We denote by
lx, rx the left and the right endpoints of x. Similarly,
we denote by ly, ry the left and the right endpoints of
y. Then we have the following lemma.

Lemma 4 A configuration between the two bars is
either of three cases: (1) there is at least one right
endpoint between lx and ly and no endpoint between
rx and ry (Figure 2(a)), (2) there is no endpoint be-
tween lx and ly and at least one left endpoint between
rx and ry (Figure 2(b)), or (3) there is at least one
right endpoint between lx and ly and at least one left
endpoint between rx and ry (Figure 2(c)).

Lemma 4 gives an idea for saving bits. If there is no
endpoint between lx and ly, then there always exists
at least one endpoint between rx and ry (Figure 2(b)).
Hence we can save one ‘1’ representing the endpoint
immediately under rx.

For example, we obtain
“101101100001001100000001000” by applying
this idea to LC for the ladder lottery in Figure 1.
Reconstruction of LC with this idea can be done

in a straightforward way. The line 1 is easily recon-
structed from the corresponding line-code. Suppose a
line i is reconstructed. Then we can reconstruct the
saved ‘1’s in a line-code for a line i + 1 by checking
the reconstructed line i.

Improvement 3

Along with improvement 2, we can save some bits
for right endpoints of bars on the line n − 1. Since
the line n has no left endpoint of any bar, any pair of
consecutive two bars between lines n−1 and n always
forms the configuration illustrated in Figure 2(a). Let
x, y be any consecutive two bars with left endpoints
on the line n − 1 and right endpoints on the line n.

153

29th European Workshop on Computational Geometry, 2013

We denote by lx, rx the left and the right endpoints of
x. Similarly, we denote by ly, ry the left and the right
endpoints of y. Since there is no endpoint between
rx and ry, there is at least one right endpoint of a
bar between lx and ly. Therefore we can save one ‘0’
representing the right endpoint immediately under lx.
By this improvement zero or more ‘0’s in the line-code
for n− 1 are saved.
For example, LC with improvement

3 for the ladder lottery in Figure 1 is
“101101100100110011001000101000”. In this
example, one ‘0’ for the line 5 is saved.
We briefly explain how to reconstruct. See [1] for

further details. First we apply the decoding of a line-
based code without improvement. If there are saved
‘0’s in the line-code for n−1, the reconstruction fails,
since the number of ‘0’s is insufficient. Otherwise, L
is reconstructed correctly.

In the case of the failure, we retry the decoding of
two line-codes for n − 1 and n more carefully. Saved
‘0’s are recognized easily, since such ‘0’s appear im-
mediately after ‘1’s except the last ‘1’ in the line-code
for n− 1.

Combining improvements 1-3

Now we show that the three improvements can be
applied to a line-based code simultaneously.

The three improvements have no duplicate of saved
‘0’s or ‘1’s. Hence, we can apply improvements 1-
3 to a line-based code directly. We call the ob-
tained code an improved code for an optimal ladder
lottery. We denote by IC the improved code and
by CI(i) a line-code for a line i in IC. For exam-
ple, IC for the optimal ladder lottery in Figure 1 is
“10110110000100110000001”.

Now we explain how to decode IC. The decoding
is a similar way for a line-based code with improve-
ment 3. First, we apply a decoding of a line-based
code with improvements 1 and 2 to IC(See [1] for a
detail). If the decoding is a failure, the number of ‘0’s
is insufficient, we retry to decode CI(n− 1) carefully.
Otherwise, L can be reconstruct correctly.

We have the following theorem.

Theorem 5 Let L be an optimal ladder lottery with
n lines and b bars. We can compute an improved code
IC in O(n + b) time, and reconstruct L from IC in
O(n+ b) time. The length of IC is n+ 2b− 1 bits in
the worst case.

5 Experimental Result

We compare the average lengths of the codes proposed
in previous sections.

An environment for an experiment is as follows. (1)
OS: FreeBSD 8.2-RELEASE, (2) CPU: AMD Phe-

nom(tm) II X6 1065T Processor (2909.62-MHz K8-
class CPU), (3) Main memory: 4GB and (4) Program-
ming language: Common lisp (5) Compiler: SBCL
1.0.57.

Processes in our experiment are as follows. First
we enumerate all permutations of n elements. Second
all optimal ladder lotteries of each permutation are
enumerated. Third three codes RC, LC and IC are
computed for every optimal ladder lottery. Finally
we calculate the average length of each code per an
optimal ladder lottery.

Table 2 shows average lengths of RC, LC and IC.

Table 2: The average length of each code per an op-
timal ladder lottery.

n RC (bits) LC (bits) IC (bits)
2 2.0 2.0 1.0
3 6.0 5.4 3.3
4 12.0 10.7 7.7
5 20.0 18.1 14.1
6 30.0 27.8 22.4
7 42.0 39.5 32.7
8 56.0 53.3 44.8
9 72.0 69.2 58.8

Table 2 shows that IC is the most compact among
the three codes. Although the length of IC is n+2b−1
bits in the worst case, the experimental result shows
that the average length of IC is quite compact. This
implies that our improvements are valid on saving
bits.

References

[1] T. Aiuchi, K. Yamanaka, T. Hirayama,
and Y. Nishitani. Coding ladder lotteries.
Technical Report IWATE-CIS-13-01, http://
www.kono.cis.iwate-u.ac.jp/˜yamanaka/Tech/
IWATE-CIS-13-01.pdf, 2013.

[2] S. Felsner. On the number of arrangements of
pseudolines. In Proc. The 12th annual Symposium
on Computational Geometry, (SCG 1996), pages
30–37, 1996.

[3] S. Felsner and P. Valtr. Coding and counting ar-
rangements of pseudolines. Discrete & Computa-
tional Geometry, 46:405–416, 2011.

[4] D.E. Knuth. Axioms and hulls. LNCS 606,
Springer-Verlag, 1992.

[5] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara,
and K. Nakada. Efficient enumeration of all ladder
lotteries and its applications. Theoretical Com-
puter Science, 411:1714–1722, 2010.

154

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

On Counting Triangles, Quadrilaterals and Pentagons in a Point Set

Sergey Bereg∗ Kira Vyatkina†

Abstract

We propose a novel approach to counting empty tri-
angles, quadrilaterals and pentagons with vertices in
a planar set P of points, which extends to the case
of those polygons containing precisely or at most k
points from P . For the former tasks, our methods
require O(n3) time in case of triangles and quadrilat-
erals, and O(n4) time in case of pentagons; the latter
task is accomplished in O(n3 log k), O(k·n3 log k), and
O(k ·n4 log k) time in case of triangles, quadrilaterals,
and pentagons, respectively. The space requirements
are always linear. In addition, our algorithms can
output the number of non-convex (and thus, of con-
vex) quadrilaterals and pentagons for each problem
statement.

1 Introduction

In the last two decades, the problem of counting k-
gons with vertices in a set P of n points, which would
possess certain properties, has been addressed sev-
eral times in the literature. In particular, the task of
counting convex k-gons in a point set was first con-
sidered by Rote et al. [4], who gave an algorithm for
solving it in time O(nk−2). Later on, this time bound
was improved to O(n#k/2$) by Rote andWoeginger [5].
In 1995, Mitchell et al. [3] proposed algorithms for
computing the total number of convex polygons in P
in O(n3) time, and tabulating the number of convex
k-gons in O(m · n3) time, for all k = 3, . . . ,m. If
the polygons are required to be empty, the respec-
tive tasks can be accomplished within the same time
bounds. Mitchell et al. [3] also mentioned that the
number of t-subsets T ⊆ P , the convex hull of which
is a k-gon, can be computed in O(k(t − k + 1)n4)
time. Very recently, a method for counting empty
pseudo-triangles in a point set has been proposed by
Kopeliovich and Vyatkina [2], which runs in O(n5)
time and linear space.
In this work, we propose novel algorithms for count-

ing empty triangles, quadrilaterals and pentagons
in P , as well as those containing precisely or at most k

∗Department of Computer Science, University of Texas at
Dallas, Box 830688, Richardson, TX 75083, USA. E-mail:
besp@utdallas.edu

†Algorithmic Biology Laboratory, Saint Petersburg Aca-
demic University, the Russian Academy of Sciences, 8/3
Khlopina str., Saint Petersburg 194021, Russia E-mail:
kira@math.spbu.ru

point from P , thereby imposing no restrictions on the
polygons. For triangles and quadrilaterals, our meth-
ods accomplish the former task in O(n3) time and
O(n) space, while for the latter task, the running time
amounts to O(n3 log k) and O(k · n3 log k) for trian-
gles and quadrilaterals, respectively. For pentagons,
the time bounds increase to O(n4) and O(k ·n4 log k)
for the former and latter task, respectively. Our ap-
proach can also distinguish between convex and non-
convex polygons, and count them separately within
the same complexity bounds.

To simplify the exposition, throughout this paper,
we assume that no three points from P are collinear.

2 Triangles

First, we show how to count empty triangles defined
by a set P of n points. Next, we demonstrate that our
approach can be easily extended to count the triangles
with vertices in P , which contain exactly or at most
k points from P in their interior.
For any point a ∈ P , let Pa = P \ {a}; for any two

distinct points a, b ∈ P , let Pab = P \ {a, b}.
Consider an ordered pair (a, b) of points from P .

We start by computing the number of points c ∈ Pab,
such that the triangle $abc is empty, and its vertices
a, b, c are in ccw order. To this end, we suggest the
following approach.

Without loss of generality, let us assume that ab is
horizontal, and b lies strictly to the right of a. Thus,
c must reside strictly above ab.
Let p1, p2, . . . , pn−2 denote the points from Pab

sorted in angular order around a. Based on the above
observation, we restrict our attention to the (sorted)
subset P ′ = {p1, p2, . . . , pm} of points from P lying
strictly above ab, where 0 ≤ m ≤ n − 2. For a point
pi ∈ P ′, let si denote the slope of the line (bpi), where
1 ≤ i ≤ m. Throughout the computations, we main-
tain the maximum slope smax over those of the lines
through b and the points from P ′ processed so far.
We initialize a counter Nab and smax to one and

the slope of the line (bp1), respectively, and scan the
points p2, . . . , pm one by one. When processing a
point pj , where 2 ≤ j ≤ m, we compare sj with smax.
If the former is greater, Nab is incremented by one,
and smax is updated; otherwise, we proceed immedi-
ately to the next point from P ′ (Fig. 1). After the
last point pm is handled, Nab will store the number of
empty triangles $abc with a, b, c in ccw order.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

155

29th European Workshop on Computational Geometry, 2013

a b

p1

p2

p3

p4

a b

p1

p2

p3

p4

b)a)

Figure 1: Empty triangles !abc with a, b, c in ccw
order are being counted. The points from P ′, which
have already been processed, the one being handled,
and those unprocessed are shown light gray, black,
and dark gray, respectively. a) When p3 is handled,
the maximum slope over those of the lines through b
and the points from P ′ processed earlier is s1; s3 > s1,
and thus, !abp3 is empty. b) When p4 is handled, the
maximum slope over those of the lines through b and
the points from P ′ processed earlier is s3; s4 < s3,
and thus, !abp4 is non-empty.

For a single ordered pair (a, b) of points from P ,
the above algorithm takes linear time, assuming the
points from Pa are pre-sorted with respect to a.
Otherwise, the running time increases to O(n logn).
Thus, a naive approach to counting empty triangles
in P , which would examine each ordered pair (a, b) in-
dependently, would take O(n3 logn) time. However,
all the sorted orders of points can be easily computed
in O(n2 logn) in total, if the sorted order of points for
each a ∈ P is retrieved in O(n logn) time and then
used for all the n − 1 pairs (a, b), where b ∈ Pa. Al-
ternatively, an asymptotically more efficient approach
can be undertaken, which uses the standard method
of computing the arrangement of dual lines [1], and
makes available all the sorted orders of points inO(n2)
total time.

This reasoning leads to the following theorem.

Theorem 1 Let P be a set of n points in general
position in the plane. The number of empty triangles
in P can be computed in O(n3) time using O(n) space.

Proof. First, for each point a ∈ P , retrieve the sorted
orders of the points from Pa in total O(n2) time.
Next, for each ordered pair (a, b) of points from P ,
compute the number of empty triangles !abc, where
c ∈ Pab and a, b, c are in ccw order. Then sum up the
obtained numbers. Since in this way, each empty tri-
angle will be counted three times (once for each side),
the resulting value needs to be divided by three. This
gives the total number of empty triangles in P . !

Now suppose we want to count the triangles with
vertices in P , which contain inside precisely one point
from P . It is easy to see that to this end, the same
approach can be applied, but when processing a pair
(a, b) and counting the triangles !abc with a, b, c in
ccw order, inside which lies exactly one point from P ,
we shall need to maintain the two largest slopes smax,

ssec of the lines through b and the points from P ′

processed so far. When processing the next point pj ∈
P ′, we first compare sj with ssec. Is the former is
smaller, we proceed to the next point. Otherwise,
if sj is greater than smax, both smax and ssec are
updated: the latter is set to the current smax, and
the former – to sj . Finally, if neither is the case, and
thus, sj falls between smax and ssec, the counter Nab

is incremented by one, and ssec is set to sj . Obviously,
these modifications affect neither the running time nor
the memory requirements of the algorithm. Note that
if we were interested in the number of triangles with
vertices in P containing at most one point from P ,
the only extra action would be to increment Nab by
one in the second case as well.

Our proposed method readily generalizes further to
the cases when we aim to compute the number of
triangles in P , which contain precisely or at most k
points from P , where 0 ≤ k ≤ n − 3. In either case,
we shall need to maintain the k + 1 largest slopes s∗1,
. . . , s∗k, s∗k+1 of the lines through b and the points
from P ′ processed so far. When handling the next
point pj , its corresponding slope sj is located in the
set of the slopes stored, and those smaller than sj (if
any) are appropriately updated. The counter Nab is
incremented by one if s∗k > sj > s∗k+1 in the former
case, and if sj > s∗k+1 in the latter case. If the k + 1
slopes are stored in a binary balanced search tree (or
any other data structure allowing for insertions and
deletions in logarithmic time), then the time spent on
examining each candidate for c, for a given ordered
pair (a, b), will increase by factor log k.
We conclude this section with the below theorem.

Theorem 2 Let P be a set of n points in general po-
sition in the plane. The number of triangles in P ,
which contain inside precisely or at most k points
from P , can be computed in O(n3 log k) time using
O(n) space.

3 Quadrilaterals

In this section, we shall first discuss the problems of
counting empty quadrilaterals with vertices in P , and
then the task of counting those which contain exactly
or at most k points in their interior.
Consider an ordered pair (a, b) of points from P ;

without loss of generality, assume that ab is horizon-
tal, and b lies strictly to the right of a. We start
by counting empty quadrilaterals in P with a diago-
nal ab (Fig. 2). To this end, we apply the algorithm
from Section 2 to determine the number Uab of empty
triangles !abc with c lying above ab (i.e. with a, b, c
in ccw order), and the number Lab of those with c
lying below ab (i.e. with b, a, c in ccw order). The
number Dab of empty quadrilaterals with a diagonal
ab can then be calculated as Uab · Lab.

156

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

a b

c)

a b

b)

a b

a)

Figure 2: Empty quadrilaterals with a diagonal ab:
a) convex; b) non-convex with a concave vertex at a;
c) non-convex with a concave vertex at b.

However, if we process all the ordered pairs (a, b) of
points from P in the above way and sum up the ob-
tained numbers Dab, then each convex empty quadri-
lateral in P will be counted twice (once for either di-
agonal). Therefore, when processing a pair (a, b), we
shall also compute the number NCab of non-convex
quadrilaterals with a concave vertex at either a or b
(Fig. 2b,c). Then the number of convex quadrilaterals
with a diagonal ab encountered when handling (a, b)
will be given by Cab = Dab −NCab, and we shall cal-
culate the total number of empty quadrilaterals in P
as Tab =

∑

(a,b)∈P Dab − 1
2 ·

∑

(a,b)∈P Cab.

In order to calculate NCab, we separately compute
the numbers NCa

ab and NCb
ab of non-convex quadri-

laterals with a diagonal ab and a concave vertex at
a and b, respectively. To retrieve NCa

ab, we first run
a slightly modified algorithm from Section 2 for the
pairs (a, b) and (b, a), and label all the points c and c′

from P lying above and below ab, respectively, such
that the triangle "abc and "abc′ is empty, respec-
tively. Next, we sweep the plane with a directed line l
rotating around a, which is initially horizontal and
directed to the right. Thereby we maintain the num-
ber Nl of labeled points below ab that lie to the left
of l. Initially, NCa

ab is set to zero, and each time l
passes through a labeled point lying above ab, it is
incremented by the current value of Nl. The process
terminates when l becomes again horizontal, but di-
rected to the left. ThenNCb

ab is retrieved analogously,
and finally, NCab is obtained as NCa

ab +NCb
ab.

a b

c

c’

l

Figure 3: The labeled points (which together with a
and b define an empty triangle) are shown black; other
points from Pab are shown gray. The directed line l ro-
tates ccw around a. For the current point c, the black
points lying in the gray area, and only those, can rep-
resent the fourth vertex c′ of an empty quadrilateral
ac′bc with a concave vertex at a.

The above reasoning leads to the following theorem.

Theorem 3 Let P be a set of n points in general
position in the plane. The number of empty quadri-
laterals in P can be computed in O(n3) time using
O(n) space. The number of convex and non-convex
empty quadrilaterals in P can be retrieved within the
same complexity bounds.

In order to count the quadrilaterals that contain
precisely or at most k points from P , the same frame-
work can be applied. Since each empty quadrilateral
is detected by the above approach as a pair of non-
overlapping empty triangles "abc and "abc′ shar-
ing a common edge ab, our proposed modification
will comprise detecting such pairs of triangles "abc
and "abc′ containing precisely m and precisely or at
most k − m points from P in their interior, respec-
tively, where 0 ≤ m ≤ k, using the modified algo-
rithm outlined at the end of Section 2. In particu-
lar, each time a single run of the algorithm counting
empty triangles was required, we shall now need k+1
calls to a modified algorithm with an input parameter
m = 0, 1, . . . , k.

Theorem 4 Let P be a set of n points in general
position in the plane. The number of quadrilater-
als in P , which contain inside precisely or at most k
points from P , can be computed in O(k ·n3 log k) time
using O(n) space. The number of convex and non-
convex such quadrilaterals can be retrieved within the
same complexity bounds.

4 Pentagons

We start by making the following simple observation
in respect of the structure of pentagons: any trian-
gulation of a pentagon comprises two diagonals in-
cident to a common vertex. Consequently, we sug-
gest the following approach to counting pentagons in
a point set P : consider all the possible pairs of seg-
ments defined by P , which share a common endpoint,
and count the number of pentagons in P , for which
they represent two diagonals.

For any three non-collinear points x, y, z in the
plane, let hz

xy denote the open half-plane bounded by
the line (xy), which does not contain z.
Consider an ordered triple (a, b, b′) of points

from P , such that a, b, b′ are in ccw order in the
boundary of "abb′. We start by counting empty pen-
tagons in P with diagonals ab and ab′. Any such pen-
tagon can be obtained as a union of the triangle"abb′

and two other triangles"abc ∈ hb′

ab and"ab′c′ ∈ hb
ab′ .

In particular, if "abb′ is non-empty, we conclude im-
mediately that the answer is zero. Otherwise, we need
to compute the number of pairs of non-overlapping
empty triangles "abc and "ab′c′ (Fig. 4a,b).

We shall first select c, and then c′. Let us say that
c ∈ P ∩hb′

ab is valid if "abc is empty, and c′ ∈ P ∩hb
ab′

is valid if "ab′c′ is empty and "abc ∩"ab′c′ = a.

157

29th European Workshop on Computational Geometry, 2013

a

b

b’

c
c’

b)

a

b

b’

c

c’

a)

a

b

b’

c’c

d)

a

b

b’
c’

cc)

h’

h0

Figure 4: The segments ab and ab′ are supposed to be
diagonals of an empty pentagon acbb′c′. The triangle
!abb′ is empty. a) A valid choice of c and c′. b) An
invalid choice of c′, for the given c. c) For any valid c,
any c′ ∈ P ∩ h′ is valid. d) For any valid c ∈ P ∩ h0,
any c′ ∈ P ∩ h0 lying below the line (ac) is valid.

Let h′ = hb
ab′ ∩ hc

ab, and let P ′ = P ∩ h′. Observe
that for any valid c, any point c′ ∈ P ′, such that
!ab′c′ is empty, represents a valid choice (Fig. 4c).
Thus, to obtain the number N ′ of valid choices for
both c and c′, such that c′ ∈ P ′, it is sufficient to
compute the number N ′

c of empty triangles !abc with
a, b, c in cw order, and N ′

c′ – that of empty triangles
!ab′c′ with a, b′, c′ in ccw order and c′ ∈ P ′. The for-
mer task is accomplished by reflecting the coordinate
system and applying the algorithm from Section 2,
and for the latter task, this algorithm is slightly mod-
ified (namely, the counter is incremented only when
the points lying in the area of interest are processed).
Then we calculate N ′ = N ′

c ·N ′
c′ .

Similarly, for any valid c ∈ (P ∩ hb′

ab) \ (P ∩ hb
ab′),

any point c′ ∈ P ∩ hb
ab′ such that !ab′c′ is empty,

represents a valid choice. Thus, the entire number of
valid choices for both c and c′ in this case can be com-
puted analogously. Yet to avoid duplicate counting,
we shall need to restrict our attention to the candidate
points c′ lying inside the region h0 = hb′

ab ∩ hb
ab′ .

If neither case holds, both c and c′ fall inside the
region h0 (Fig. 4d). Let P0 = P ∩ h0; then for any
valid c ∈ P0, any point c′ ∈ P0 falling in hb

ac, and
such that !ab′c′ is empty, represents a valid choice.
The number of valid choices for both c and c′ can be
retrieved in a way similar to the one used to compute
NCa

ab in Section 3, again applying a slightly modified
algorithm from Section 2 and plane sweep.

To summarize, for each ordered triple (a, b, b′) of
points from P , such that a, b, b′ are in ccw order in the
boundary of the triangle !abb′, we first test whether
!abb′ is empty, and if so, apply the above algorithm.
Either task is accomplished in O(n) time using O(n)
space, for each of O(n3) such triples, assuming all the
sorted orders of points were retrieved at the prepro-
cessing stage.

Note that if all the ordered triples (a, b, b′) of points

from P are processed in a straightforward way accord-
ing to the above scheme, then some of the empty pen-
tagons may be encountered more than once. However,
a more thorough analysis of mutual location of c and
c′ allows to properly handle such situations, and in
addition, to count separately convex and non-convex
pentagons within the same time and space bounds.

Theorem 5 Let P be a set of n points in general
position in the plane. The number of empty pen-
tagons in P can be computed in O(n4) time using
O(n) space. The number of convex and non-convex
empty pentagons in P can be retrieved within the
same complexity bounds.

To count the pentagons that contain precisely or at
most k points from P , we need to modify the proposed
framework in a similar way as in Section 3, and to
count the exact number of points lying inside !abb′

instead of testing whether it is empty.

Theorem 6 Let P be a set of n points in general po-
sition in the plane. The number of pentagons in P ,
which contain inside precisely or at most k points
from P , can be computed in O(k ·n4 log k) time using
O(n) space. The number of convex and non-convex
such pentagons can be retrieved within the same com-
plexity bounds.

5 Conclusion

In this work, we have proposed novel and simple al-
gorithms for counting empty triangles, quadrilaterals
and pentagons in a set P of n points, as well as those
containing precisely or at most k points from P . For
quadrilaterals and pentagons, our algorithms allow to
determine the number of convex and non-convex poly-
gons in either case. Analogous problems about k-gons
for k ≥ 6 remain for future research.

References

[1] H. Edelsbrunner and L. Guibas, Topologically sweep-
ing an arrangement. J. Comput. and System Sci.,
38(1):165–194, 1989.

[2] S. Kopeliovich and K. Vyatkina, On counting and
analyzing empty pseudo-triangles in a point set. Proc.
12th Int. Conf. on Comput. Sci. and its Appl., LNCS
7333:280–291, Springer, 2012.

[3] J.S.B. Mitchell, G. Rote, G. Sundaram, and G. Woeg-
inger, Counting convex polygons in planar point sets.
Inf. Proc. Lett., 56(1):45–49, 1995.

[4] G. Rote, G. Woeginger, B. Zhu, and Zh. Wang,
Counting convex k-gons in planar point sets. Inf.
Proc. Lett., 38(3):149–151, 1991.

[5] G. Rote and G. Woeginger, Counting convex k-gons
in planar point sets. Inf. Proc. Lett., 41(4):191–194,
1992.

158

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Randomized incremental construction of the
Hausdor↵ Voronoi diagram of non-crossing clusters⇤

Panagiotis Cheilaris† Elena Khramtcova† Evanthia Papadopoulou†

Abstract

We give a randomized incremental construction for
the Hausdor↵ Voronoi diagram of non-crossing clus-
ters of points. Our best complexity algorithm
takes expected time O(n log2 n(log logn)2) and worst-
case space O(n), improving upon previous results.
A simpler-to-implement algorithm, based on the
Voronoi hierarchy, is also given, which takes expected
time O(n log3 n) and expected space O(n). To achieve
this, we augment the Voronoi hierarchy with the abil-
ity to e�ciently handle non-standard characteristics
of generalized Voronoi diagrams, such as sites of non-
constant complexity, sites that are not enclosed in
their Voronoi regions, and empty Voronoi regions.

1 Introduction

Given a family F of point clusters in R2, the Hausdor↵
Voronoi diagram of F is a subdivision of the plane
into regions such that the Hausdor↵ Voronoi region
of a cluster P 2 F is the locus of points closer to
P than to any other cluster in F . The closeness of a
point t 2 R2 to a cluster P is measured by the farthest
distance df(t, P) = maxp2P d(t, p), where d(t, p) is the
Euclidean distance between t and p. The motivation
for investigating Hausdor↵ Voronoi diagrams comes
from its use in e�ciently estimating the sensitivity
of a Very Large Scale Integration (VLSI) design to
random defects during manufacturing [11].
Clusters P and Q are called non-crossing if the con-

vex hull of P [Q admits at most two supporting seg-
ments with one endpoint in P and one endpoint in Q
(see Figure 1). We assume that clusters are pairwise
non-crossing, unless stated otherwise.
The Hausdor↵ Voronoi diagram of non-crossing

clusters has size O(n) [12], where n is the total num-
ber of points in all clusters. It can be constructed in
time O(n2) [8], or in time O((n +K) logn) [11, 12],
however, K can be superlinear.1 It is an instance
of abstract Voronoi diagrams [10], thus it can also

⇤Supported in part by the Swiss National Science Founda-
tion grant 134355, under the auspices of the ESF EUROCORES
program EuroGIGA/VORONOI.

†Faculty of Informatics, Università della Svizzera italiana,
Lugano, Switzerland

1K is the number of pairs of clusters such that one cluster
is contained in a specially defined enclosing circle of the other,
e.g., the minimum enclosing circle [12].

Figure 1: disjoint, non-crossing, crossing clusters.

be constructed in expected time O(bn log n), where
b = O(n) is the time to construct the bisector be-
tween two clusters [1]. A more recent algorithm gives
O(n log4 n) time and O(n log2 n) space complexity [6].

In this work, we build the Hausdor↵ Voronoi dia-
gram using a randomized incremental approach. That
is, sites (clusters) are inserted one by one in ran-
dom order and the diagram is updated at every inser-
tion [5]. The bottleneck in this approach is to identify
fast a point t 2 R2 that will lie in the region of the
new site. This is di�cult for the Hausdor↵ Voronoi
diagram because: (a) the region of the new cluster
(site) might not contain any of its points, (b) the in-
sertion of the new cluster can make an existing re-
gion empty, and (c) clusters have non-constant size,
and thus the computation of a bisector or the answer-
ing of an in-circle test require non-constant time. To
overcome these issues we exploit properties of Haus-
dor↵ Voronoi diagram and we maintain a dynamic
point location data structure, which is also used to
perform simple parametric search queries.2 Our ap-
proach is modular as it can use any dynamic point
location data structure. If we use the data structure
by Baumgarten et al. [2], then we get an algorithm
which takes expected time O(n log2 n(log log n)2) and
uses linear space. Alternatively, if we augment the
Voronoi hierarchy [9] with the ability to e�ciently
handle the di�culties (a) to (c), we obtain a more
practical algorithm which takes expected O(n log3 n)
time and O(n) space.

The augmentation of the Voronoi hierarchy may be
of interest for incremental construction of other gen-
eralized Voronoi diagrams.

2Construction algorithms for the Hausdor↵ Voronoi diagram
[6] and for the farthest-polygon Voronoi diagram [4] also resort
to parametric search.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

159

29th European Workshop on Computational Geometry, 2013

s 2 C

pure vertex
C-mixed vertex
other mixed vertex
vertex of FVD(C)
Hausdor↵ boundary
farthest boundary

Figure 2: hreg(s), s 2 C.

y

root

Figure 3: 3-point cluster C (black), and 2-point clus-
ter P (red) limiting w.r.t. y 2 fskel(P).

2 Definitions and Structural properties

Let F = {C1, . . . , Cm} be a family of non-crossing
clusters of points such that no two clusters have a
common point. For simplicity we assume that no four
points lie on the same circle. Let convP denote the
convex hull of cluster P and CH(P) denote the se-
quence of points of P on the boundary of convP , in
counterclockwise order. For s 2 C, the farthest region
of s in the farthest Voronoi diagram (FVD) of C is:

fregC(s) = {p | 8s0 6= s : d(p, s) > d(p, s0)}.

The graph structure of the FVD of C, |C| > 1, forms
a tree, called the farthest skeleton of C, fskel(C). If
|C| = 1 then fskel(C) is C itself.
The Hausdor↵ region of a cluster C 2 F and a point

s 2 C are defined as

hregF (C) = {p | 8C 0 6= C : df(p, C) < df(p, C 0)};
hregF (s) = hregF (C) \ fregC(s).

The boundary of the Hausdor↵ region of a point
s 2 C consists of two chains: (1) the farthest boundary
of s, which is the portion of fskel(C) in hregF (C), i.e.,
bd hregF (s)\bd fregC(s); (2) the Hausdor↵ boundary
of s, i.e., bd hregF (s) \ bd hregF (C). Neither chain
can be empty if hregF (C) 6= ; and |C| > 1.

As shown in [12], there are three types of vertices on
the boundary of a Hausdor↵ Voronoi region hregF (s):
(1) Standard Voronoi vertices, which are equidistant
from C and two other clusters, referred to as pure
vertices (using the terminology of [4]). (2) Mixed ver-
tices, which are equidistant from C and one other clus-
ter. The mixed vertices which are equidistant to two
points of C and one point of another cluster are called
C-mixed vertices; there are exactly two of them on the
boundary of hregF (s). (3) Vertices of fskel(C) on the
farthest boundary of s. See Figure 2.

Useful properties of the Hausdor↵ Voronoi diagram
are summarized in Proposition 1. We need some def-
initions.
Consider a cluster C. Line segment ab is a chord of

C if a, b 2 CH(C). Assign a root in fskel(C) arbitrar-
ily and denote this rooted tree by T (C). Let y be any
point of fskel(C), and cc⇤ be a chord of C such that y
lies on the bisector between c and c⇤. Let Dy be the
closed disk centered at y with radius df(y, C). Then,
C ⇢ Dy. Point y subdivides fskel(C) into two parts.
Denote the part containing the descendants of y in
T (C) by T (y), and its complement by T⇠(y). Chord
cc⇤ subdivides Dy into Dr

y and Df
y, where Dr

y (resp.,

Df
y) is the rear (forward) part, enclosing the portion

of convC inducing T (y) (T⇠(y)). See Figure 3.

Definition 1 Cluster P is limiting with respect to
point y 2 fskel(C), if disk Dy contains P . Cluster P
is called forward limiting if P ⇢ Df

y [convC or rear
limiting if P ⇢ Dr

y [convC.

The following properties are derived directly
from [12].

Proposition 1 Let F be a family of non-crossing
clusters and C,P,Q 2 F . Then:

(i) If hregF (C) 6= ;, then hregF (C) \ fskel(C) is
non-empty and connected.

(ii) Let y be a point of fskel(C) such that y is closer
to cluster P than to C. If P is forward (resp.
rear) limiting with respect to y then the entire
T (y) (resp. T⇠(y)) is closer to P than to C.

(iii) Let uv be an edge of fskel(C). If both u and v
are closer to P than to C then hregF (C) does
not intersect uv.

(iv) Region hregF (C) = ; if and only if either there
is a cluster P ⇢ convC, or there exists a pair of
clusters {P,Q} such that P is rear limiting and
Q is forward limiting with respect to the same
point y 2 fskel(P). Pair {P,Q} is called a killing
pair for C.

3 General incremental construction algorithm

Let C1, C2, . . . , Cm be a fixed order of clusters. Let
Fi denote the family of the first i clusters according
to this order. The incremental approach constructs
successively the Hausdor↵ Voronoi diagram of F1, F2,
. . . , Fm = F . For each cluster Ci, we have the far-
thest Voronoi diagram, FVD(Ci), and a (static) point
location data structure on FVD(Ci).

We construct HVD(Fi+1) from HVD(Fi) by insert-
ing Ci+1. We first find a point t, which is closer
to Ci+1 than to any cluster in Fi, or if there is no
such point, we conclude that hregFi+1

(Ci+1) = ; and
stop. By Proposition 1(i), it is su�cient to search for

160

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

t just in fskel(Ci+1). Then, we trace the region of
Ci+1 around t and update the diagram.
We first consider vertices of fskel(Ci+1). For each

such vertex w:

• Find the nearest to w cluster Cw 2 Fi using point
location in HVD(Fi),

• if df(w,Ci+1) < df(w,Cw), then t = w; exit the
procedure. Else, if possible, eliminate from fur-
ther consideration a subtree of fskel(Ci+1) inci-
dent to w; see Proposition 1(ii).

If no vertex is found, then consider any remaining
edges of fskel(Ci+1) as hregFi+1

(Ci+1) may intersect
the interior of at most one edge of fskel(Ci+1); see
Proposition 1(i).
Edge uv of fskel(Ci+1) is called a candidate edge if

df(u,Ci+1) < df(u,Cv) and df(v, Ci+1) < df(v, Cu).
By Proposition 1(iii), it is su�cient to only check
a candidate edge and there can be at most one
such edge for Ci+1. Thus, for a candidate edge (if
any) we perform parametric search to decide whether
hregFi+1

(Ci+1) is empty or not, and still to find a
point t in this region in the latter case.

Lemma 2 Suppose clusters are inserted in a uni-
formly random order. Then, the expected time com-
plexity of the randomized algorithm is

O(n logn) +O(n)(tq(n) + ti(n) + td(n)) +m · tp(n),

where tq(n), tp(n), ti(n), td(n) are the times for a
query, a parametric search, an insertion, and a dele-
tion3 in a point location data structure for a diagram
of complexity O(n), respectively.

Proof. (Sketch) The expected total number of inser-
tions and deletions is O(n).4 The total time for the
construction of farthest Voronoi diagrams for all clus-
ters is O(n logn). For each cluster Ci, we perform
O(|Ci|) point location queries and at most one para-
metric search. Thus, in total we perform O(n) point
locations and at most m parametric searches. ⇤

We can use the dynamic point location data
structure of Baumgarten et al. [2] with tq(n) =
O(logn log log n), ti(n) = O(logn log logn), and
td(n) = O(log2 n). Parametric search can be per-
formed as a simulation of a point location query for
the unknown point t in time tp(n) = (tq(n))2 (see also
[4]). As a result:

Theorem 1 There is a randomized algorithm that
constructs the Hausdor↵ Voronoi diagram of a family
of non-crossing clusters in linear space and in expected
time O(n log2 n(log log n)2).

3The time for insertion and deletion can be amortized.
4It can be shown with the Clarkson-Shor technique [5].

4 Augmenting the Voronoi hierarchy

The Voronoi hierarchy [9] is a simple randomized
point location data structure for Voronoi diagrams in-
spired from the Delaunay hierarchy [7]. For a family
F of general sites, each level ` of the hierarchy corre-
sponds to a subset F (`) of F and stores the Voronoi
diagram of F (`). Level 0 corresponds to F . A Voronoi
hierarchy of height k is then: F = F (0) ◆ F (1) ◆
. . . ◆ F (k). For all ` 2 {1, . . . , k}, F (`) is a random
sample of F (`�1) according to a Bernoulli distribution
with parameter � 2 (0, 1). The expected height of the
hierarchy for a family of m sites is O(logm). Point
location in the Voronoi hierarchy for a query point q
works as follows. Starting from the topmost level k,
for each level `, find the site S` in F (`) which is the
nearest to the query point q, by performing a walk.
Each step of the walk reduces the distance to q from
the current site S by moving to a site, neighboring to
S. Walk at level `� 1 starts from S`. The answer to
the query is S0.
For the Hausdor↵ Voronoi diagram several compli-

cations arise: (a) Sites are of non-constant complex-
ity. (b) We need to perform parametric search i.e., a
walk for an unknown point along a candidate edge.
(c) Voronoi regions might be empty.
To address (a) we need the concept of an active

point. Consider a cluster C at level `, such that
hregF (`)(C) 6= ;. For brevity, let this region be de-

noted as hreg(`)F (C), and similarly for the regions of
individual points.

Definition 2 Point c 2 C is active at level `, if

hreg(`)F (c) 6= ;. The set Ĉ(`) of all active points of
C at level ` is called the active set of C at level `. For
brevity, d

(`)
f (t, C) = df(t, Ĉ(`)).

Performing one step of the walk. Let C be the cur-
rent cluster visited during the walk at level `, and q
be the query point. The next cluster C 0 in the walk is
determined as follows. Let c be a point of Ĉ(`) such
that q 2 fregĈ(`)(c). Let v1, . . . , vj be a list of pure

vertices on the Hausdor↵ boundary of hreg(`)F (c), in
counterclockwise order, and let C0, . . . , Cj , Cj+1 be
respective adjacent clusters. The rays �!cv1, . . . , �!cvj
partition fregĈ(`)(c) into j + 1 unbounded regions. If
�!cq is just after the ray �!cvi or just before the ray ���!cvi+1,
then set C 0 = Ci.
In order to find C 0 in O(log n) time, for each clus-

ter C at level ` such that C 2 F (`) we store the bi-
nary trees containing: (1) the active set Ĉ(`); (2) for
each c 2 Ĉ(`), the list of all pure vertices adjacent to

hreg(`)F (c) (see Figure 2).

The parametric search. For ` 2 {0, . . . , k}, let I` be
the interval of points on uv which are closer to Ci+1

161

29th European Workshop on Computational Geometry, 2013

than to any cluster in F
(`)
i . (By convention, Ik+1 =

uv.) Then, uv = Ik+1 ◆ Ik ◆ Ik�1 ◆ · · · ◆ I1 ◆ I0.
If I` 6= ;, we compute the leftmost endpoint u` of
interval I`, i.e., the endpoint which is closer to u. If
I0 6= ;, then u0 is the answer to the query.

From the point u`+1 and the cluster of F (`+1)
i clos-

est to u`+1, point u` is computed entirely at level `.
We find a sequence of points u`+1 = a0, a1, . . . , ar =
u`. For each point aj , we keep track of the cluster
Caj in F `

i which is the closest to aj . We compute
aj+1 from aj as follows.

• If df(aj , Ci+1) df(aj , Caj), we set u` = aj and
continue to the next level.

• Else, if df(v, Caj) df(v, Ci+1), we stop and re-
port that hregFi+1

(Ci+1) = ;.
• Otherwise, we determine aj+1 by a (standard)

parametric search in FVD(Caj) with segment
ajv. Then, we perform a walk (at level `) from
cluster Caj to find the cluster Caj+1 closest to
aj+1. If Caj+1 = Caj , we set u` = aj and con-
tinue to the next level.

Empty Voronoi regions. When Ci+1 is inserted, an
existing non-empty region of a cluster P may become
empty. If P has an empty region at level `, but a non-
empty region at level ` + 1, then the point location

for a query point q 2 hreg(`+1)
Fi+1

(P) will give an error.
To fix the problem, we link cluster P at level ` + 1
to at most two other clusters at level ` (see Proposi-
tion 1(iv)), so that every point q 2 R2 is strictly closer
to either one of them than to P , as follows.
While inserting Ci+1 at level `, we keep track of the

list V of all the (deleted) P -mixed vertices.
At level `+ 1, for each P -mixed vertex v, we check

if df(v, Ci+1) � df(v, P). If yes, we store the point
c 2 Ci+1 for which df(v, Ci+1) = d(v, c).

1. If all P -mixed vertices are closer to Ci+1 than to
P , we link P only to Ci+1.

2. Else, we link P to its killing pair {K,Ci+1}, such
that K 2 F (l); see Proposition 1(iv).

We identify cluster K using the list V and the point
c. Each vertex u 2 V is equidistant from points pu,

p⇤u 2 P , and qu 2 Q, for some Q 2 F
(`)
i . We check

whether c and qu are on di↵erent sides of the chord
pup⇤u. If yes, then set K = Q and stop.

The complexity is analyzed in the following.

Lemma 3 The expected length of the walk at level
` is constant.

Lemma 4 A point location query and a parametric
search query are answered in expected O(log2 n) and
O(log3 n) time respectively.

Lemma 5 Let n be the sum of the sizes of all sites
in a family of sites F . Assuming that the underlying
type of Voronoi diagram for F is of size O(n), the
expected size of the Voronoi hierarchy for F is also
O(n).

Theorem 2 The Hausdor↵ Voronoi diagram of non-
crossing clusters can be constructed in O(n log3 n)
expected time and O(n) expected space, using the
Voronoi hierarchy.

For details, see [3].

References

[1] M. Abellanas, G. Hernandez, R. Klein, V. Neumann-
Lara, and J. Urrutia. A combinatorial property of
convex sets. Discrete Comput. Geom., 17(3):307–318,
1997.

[2] H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic
point location in general subdivisions. J. Algorithms.,
17(3):342–380, 1994.

[3] P. Cheilaris, E. Khramtcova, and E. Papadopoulou.
Randomized incremental construction of the Haus-
dor↵ Voronoi diagram of non-crossing clusters. Tech-
nical Report 2012/03, University of Lugano, 2012.

[4] O. Cheong, H. Everett, M. Glisse, J. Gudmunds-
son, S. Hornus, S. Lazard, M. Lee, and H.-S. Na.
Farthest-polygon Voronoi diagrams. Comput. Geom.,
44(4):234–247, 2011.

[5] K. Clarkson and P. Shor. Applications of random
sampling in computational geometry, II. Discrete

Comput. Geom., 4:387–421, 1989.

[6] F. Dehne, A. Maheshwari, and R. Taylor. A coarse
grained parallel algorithm for Hausdor↵ Voronoi dia-
grams. In Proc. 35th Int. Conf. on Parallel Processing

(ICPP), pages 497–504, 2006.

[7] O. Devillers. The Delaunay Hierarchy. Int. J. Foun-

dations Comput. Sci., 13:163–180, 2002.

[8] H. Edelsbrunner, L. J. Guibas, and M. Sharir. The
upper envelope of piecewise linear functions: algo-
rithms and applications. Discrete Comput. Geom.,
4:311–336, 1989.

[9] M. Karavelas and M. Yvinec. The Voronoi diagram
of convex objects in the plane. Technical report RR-
5023, INRIA, 2003.

[10] R. Klein, K. Mehlhorn, and S. Meiser. Random-
ized incremental construction of abstract Voronoi di-
agrams. Comput. Geom., 3(3):157–184, 1993.

[11] E. Papadopoulou. The Hausdor↵ Voronoi diagram of
point clusters in the plane. Algorithmica., 40(2):63–
82, 2004.

[12] E. Papadopoulou and D. T. Lee. The Hausdor↵
Voronoi diagram of polygonal objects: a divide and
conquer approach. Int. J. Comput. Geom. Appl.,
14(6):421–452, 2004.

162

⇤

⇤

163

164

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Balanced partitions of 3-colored geometric sets in the plane

Sergey Bereg⇤ Ferran Hurtado† Mikio Kano‡ Matias Korman† Dolores Lara† Carlos Seara†

Rodrigo I. Silveira† Jorge Urrutia§ Kevin Verbeek¶

Abstract

In this work we study several problems regarding bal-
anced bipartitions of 3-colored sets of points, and of
3-colored sets of lines. We say that a bipartition of a
colored set is balanced if each of its two parts con-
tains the same quantity of elements of each color.
First we consider sets of lines and study the existence
of segments that intersect the arrangement in a bal-
anced set; we also study the dual problem, that is,
we consider point sets in the plane and study bipar-
titions induced by double wedges. Then we consider
point sets on a closed Jordan curve and study bipar-
titions induced by arcs. Last, we consider point sets
in the plane lattice and study bipartitions induced by
L-lines.

1 Introduction

Let S be a finite set of geometric objects distributed
into classes or colors. A subset S1 ✓ S is said to be
balanced if S1 contains the same number of elements
of S from each of the colors.
Naturally, if S is balanced, the complement of a

balanced subset of S is also balanced, hence we talk
of a balanced bipartition of S. When the point set S
is on the plane, and the balanced partition is defined
by a geometric object ⇣ splitting the plane into two
regions, we say that ⇣ is balanced.

In this paper we study problems on balanced bi-
partitions of 3-colored sets of points and lines in the
plane. It is easy to construct balanced 3-colored point
sets for which the only balanced partitioning line is
the trivial one containing the whole pointset on one
side. For example, consider an equilateral triangle
p1p2p3 and replace every vertex p

i

by a very small
disk D

i

so that no line can intersect the three disks;
place n red, n green, and n blue points inside the
disks D1, D2 and D3, respectively. It is obvious that

⇤

University of Texas at Dallas. besp@utdallas.edu.

†

Departament de Matemàtica Aplicada II, Uni-

versitat Politècnica de Catalunya, {ferran.hurtado,
matias.korman, maria.dolores.lara, carlos.seara,

rodrigo.silveira}@upc.edu
‡

Ibaraki University, kano@mx.ibaraki.ac.jp.

§

Instituto de Matemáticas, UNAM, México.

urrutia@matem.unam.mx.

¶

University of California, Santa Barbara.

kverbeek@cs.ucsb.edu.

for this configuration no balanced line exists. On the
other hand, for every 3-colored set S of points there
is a conic that simultaneously bisects the three colors:
take the plane to be z = 0 in R3, lift the points verti-
cally to the unit paraboloid P , use the 3-dimensional
ham-sandwich theorem for splitting evenly the lifted
point set with a plane ⇧, and use the projection of
P \ ⇧ as halving conic in z = 0. Instead of changing
the partitioning object, one may impose some con-
straints to the point set. For example, Bereg and
Kano have recently proved [2] that if all vertices of
the convex hull of S have the same color, then there
exists a line that determines a halfplane containing
exactly k points of each color, with 0 < k < n. This
result was recently extended to sets of points in higher
dimensions, by Akopyan and Karasev [1].
In this work we present the following results: (a) In

Section 2 we prove that for every 3-colored arrange-
ment of lines there exists a segment that intersects
exactly one line of each color. Moreover, if there are
2m lines of each color, there is a segment intersecting
m lines of each color. (b) In Section 3 we show that
given n red, n green and n blue points on any closed
Jordan curve �, for every integer 0 k n there is
a pair of disjoint intervals on � whose union contains
exactly k points of each color. (c) Given a set S of
n red, n green and n blue points in the integer lat-
tice, whose orthogonal convex hull is monochromatic,
there exist one vertical and one horizontal ray with
common apex, whose union splits the plane into two
balanced regions; this is presented in Section 4. Due
to lack of space, we omit most proofs from this ex-
tended abstract.

2 Balancing line arrangements

2.1 Cells in colored arrangements

Let L be a set of lines in the plane, partitioned into
three sets R, G, and B. We refer to the elements
of R, G, and B as red, green, and blue, respectively.
Let A(L) be the arrangement induced by the set L.
We assume that A(L) is simple, that is, there are no
parallel lines and no more than two lines intersect at
one point. In this section we prove that there always
exists a 3-chromatic face in A(L), that is, a face that
has at least one side of each color. We also extend
this result to higher dimensions.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

165

29th European Workshop on Computational Geometry, 2013

Consider a face f of the 2-dimensional arrangement
A(L). Consider the dual graph of f ; we obtain a dual
face f̂ that contains a vertex for every bounding line
of f , and contains an edge between two vertices of f̂
if the intersection of the corresponding lines is part
of the boundary of f (see Figure 1(a)). Let C be a
simple cycle of vertices where each vertex is colored ei-
ther red, green, or blue. Let n

r

(C), n
g

(C), and n
b

(C)
be the number of red, green, and blue vertices of C,
respectively. We simply write n

r

, n
g

, and n
b

if C is
clear from the context. The type of an edge of C is
the multiset of the colors of its vertices. Let n

rr

, n
gg

,
n
bb

, n
rg

, n
rb

, and n
gb

be the number of edges of the
corresponding type. Note that, if f is bounded, then
f̂ is a simple cycle, where each vertex is colored ei-
ther red, green, or blue. We say a bounded face f is
complete if n

rg

⌘ n
rb

⌘ n
gb

⌘ 1 (mod 2) holds for f̂ .

Lemma 1 Consider a simple cycle C, where each

vertex is colored either red, green, or blue. Then

n
rg

⌘ n
rb

⌘ n
gb

(mod 2).

Proof. The result follows from double counting. For
n
r

we get the equation 2n
r

= 2n
rr

+n
rg

+n
rb

. This di-
rectly implies that n

rg

⌘ n
rb

(mod 2). We can do the
same for n

g

and n
b

to obtain the claimed result. ⇤

Theorem 2 Let L be a set of lines in R2
colored with

3 colors so that each color appears at least once, and

the arrangement A(L) induced by L is simple. There

always exists a complete face in A(L).

Proof. The result clearly holds if |R| = |G| = |B| =
1. For the general case, we start with one line of each
color, and then incrementally add the remaining lines,
maintaining a complete face f at all times. Without
loss of generality, assume that a red line ` is inserted
intoA(L). If ` does not cross f , we keep f . Otherwise,
f is split into two faces f1 and f2 (see Figure 1(b)).
Similarly, f̂ is split into f̂1 and f̂2 (with the addition of
one red vertex, see Figure 1(c)). Because ` is red, the
number n

gb

of green-blue edges does not change, that

is, n
gb

(f̂) = n
gb

(f̂1)+n
gb

(f̂2). This implies that either

n
gb

(f̂1) or ngb

(f̂2) is odd. By Lemma 1 it follows that
either f1 or f2 is complete. ⇤

Using the standard point-line duality in the plane,
we obtain the following result:

Corollary 1 Let L be a set of lines in R2
colored with

3 colors so that each color appears at least once, and

the arrangement A(L) induced by L is simple. There

always exists a segment intersecting exactly one line

of each color of A(L).

We can extend the previous result to higher dimen-
sions: every (d+ 1)-chromatic arrangement of hyper-
planes in the d-dimensional space, contains a (d+1)-
chromatic face. The result is sharp with respect to

f

f̂ f1

f2

f̂1

f̂2

(a) (b) (c)

`

Figure 1: (a) A (complete) face f and its dual f̂ (dot-
ted). (b) Face f is split into f1 and f2. (c) The dual
f̂ is split into f̂1 and f̂2.

the number of colors. To extend the proof, we use
similar techniques: first consider the dual of a cell
in the arrangement as a triangulation of the (d � 1)-
dimensional sphere; then define types of faces of that
triangulation based on the colors of their incident ver-
tices, and prove an analogue of Lemma 1. The defini-
tion of complete cells is generalized accordingly, main-
taining the property that a complete cell is (d + 1)-
chromatic. Based on that, we prove the following.

Theorem 3 Let H be a set of hyperplanes colored

with d + 1 colors so that each color appears at least

once, and the arrangement A(H) induced by H is

simple. There always exists a complete cell in A(H).

2.2 3-colored point sets and balanced double

wedges

A result equivalent to Corollary 1 is presented in the
next theorem. This can be shown using standard du-
ality transformation between points and lines.

Theorem 4 Let S be a set of points in general po-

sition in R2
colored with 3 colors so that each color

appears at least once. Then, There exists a double

wedge that contains exactly one point of S of each

color.

Next we turn our attention to balanced 3-colored
point sets, and prove that a ham-sandwich-like theo-
rem for double wedges exists.

Theorem 5 Let S be a balanced set of 3-colored 6n
points in general position the plane. There exists a

double wedge containing exactly n points of S of each

color.

Proof. (Sketch) Without loss of generality we as-
sume that the points of S have distinct x-coordinates
and distinct y-coordinates. For two distinct points a
and b in the plane, let `(a, b) denote the line passing
through them. Consider the arrangement A of all the
lines passing through two points from S.
Consider a horizontal line ` that does not contain

any point from S. We walk on ` from left to right

166

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

in a continuous form. For any point p 2 ` we de-
fine an ordering �

p

of S as follows: consider the lines
`(p, q), q 2 S and sort them by slope. Let (p1, . . . , p6n)
be the obtained sorting. By construction, any interval
{p

i

, p
i+1, . . . , pj} of an ordering of p corresponds to a

set of points that can be covered by a double wedge
whose apex is p (and vice versa).
Given a sorting �

p

= (p1, . . . , p6n) of S we
associate a polygonal curve as follows: for ev-
ery k 2 {1, 2, . . . , 3n} let b

k

, and g
k

be the
number of blue and green points in the set
S(p, k) = {p

k

, p
k+1, . . . , pk+3n�1} of 3n points, re-

spectively. We define the corresponding lattice point
q
k

:= (b
k

� n, g
k

� n), and the path �(�) =
(q1, . . . , q3n,�q1, . . . ,�q3n, q1).
Observe that if q

k

= (0, 0) for some p 2 ` and some
k 3n, then there exists a balanced double wedge.
Assume, for the sake of contradiction, that q

k

6= (0, 0)
for all orderings �

p

and all k 3n. We observe several
important properties of �(�):

• �(�) is centrally symmetric (w.r.t. the origin).

• �(�) is a closed path. Moreover, the interior of
any edge of �(�) cannot contain the origin.

• If the orderings of two points p and q are equal,
then their paths �(�

p

) and �(�
q

) are equal.

• Path �(�) has nonzero winding (with respect to
the origin).

With these properties it can be seen that, when
we walk from one cell to an adjacent one, not many
changes can happen to the path �(�). In particular,
the winding must have the same sign. However, af-
ter we have moved p from p

x

= �1 to p
x

= +1,
the corresponding orderings are reverse. In particu-
lar, their paths must have windings of di↵erent sign
with respect to the origin. This contradicts the prop-
erty that the motion of p does not a↵ect the winding
number of �(�). ⇤

Corollary 2 Let L be a balanced set of 6n lines in-

ducing a simple arrangement. Then, there exists a

segment intersecting exactly n lines of each color.

3 Balanced partitions on closed Jordan curves

In this section we consider balanced 3-colored point
sets on closed Jordan curves. It is easy to see that, by
homeomorphism, it su�ces to give proofs for the unit
circle. We show that there is always a bipartition of
the set which is balanced and that can be realized by
at most two disjoint arcs on the circle. To prove the
claim we use the following arithmetic lemma:

Lemma 6 For every integer n � 2, any integer

k 2 {1, 2, . . . , n} can be obtained from n applying

the functions f(x) = bx/2c and g(x) = n� x to n at

most 2 log n+O(1) times.

Let S1 be the unit circle in R2 with the usual
parametrization f(t) = (cos(t), sin(t)), t 2 [0, 2⇡).
Let P be a balanced set of 3n points in S1. The
following theorem is a discrete version of the main re-
sult in [4]. There the methods are topological, while
our approach is combinatorial, based on Lemma 6.
The result can also be seen as a version of the Neck-

lace Theorem [3] for closed curves. We say that a set
Q ✓ S1 is a 2-arc set if it is the union of at most two
disjoint arcs of S1.

Theorem 7 Let P be a balanced set of 3-colored 3n
points in S1

. For each k n there exists a 2-arc set

P
k

✓ S1
containing exactly k points of each color.

Proof. (Sketch) Let I be the set of numbers k such
that a subset P

k

as in the theorem exists. We prove
that I = {1, . . . , n}. By Lemma 6 it su�ces to prove
that: i) n 2 I, ii) If k 2 I then n � k 2 I, and iii) If
k 2 I then k/2 2 I.
Claims i) and ii) follow from the fact that S1 and

the complementary of any 2-arc set are 2-arc sets, re-
spectively. To prove iii), we lift P to R3 using the mo-
ment curve. Abusing slightly the notation, we iden-
tify each point f(t) = (cos(t), sin(t)), t 2 [0, 2⇡) on S1

with its corresponding parameter t. We assume that
0 62 P

k

; otherwise we can change the parametrization
of S1 by rotating around the origin to assure this fact.
Then, for t 2 S1 we define �(t) = {t, t2, t3}; also,

if S ✓ S1, we define �(S) = {�(s)|s 2 S}. As 0 /2
P
k

, any two disjoint arcs in S1 become two disjoint
intervals in �(S1). Now we apply the ham-sandwich
theorem to �(P

k

) and obtain a plane that cuts each
chromatic class in �(P

k

) in half. In order to finish
the proof, we must show that this plane induces the
desired partition of P . Notice that any plane in R3

will intersect �(S1) in at most 3 points, hence the
projection will be a 2-arc set. ⇤
The above proof can be generalized to c colors: if P
contains n points of each color on S1, then for each
k 2 {1, . . . , n} there exists a (c � 1)-arc set P

k

✓ S1

such that P
k

contains exactly k points of each color
(where the definition of a (c�1)-arc set is the natural
extension of the 2-arc set). In the full version we also
show that the bound in the number of intervals is
tight.

4 L-lines in the plane lattice

We now consider a balanced partition problem for 3-
colored point sets in the integer plane lattice. An
L-line with corner q is the union of two di↵erent rays
with common apex q, each of them being either ver-
tical or horizontal. Figure 2 shows a balanced L-line
with apex q.

167

29th European Workshop on Computational Geometry, 2013

q

Figure 2: A balanced set of 18 points in the integer
lattice with a nontrivial balanced L-line.

Figure 3: A set of 3-colored points in the plane lattice.
Any L-line containing points of all three colors will
fully contain a color class, hence this problem instance
does not admit a balanced L-line.

L-lines in the lattice play a role comparable to that
of ordinary lines in the real plane. For ordinary lines,
Bereg and Kano [2] proved that if S is a balanced 3-
color point set whose convex hull is monochromatic,
then there always exists a balanced line for S. It is
easy to see that with no constraints on S, balanced L-
lines (other than the trivial ones) may not exist. We
extend the result in [2] to the the plane lattice. As
in the Euclidean plane, there exist problem instances
for which the only balanced L-line is the trivial one,
see for example Figure 3. To prevent this, we impose
a condition on S: all vertices in the orthogonal con-
vex hull of S have the same color. Observe that this
condition is the natural translation to the one used
for ordinary lines by Bereg and Kano. Moreover, an
equivalent condition is the fact that for every L-line
that splits S into two non-empty subsets, each subset
contains at least one red point.

Theorem 8 Let S be a balanced set of 3-colored 3n
points in the integer lattice. If the orthogonal hull

is monochromatic, then there exists a nontrivial bal-

anced L-line.

Proof. (Sketch) We use a technique similar to that
described in the proof of Theorem 5. Imagine sweep-
ing the lattice with a horizontal line (from top to bot-
tom). At any point of the sweep, we sort the points
above the line from top to bottom, and the remaining

points from left to right. By doing so, we obtain some
orderings of the point set. Once we have swept all the
points, we do a second sweep, this time vertical. As in
the proof of Theorem 5, we associate a curve to each
instant of the sweep. Moreover, the winding cannot
change before and after sweeping a point. Once we
have rotated the sweep line twice (i.e., we have ro-
tated the line ⇡ radians), we obtain a reverse order-
ing, obtaining a similar contradiction. Details will be
given in a full version of this paper. ⇤

5 Concluding remarks

Observe that our results on double wedges can be
viewed as partial answers to the following interest-
ing open problem: Find all k such that, for any set of
n red, n green and n blue points in general position
in the plane, there exists a double wedge containing
exactly k points of each color. We have given here an
a�rmative answer for k = 1, n/2 and n � 1 (Theo-
rems 4 and 5). On the other hand, Theorem 7 can be
viewed as an a�rmative answer for all k = 1, . . . , n if
the points belong to a circle (or in general, if they are
in convex position).

Acknowledgments

Most of this research took place during the 5th Inter-

national Workshop on Combinatorial Geometry held at
UPC-Barcelona from May 30 to June 22, 2012. We thank
Inês Matos, Pablo Pérez Lantero, Vera Sacristán and all
other participants for useful discussions.

F.H., M.K., C.S., and R.S. are partially supported

by projects MINECO MTM2012-30951, Gen. Cat.

DGR2009SGR1040, and ESF EUROCORES programme

EuroGIGA, CRP ComPoSe: MICINN Project EUI-

EURC-2011-4306. F.H. and C.S. are partially supported

by project MICINN MTM2009-07242. M.K. also acknowl-

edges the support of the Secretary for Universities and

Research of the Ministry of Economy and Knowledge of

the Government of Catalonia and the European Union.

R.S. was partially supported by FP7 Marie Curie Actions

Individual Fellowship PIEF-GA-2009-251235.

References

[1] A. Akopyan and R. Karasev. Cutting the same frac-
tion of several measures. arXiv:1203.5591, 2012.

[2] S. Bereg and M. Kano. Balanced line for a 3-colored
point set in the plane. The Electronic Journal of

Combinatorics, 19:P33, 2012.

[3] J. Matousek. Using the Borsuk-Ulam Theorem: Lec-

tures on Topological Methods in Combinatorics and

Geometry, Chapter 3. Springer, 2007.

[4] W. Stromquist and D. Woodall. Sets on which sev-
eral measures agree. Journal of Mathematical Analy-

sis and Applications, 108(1):241–248, 1985.

168

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

The Complexity of Separating Points in the Plane

Sergio Cabello⇤† Panos Giannopoulos‡§

Abstract

We study the following separation problem: Given n
connected curves and two points s and t in the plane,
compute the minimum number of curves one needs
to retain so that any path connecting s to t inter-
sects some of the retained curves. We give the first
polynomial (O(n3)) time algorithm for the problem
and show its generalized version, where several input
points are to be separated, to be NP-hard for natural
families of curves, like segments in two directions or
unit circles.

1 Introduction

Let C be a family of connected curves in the plane
(typically, circles or segments, possibly of unit size),
and let s and t be two points not incident to any curve
C. In the 2-Point-Separation problem we want to
compute a subset C 0 ✓ C of minimum cardinality that
separates s from t, i.e., any path connecting s to t in-
tersects some curve of C 0. Its generalization where
several input points are to be separated will be re-
ferred to as Points-Separation. We actually solve a
weighted version of 2-Point-Separation, where we
have a weight function w assigning weight w(c) � 0
to each curve c 2 C and a solution of minimum total
weight is sought. This scenario is useful, for example,
when we want to keep separated two points in a polyg-
onal domain (weight 0) using a subset of disks (weight
1). See Fig. 1 for an example. Such problems natu-
rally arise in so-called barrier problems when wireless
sensors are modeled by disks [6] and [2].
We assume that some primitive operations involv-

ing the input curves (e.g., computing the intersection
of two curves, deciding whether a curve is separating)
can be carried out e�ciently. These operations take
constant time for semialgebraic curves of constant de-
scription complexity.

⇤Department of Mathematics, IMFM and FMF, Univer-
sity of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia,
sergio.cabello@fmf.uni-lj.si.

†Research partially supported by the Slovenian Research
Agency, program P1-0297, project J1-4106, and within the EU-
ROCORES Programme EUROGIGA (project GReGAS) of the
European Science Foundation.

‡Institut für Informatik, Universität Bayreuth,
Universitätsstraße, 30, D-95447 Bayreuth, Germany,
panos.giannopoulos@uni-bayreuth.de.

§Research supported by the German Science Foundation
(DFG) under grant Kn 591/3-1.

s

t

Figure 1: Weighted 2-Point-Separation instance:
disks in a polygonal domain with rectangular holes.

Results and methods. We provide an algo-
rithm that solves the weighted version of 2-Point-
Separation in O(nk+ n2 log n) time, where k is the
number of pairs of curves that intersect. The algo-
rithm itself is simple, but its correctness is not obvi-
ous. We justify its correctness by considering an ap-
propriate set of closed walks in the intersection graph
of the curves and showing that it satisfies the so-
called 3-path-condition [9] (see also [8, Chapter 4]).
This makes the connection of our problem to topol-
ogy clear. This approach works when the optimal
solution is given by at least 3 curves. The case where
the optimal solution is attained by two curves is being
taken care of separately by brute-force.

On the negative side, we use a reduction from
Planar-3-SAT to show that Points-Separation

is NP-hard for two natural families of curves: (i) hor-
izontal and vertical segments and (ii) unit circles.

Related work. No polynomial-time algorithm that
gives the exact optimum for 2-Point-Separation
was previously known, even for unit disks. Gibson et
al. [4] provide a polynomial-time O(1)-approximation
algorithm for disks. By considering several instances
of this they also give an O(1)-approximation for
Points-Separation. Using our exact solution to 2-
Point-Separation for the boundaries of the disks
leads to a better approximation factor in the final out-
come of their latter algorithm.

The ideas used here for 2-Point-Separation were
already included in the unpublished manuscript with
Alt and Knauer [1] for segments. This work replaces
and extends that part of the manuscript. In the ter-
minology used in Wireless Sensor Networks, we are
computing a minimum-size 1-barrier [6].

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

169

29th European Workshop on Computational Geometry, 2013

c1

c2
c3

c4
c5

c7

c6

c8

(a) (b)

c8

c7

c1 c2

c3

c4

c5c6

Figure 2: (a) A set of curves C with the fixed intersec-
tion points xc,c0 . (b) The corresponding intersection
graph G.

2 Algorithm for 2-Point-Separation

The use of the term curve will be restricted to ele-
ments of C. The use of the term path (or closed path)
will be restricted to parametric paths constructed in
our algorithm and proofs. The use of the term walk

will be restricted to graphs. A cycle is a closed walk
in a graph without repeated vertices.
We assume for simplicity that the segment st does

not contain any intersection of two curves of C.
Let � be a path contained in

S
C, possibly with

self-intersections. We define N(�) as the number
of transversal crossings of � with st modulo 2 and
counted with multiplicities. If C 0 ⇢ C does not sepa-
rate s and t, then for any closed path � contained inS
C 0 we have N(�) = 0.
For each two distinct curves c and c0 from C that

intersect, we fix an arbitrary intersection point and
denote it by xc,c0 . Given a curve c 2 C and two
points x, y on C, let c[x ! y] be any path contained
in c connecting x to y.
The set C of input curves defines the intersection

graph G = G(C) = (C, {cc0 | c\ c0 6= ;}), which has k
edges; see Fig. 2. To each edge cc0 of G we attach the
weight (abstract length) w(c)+w(c0). For any walk ⇡
in G we use lenG(⇡) for its length and C(⇡) = V (⇡)
for the set of curves along ⇡.
For each curve r 2 C, we fix a shortest-path tree Tr

of G from r; if there are several, we fix one of them
arbitrarily. For any Tr of G and any edge e 2 E(G) \
E(Tr), let ⌧(Tr, e) denote the closed walk obtained
by concatenating the edge e with the two paths in Tr

from r to the endpoints of e. When ⌧(Tr, e) is a cycle
it is called a fundamental cycle with respect to Tr.

Consider a walk ⇡ = c0c1 · · · ct in G. Let � be a
path in R2. We say that � is a ⇡-path if there are
paths �1, . . . , �t�1 such that: the path �i is contained
in ci (i = 1, . . . , t� 1), the path �i goes from xci�1,ci

to xci,ci+1 (i = 1, . . . , t� 1), and the concatenation of
�1, . . . , �t�1 gives �. See Fig. 3(a) for an example.
If the walk ⇡ = c0c1 · · · ct is closed, which means

that ct = c0, then a closed path � is a closed ⇡-walk
if there are paths �1, . . . , �t such that: the path �i is

c1

c2
c3

c4
c5

c7

c6

c8

(a) (b) (c)

c1

c2
c3

c4
c5

c7

c6

c8

c1

c2
c3

c4
c5

c7

c6

c8

Figure 3: Some paths in the example of Fig. 2, using
the fixed intersection points marked in Fig. 2. In (a)
there is a ⇡-path for the walk ⇡ = c2c1c4c6c7c5c4. In
(b) and (c) there are two di↵erent closed ⇡-paths for
the closed walk ⇡ = c2c1c4c6c7c2.

contained in ci (i = 1, . . . , t), the path �i goes from
xci�1,ci to xci,ci+1 (i = 1, . . . , t and ct+1 = c1), and the
concatenation of �1, . . . , �t gives �. See Fig. 3(b)–(c)
for an example. If � is a ⇡-path or a closed ⇡-path,
then � ⇢ S

C(⇡). Even if ⇡ is a cycle, a closed ⇡-path
may have self-intersections.
Given a walk ⇡ = c0c1 · · · ct in G we can construct a

⇡-path in linear time by concatenating cj [xcj�1,cj !
xcj ,cj+1] for j = 1, . . . , t�1. If ⇡ is a closed walk with
c0 = ct, we can obtain a closed ⇡-path closing it with
c0[xct�1,c0 ! xc0,c1]. When C is a family of pseu-
dosegments, there is a unique ⇡-path for each walk ⇡
and a unique closed ⇡-path for each closed walk ⇡.

We will mainly use closed (⌧(Tr, e))-paths, where r
is a curve of C and e 2 E(G) \ E(Tr). By �(r, e) we
denote an arbitrary closed (⌧(Tr, e))-path.

2.1 The algorithm and its time complexity

First, we select the minimum-weight solution C
2

consisting of one or two curves from C. We do this by
testing separately each curve and each pair of curves
from C. Of course, it may be that C

2 is undefined.
We remove from C any curve that alone separates
s and t, and keep using C for the remaining set of
curves. Next we compute the set

P = {(r, e) 2 C ⇥ E(G) | e 2 E(G) \ E(Tr)

and N(�(r, e))) is odd}.

We choose (r⇤, e⇤) 2 arg min(r,e)2P lenG(⌧(Tr, e)),
and compute C>2 = C(⌧(Tr⇤ , e

⇤)). It may happen
that P is empty, which means that (r⇤, e⇤) and C>2

are undefined. Finally we return the lightest set of
curves between C

2 and C>2, if they are both defined;
the only one of them that is defined, if only one among
C

2 and C>2 is defined; and “C does not separate
s and t”, if both C

2 and C>2 are undefined. This
finishes the description of the algorithm. We will refer
to this algorithm as Algorithm-2PS.
The algorithm can be implemented in O(n2k +

n2 log n) time in a straightforward way. We obtain
a better bound by computing C>2 as follows. For
each r 2 C and c 2 C we compute and store some

170

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

(a) (b)

c1

c2 c3 c4

c8

c7 c6

c5

(c)

c1

c2
c3

c4
c5

c7

c6

c8

c1

c2
c3

c4
c5

c7

c6

c8

Figure 4: (a) Tree Tc1 for the scenario of Fig. 2 as-
suming curves of unit weight. (b) Possible (Tc1 [c8])-
path and (Tc1 [c6])-path used to compute Nc1(c8) and
Nc1(c6). (c) Possible (c7c8c6c4)-path and (c4c1c2)-
path that are used to compute N(�(c1, c6c8)) in
Lemma 1.

information I(r, c) such that, for each r 2 C and
cc0 2 E(G) \ E(Tr), we can obtain from I(r, c) and
I(r, c0) the values N(�(r, cc0)) and lenG(⌧(Tr, cc

0)) in
O(1) time. This information I(r, c) is essentially the
length of the path Tr[c] in Tr from r to c and the value
of N(·) for a Tr[c]-path; see Fig 4. Such information
I(r, c) can be computed in O(1) time per pair (r, c)
after computing shortest path trees from each vertex
by making a top-to-bottom traversal of each Tr.

Lemma 1 Algorithm-2PS can be modified to run

in O(nk+ n2 logn) time. Furthermore, if the weights

of the curves C are 0 or 1, then Algorithm-2PS can

be modified to run in O(nk + n2) time.

3 Correctness of the algorithm for 2-Point-
Separation

Since in Algorithm-2PS we test each curve of C
whether it separates s and t, and, if it does, then re-
move it from C, and since every such separating curve
is tested for optimality, we can assume henceforth

that no curve in C separates s and t. We show
that this assumption implies that the choice of closed
(⌧(Tr, e))-paths made in the algorithm is irrelevant.

Lemma 2 Let ⇡ be a closed walk in G and let � and

�0

be two closed ⇡-paths. Then N(�) = N(�0).

3.1 3-Path-Condition

Consider the set of closed walks

⇧(C) = {⇡ | ⇡ a closed walk in G(C);

each closed ⇡-curve � has N(�) odd}.

For the moment, we drop the dependency on C and
use ⇧ = ⇧(C); towards the end we will use ⇧(C

⇤

) for
some C

⇤

✓ C. We have the following property, known
as 3-path-condition.

Lemma 3 Let ↵0,↵1,↵2 be 3 walks in G from c to

c0. For i = 0, 1, 2, let ⇡i be the closed walk obtained

by concatenating ↵i�1 and the reverse of ↵i+1, where

indices are modulo 3. If one of the walks ⇡0, ⇡1, or

⇡2 is in ⇧, then at least two of them are in ⇧.

When a family of closed walks satisfies the 3-path-
condition, there is a general method to find a shortest
element in the family. The method is based on consid-
ering so-called fundamental cycles defined by shortest-
path trees, which is precisely what Algorithm-2PS

is doing specialized for the family ⇧. This is basi-
cally the fundamental cycle method used in Topolog-
ical Graph Theory. See [9] or [8, Chapter 4] for the
original approach, and [3] for a recent extension to
weighted, directed graphs.

Lemma 4 If ⇧ is nonempty, then the closed walk

⌧⇤ = ⌧(Tr⇤ , e
⇤) computed by Algorithm-2PS is a

cycle and is a shortest closed walk of ⇧.

3.2 Feasibility

The next step is to show that, when C>2 is defined, it
is a feasible solution. For this we find a closed, simple
path contained in C>2 that separates s and t.

Lemma 5 Assume that ⇧ is nonempty and let ⇡⇤

be any shortest cycle in ⇧. The set of curves C(⇡⇤)
separates s and t.

We next argue that the algorithm computes a feasi-
ble solution, when it exists. We know that ⌧(Tr⇤ , e

⇤)
separates, when it is defined, but could it happen that
⇧ is empty and thus (r⇤, e⇤) is undefined? The fol-
lowing lemma asserts that this is not the case.

Lemma 6 If C separates s and t but no two curves

C separate s and t, then ⇧ is nonempty.

3.3 Main result

We can now prove that Algorithm-2PS is correct.
The interesting case is when each optimal solution
has at least 3 curves. We can use Lemma 6 to argue
that ⇧(C

⇤

) is non-empty for each optimal solution
C

⇤

, which in turn implies that ⇧(C) is non-empty.
It follows from Lemma 4, that ⌧⇤ is defined and it
is a shortest cycle in ⇧. Since C(⌧⇤) is a feasible
solution and the shortest cycle in ⇧(C

⇤

) cannot be
shorter than the shortest cycle in ⇧(C), we obtain
that w(C(⌧⇤)) w(C

⇤

) and thus C(⌧⇤) is also an
optimal solution.

Theorem 7 The weighted version of 2-Points-

Separation can be solved in O(nk + n2 logn) time,

where n is the number of input curves and k is the

number of pairs of curves that intersect. When the

curves have weights 0 and 1, the running time be-

comes O(nk + n2).

171

29th European Workshop on Computational Geometry, 2013

T F

Figure 5: Variable gadget for Points-Separation

with horizontal/vertical segments. The segments with
arrows may be extended.

Figure 6: Variable gadget for Points-Separation

with unit circles

4 Hardness of Point-Separation

We show that Points-Separation is NP-hard for
two families of curves: (i) horizontal and vertical
segments, and (ii) unit circles. We reduce from
Planar-3-SAT, which was shown to be NP-hard
in [7]. Planar-3-SAT is the restriction of 3-SAT

to formulae whose incidence graph is planar and has
a plane 3-legged rectilinear representation [5].
In our construction, we replace each variable and

clause by a gadget. Our drawings use black seg-
ments/circles for curves that must be in any feasible
solution. This is enforced by extra points.
The variable gadgets shown in Figures 5,6. A

minimum-cardinality feasible solution for the variable
gadget contains all the black curves and either all the
red curves or all the blue curves. We use this red/blue
alternative to encode True/False assignments.
In the case of segments, a clause is represented as

shown in Fig. 7. It consists of additional black seg-
ments that must be included in any feasible solution
and two additional points. For each variable that oc-
curs in the clause, we elongate one segment from the
corresponding variable gadget to separate the two ad-
ditional points.
For unit circles, the rectangle representing a clause

is deformed into an M-like corridor that is made from
unit circles, as shown in Fig 8. The corridor is nar-
rowed near the variables such that a red or blue circle
(depending on the literal) disconnects the corridor.

¬x2 _ x4 _ x5

x2 _ x3 _ ¬x4

x1 _ ¬x2 _ x3

¬x1 _ x4 _ ¬x5

Figure 7: An example construction with segments;
the frames in the gadgets are shown as rectangles.

Figure 8: Clause (x2 _ x3 _ ¬x4) with unit circles.

Theorem 8 Points-Separation is NP-hard for

families of horizontal/vertical segments and for fami-

lies of unit circles.

References

[1] H. Alt, S. Cabello, P. Giannopoulos, and C. Knauer.
Minimum cell connection and separation in line seg-
ment arrangements. CoRR, abs/1104.4618, 2011.

[2] S. Bereg and D. G. Kirkpatrick. Approximating bar-
rier resilience in wireless sensor networks. In Proc.
5th ALGOSENSORS, volume 5804 of LNCS, pages
29–40. Springer, 2009.

[3] S. Cabello, É. C. de Verdière, and F. Lazarus. Find-
ing shortest non-trivial cycles in directed graphs on
surfaces. In Proc. 26th SoCG, pages 156–165, 2010.

[4] M. Gibson, G. Kanade, and K. Varadarajan. On iso-
lating points using disks. In Proc. 19th ESA, volume
6942 of LNCS, pages 61–69. Springer, 2011.

[5] D. E. Knuth and A. Raghunathan. The problem of
compatible representatives. SIAM J. Discret. Math.,
5(3):422–427, 1992.

[6] S. Kumar, T.-H. Lai, and A. Arora. Barrier coverage
with wireless sensors. Wireless Networks, 13(6):817–
834, 2007.

[7] D. Lichtenstein. Planar Formulae and Their Uses.
SIAM Journal on Computing, 11(2):329–343, 1982.

[8] B. Mohar and C. Thomassen. Graphs on surfaces.
Johns Hopkins Studies in the Mathematical Sciences.
John Hopkins University Press, 2001.

[9] C. Thomassen. Embeddings of graphs with no short
noncontractible cycles. J. of Comb. Theory, B,
48(2):155–177, 1990.

172

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Kinetic Euclidean 2-centers in the Black-Box Model

⇤

Mark de Berg† Marcel Roelo↵zen† Bettina Speckmann†

Abstract

We study the 2-center problem for moving points in
the plane. Given a set P of n points, the Euclidean
2-center problem asks for two congruent disks of mini-
mum size that together cover P . Our methods work in
the black-box KDS model, where we receive the loca-
tions of the points at regular time steps and we know
an upper bound d

max

on the maximum displacement
of any point within one time step.
We show how to maintain a (1 + ")-approximation

of the Euclidean 2-center in amortized sub-linear time
per time step, under certain assumptions on the dis-
tribution of the point set P . In many cases—namely
when the distance between the centers of the disks
is relatively large or relatively small—the solution we
maintain is actually optimal.

1 Introduction

The clustering problem is to partition a given set of
objects into clusters, that is, into subsets consisting of
similar objects. These objects are often (represented
by) points in some 2- or higher dimensional space,
and the similarity between points corresponds to the
distance between them. We are interested in a set-
ting with two clusters of points in the plane. Given a
set P of n points, the Euclidean 2-center problem—
or 2-center problem for short—asks for two congruent
disks of minimum size that together cover P . The
2-center problem can also be interpreted as a facility-
location problem, where the goal is to place two fa-
cilities such that the distance from any client in P to
its nearest facility is minimized.
The 2-center problem and the more general k-center

problem—which asks for k disks to cover P—have
been studied extensively since their introduction by
Sylvester [20] in 1857. Closely related is the recti-
linear k-center problem which asks for k congruent
squares to cover the point set. Both the Euclidean
and the rectilinear k-center problem are np-hard [14]
when k is part of of the input, but polynomial-time
solutions are possible when k is a constant. The recti-
linear k-center problem can be solved quite e�ciently

⇤M.R. and B.S. were supported by the Netherlands’
Organisation for Scientific Research (NWO) under project
no. 600.065.120 and 639.022.707, respectively.

†Department of Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
{mdberg,mroelo↵,speckman}@win.tue.nl.

for small k. For k = 2, 3 the optimal rectilinear k-
center can be computed in O(n) time [8, 13, 19] and
for k = 4, 5 in O(n log n) time [15, 16]. In contrast, no
sub-quadratic algorithm was known for the Euclidean
2-center for many years, until Sharir [18] developed
an O(n log9 n) time algorithm. The currently best so-
lution takes O(n log2 n(log log n)2) time [6]. Other re-
sults include an ⌦(n log n) lower bound for k = 2 [17]
and algorithms that compute a (1+")-approximation
of the k-center [1, 2]. For the 2-center problem in R2

such an (1 + ")-approximation can be computed in
O(n) + (2/")O(1) time.

The kinetic 2-center problem. The results men-
tioned so far are for static point sets, but also kinetic

versions of the 2-center problem have been studied.
Here we want to maintain the optimal 2-centers as the
points in P move. Unfortunately, even under the re-
striction that the speed of the points in P is bounded
by a given value v

max

, the speed of the centers can-
not be bounded if one maintains the optimal 2-center.
For mobile facility location this is undesirable as the
centers represent moving facilities which often have a
bounded speed as well. Hence, Durocher and Kirk-
patrick [9] describe a general strategy for maintain-
ing an approximate 2-center in such a way that the
speed of the disk centers is bounded. One variant
of their strategy achieves an approximation ratio of
8/⇡ ⇡ 2.55 while the maximum speed of the disk cen-
ters is bounded by (8/⇡+1) v

max

⇡ 3.55 v
max

. Main-
taining this approximation is done using the kinetic
data structures (KDS) framework by Basch et al. [3].
When viewed as a clustering problem the centers have
no explicit meaning and no bound on their speed is
necessary. For this case e�cient KDSs for the discrete
version of the k-center problem, where the disk cen-
ters must be chosen from the input set P , have been
given [7, 11].

Problem statement. The previous results on the
kinetic 2-center problem [7, 9, 11] use the standard
KDS model, where the trajectories of the points are
known in advance. However, in many applications
the trajectories are not known and the standard KDS
framework cannot be used. Hence, we study the
kinetic 2-center problem in the so-called black-box

model [4, 5, 12]. In the black-box model the loca-
tions of the points are reported at regular time steps
t
0

, t
1

, · · · , and we are given a value d
max

such that any
point can move at most distance d

max

from one time
step to the next. Thus, when p(t) denotes the location

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

173

29th European Workshop on Computational Geometry, 2013

of point p at time t, we have dist(p(ti), p(ti+1

)) 6 d
max

for all p 2 P and every time step ti. We want to main-
tain the 2-center of the set P (t) := {p(t) : p 2 P} at
every time step while using coherence to speed up the
computations. This is not possible without restricting
the relation of the maximum displacement d

max

and
the distribution of the point set P : if all points lie
within distance d

max

from each other then the distri-
bution at time t+1 need not have any relation to the
distribution at time t, and so there is no coherence
that can be used. Following our previous papers [4, 5]
we assume the following.

Displacement Assumption: There is a

maximum displacement d
max

and constant

k such that for each point p 2 P and any

time step ti we have

• dist(p(ti), p(ti+1

)) 6 d
max

, and

• there are at most k other points from

P within distance d
max

from p(ti).

Under this assumption, we formulate our bounds
in terms of the so-called k-spread [10] of P ,
which is defined as follows. Let mindistk(P) :=
minp2P dist(p,nnk(p, P)) denote the smallest dis-
tance from any point p 2 P to its k-nearest neigh-
bor nnk(p, P). Then the k-spread �k of P is defined
as �k(P) := diam(P)/mindistk(P). The 1-spread is
simply the regular spread of a point set. We use the
k-spread instead of regular spread, since two points
may pass by each other at a very close distance, caus-
ing a small value for mindist

1

(P) and, consequently,
a high spread. It is much less likely that k points are
very close simultaneously, and so mindistk(P) tends
to not be very small. For a good k-spread we also
need the diameter not to be too large. This is some-
what unnatural for the 2-center problem: when the
two clusters are far apart, the k-spread may become
very large even though within each cluster, the points
are very evenly distributed. Hence we introduce the
so-called (2, k)-spread �

2,k(P):

�
2,k(P) := min

P1,P2

max(�k(P1

),�k(P2

)),

where the minimum is taken over all possible parti-
tions of P into two subsets P

1

, P
2

. (The partition
defining �

2,k(P) does not need to be the same as
the partition defining the optimal clustering in the
2-center problem, but since �

2,k(P) is the minimum
over all partitions this can lead only to a better (2, k)-
spread.) We express our results using the (2, k)-
spread of P , that is, using the maximum value of
�

2,k(P (ti)) over all time steps ti, which we abbre-
viate as �

2,k := maxti �2,k(P (ti)).

Results and Organization. We study the kinetic
Euclidean 2-center problem from a clustering point of
view: without restrictions on the speed of the centers.

q
1

q
2

p

q
1

q
2

"

`

` q
1

q
2

p

"

`

b) c)

a)

"

Figure 1: When a) dist(q
1

, q
2

) > 2r + "r or b)
dist(q

1

, q
2

) 6 2r � "r/2 the 2-center disks that cover
P" also cover P , and c) otherwise blowing up the disks
by a factor 1 + " ensures they cover P .

We investigate the Euclidean 2-center problem and
show how to maintain a (1 + ")-approximation, for
any 0 < " 6 ⇡/4 in O((k/"3)�

2,k log
3 n(log log n)2)

amortized time. In many cases—when the distance
between the centers of the disks is relatively large or
small—the solution we maintain is optimal.

2 The Euclidean 2-center

The Euclidean 2-center problem asks for two congru-
ent disks of minimum size that together cover P . Our
global strategy to maintain the Euclidean 2-center ki-
netically is to find a subset Q ✓ P containing points
that are in some sense on the outside of P . We then
compute the optimal 2-center for Q and show that it
is an approximation of the 2-center of P . Maintaining
the approximate 2-center can then be done by main-
taining Q. First we define what exactly it means for
a point to be on the outside of the point set.
Define a point p 2 P to be "-interesting if there

is a wedge W"(p) with apex p and opening angle "
such that W"(p) does not contain any other points
of P . Let P" denote the set of "-interesting points in
P . We show that it su�ces to consider the points in
P" to get (an approximation of) an optimal solution
to the 2-center problem on P . In the following we use
disk(q, r) to denote the disk of radius r centered at q.

Lemma 1 Let disk(q
1

, r) and disk(q
2

, r) be the two

disks of an optimal solution for the Euclidean 2-center

problem on P", for some " < ⇡/4. If dist(q
1

, q
2

) 6
2r � "r/2 or dist(q

1

, q
2

) > 2r + "r then disk(q
1

, r)
and disk(q

2

, r) are an optimal solution for the 2-

center problem on P ; otherwise disk(q
1

, r + "r) and

disk(q
2

, r + "r) are a (1 + ")-approximation for the

2-center problem on P .

Proof (sketch). First consider the case dist(q
1

, q
2

) 6
2r�"r/2. Since P" ✓ P , the disks in an optimal solu-
tion for P cannot have radius smaller than r. Hence,

174

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

it su�ces to prove that disk(q
1

, r) [disk(q
2

, r) cov-
ers P . Suppose for a contradiction there is an un-
covered point in P . Assume without loss of gener-
ality that the line ` through q

1

and q
2

is horizon-
tal, and let p be the highest uncovered point above `,
see Figure 1. (If all uncovered points lie below ` we
can apply a similar argument to the lowest uncovered
point.) The condition dist(q

1

, q
2

) 6 2r � "r/2 im-
plies that the “vertical” wedge W"(p) does not inter-
sect disk(q

1

, r)[disk(q
2

, r), and the fact that p is the
highest uncovered point implies that W"(p) does not
contain any other uncovered point. Hence, p 2 P",
contradicting that disk(q

1

, r) and disk(q
2

, r) form a
solution for P".

When dist(q
1

, q
2

) > 2r+"r we can show in a similar
way that disk(q

1

, r)[disk(q
2

, r) covers P . When 2r�
"r/2 6 dist(q

1

, q
2

) 6 2r + "r we cannot guarantee
this, but if we blow up the disks by a factor (1+") we
are essentially back in the first case and we can apply
the same reasoning. ⇤
By Lemma 1 we obtain a (1 + ")-approximation for
the Euclidean 2-center problem if we can maintain the
set P". This seems di�cult, so instead we maintain a
superset P ⇤

" ◆ P" defined as follows. Let W"/2 be a
wedge of opening angle "/2. We say that W"/2 is a
canonical ("/2)-wedge if the counter-clockwise angle
that its angular bisector makes with the positive x-
axis is i"/2, for some integer 0 6 i < d4⇡/"e. We
now define P ⇤

" as the set of points p in P that have
an empty canonical ("/2)-wedge (that is, a wedge not
containing points from P) with apex p. The following
observation implies that Lemma 1 is still true if we
replace P" by P ⇤

" .

Observation 1 Any point p 2 P that is the apex

of an empty "-wedge is also the apex of an empty

canonical ("/2)-wedge, so P" ✓ P ⇤
" .

We are left with the problem of maintaining P ⇤
" . This

is done in a similar fashion as we maintained the con-
vex hull vertices in a previous paper [4]: Each point
p 2 P gets a time stamp that indicates how many
time steps it takes before p can be in P ⇤

" . At each
time step we then consider only points whose time
stamps have expired. Recall that there are d4⇡/"e
di↵erent classes of canonical wedges, corresponding
to the orientation of their angular bisector. We treat
each of these classes separately. Consider one such
class, and assume without loss of generality that its
angular bisector is pointing vertically upward. We
wish to maintain the set P ⇤,up

" of points whose up-
ward canonical wedge is empty. Define W down(p)
to be the wedge with apex p that is the mirrored
image of the upward canonical wedge of p, and let
Wdown(t) := {W down(p(t)) : p 2 P} be the set of all
such downward wedges. Then a point q lies in the up-
ward canonical wedge of p if and only if p 2 W down(q).

p(t)

p0(t)

E(Wdown(t))

dist⇤(p(t))

Figure 2: The point p0(t) is the projection of p(t) on
E(Wdown(t)).

This implies the following lemma.

Lemma 2 Let E(Wdown(t)) denote the upper enve-

lope of the downward wedges at time t. Then p 2
P ⇤,up
" (t) if and only if p(t) is a vertex of E(Wdown(t)).

Because of the bounded speed of the points, we know
that points far from the upper envelope E(Wdown)
need a lot of time before they can appear on the en-
velope. Hence, we can use the distance from p to
E(Wdown) to define its time stamp. To be able to
compute time stamps quickly, we will not use the
Euclidean distance from p to E(Wdown) but an ap-
proximation of it. Let p0(t) be the vertical projec-
tion of p(t) onto E(Wdown(t)); see Figure 2. Then
our approximated distance is defined as dist⇤(p(t)) :=
dist(p(t), p0(t))·sin("/4). Note that dist⇤(p(t)) is equal
to the distance from p(t) to the boundary of the down-
ward wedge W down(p0(t)). Because W down(p0(t)) is
completely below (or on) E(Wdown), the actual Eu-
clidean distance from p(t) to E(Wdown) is at least
dist⇤(p(t)). Hence, we can safely use dist⇤(p(t)) to
define the time stamps. Thus, when we compute the
time stamp of a point p at time t we set

tup(p) := min(bdist⇤(p(t))/2d
max

c+ 1, n).

Lemma 3 If a point p receives time stamp tup(p) at
time ti, then p cannot be on E(Wdown(tj)) for ti <
tj < ti + tup(p).

The final time stamp of a point p is defined as the
minimum over all time stamps computed for p for
the d4⇡/"e di↵erent wedge orientations. The al-
gorithm for maintaining the Euclidean 2-center can
now be summarized as follows. Initially (at time
t = t

0

) we compute a time stamp t(p) for every
point p, which is the minimum over the time stamps
for the d4⇡/"e canonical wedge orientations. Then
at each time step t = ti we take the set Q(t) of
points whose time stamps expire at time t. For each
canonical orientation we use a simple sweep-line al-
gorithm to compute in O(|Q(t)| log |Q(t)|) time the
envelope of the mirrored wedges of the points in
Q(t). Since there are d4⇡/"e di↵erent orientations
this takes O((1/")|Q(t)| log |Q(t)|) time in total. The
collection of all points p 2 Q(t) that are a vertex of

175

29th European Workshop on Computational Geometry, 2013

at least one of the envelopes is the set P ⇤
" (t). We

then solve the Euclidean 2-center problem on P ⇤
" (t)

using an algorithm for static points, giving us two
disks disk(q

1

, r) and disk(q
2

, r). (To get the best run-
ning time, we use Chan’s algorithm [6] for this.) If
2r � "r/2 6 dist(q

1

, q
2

) 6 2r + "r then we report
disk(q

1

, r + "r) and disk(q
2

, r + "r), otherwise we re-
port disk(q

1

, r) and disk(q
2

, r). Finally, we compute
new time stamps for the points in Q(t). Since we
already have all the envelopes this can be done in
O((1/")|Q(t)| log |Q(t)|) time in total.

The running time of our algorithm strongly depends
on the number of points in Q(t). Although in the
worst case |Q(t)| may be large, we can show that it is
small on average. The proof of the following lemma is
similar to a proof in a previous paper [4, Lemma 6].

Lemma 4 The number of points in Q(t) is

O((1/"2)k�
2,k logn) amortized.

Using that the static 2-center algorithm by Chan [6]
on m points runs in O(m log2 m(log logm)2) time, we
obtain the following theorem.

Theorem 5 Let P be a set of n moving points that

adheres to the Displacement Assumption with param-

eters k and d
max

, let �
2,k denote the maximum (2, k)-

spread of P at any time t, and let 0 < " 6 ⇡/4. Then
we can maintain a (1 + ")-approximation of the Eu-

clidean 2-center for P in the black-box KDS model in

O((k/"3)�
2,k log

3 n(log log n)2)) amortized time per

time step and using O(n) space.

3 Conclusions

We have shown how to maintain an approximation
of the Euclidean 2-center problem in amortized sub-
linear time in the black-box model under certain as-
sumptions on the distribution of the points. In the
solution presented here the centers can “jump” be-
tween time steps. That is, between two consecutive
time steps the distances between the centers can be
very large compared to d

max

. For clustering this is
not a problem, but for facility location problems this
is undesirable. Durocher and Kirkpatrick [9] show a
lower bound of

p
2 on the approximation ratio when

the centers move with bounded speed. They provide
an approximation scheme that achieves an approxima-
tion ratio of 8/⇡ ⇡ 2.55. We have also investigated
bounded speed approximations for Euclidean kinetic
2-center problem in the black-box model. In the full
paper we show how to obtain a 2.28-approximation for
the Euclidean 2-center, such that the centers move at
most 4

p
2d

max

per time step. There, we also study
the rectilinear version of the kinetic 2-center problem
(with and without speed restriction for the centers).

References

[1] P.K. Agarwal and C.M. Procopiuc. Exact and ap-
proximation algorithms for clustering. Algorithmica

33:201–226, 2002.

[2] M. Bādoiu, S. Har-Peled and P. Indyk. Approximate
clustering via core-sets. In Proc. 34th ACM Symp.

Th. Comp., pages 250–257, 2002.

[3] J. Basch, L.J. Guibas and J. Hershberger. Data struc-
tures for mobile data. In Proc. 8th ACM-SIAM Symp.

Disc. Alg., pages 747–756, 1997.

[4] M. de Berg, M. Roelo↵zen and B. Speckmann. Ki-
netic convex hulls and Delaunay triangulations in the
black-box model. In Proc. 27th ACM Symp. Comp.

Geom., pages 244–253, 2011.

[5] M. de Berg, M. Roelo↵zen and B. Speckmann. Ki-
netic compressed quadtrees in the black-box model
with applications to collision detection for low-
density scenes. In Proc. 20th Euro. Symp. Alg., pages
383–394, 2012.

[6] T.M. Chan. More planar two-center algorithms.
Comp. Geom. 13:189–198, 1999.

[7] B. Degener, J. Gehweiler and C. Lammersen. Kinetic
facility location. Algorithmica 57:562-584, 2010.

[8] Z. Drezner. On the rectangular p-center problem.
Naval Res. Log. Quart. 34:229–234, 1987.

[9] S. Durocher and D. Kirkpatrick. Bounded-velocity
approximations of mobile Euclidean 2-centres. Int. J.
Comp. Geom. Appl. 18(3):161–183, 2008.

[10] J. Erickson. Dense point sets have sparse Delaunay
triangulations. Disc. Comp. Geom. 30:83–115, 2005.

[11] S. Friedler and D. Mount. Approximation algorithm
for the kinetic robust K-center problem. Comp.

Geom. 43:572–586, 2010.

[12] J. Gao, L.J. Guibas and A. Nguyen. Deformable
spanners and applications. In Proc. 20th ACM Symp.

Comp. Geom., pages 190–199, 2004.

[13] M. Ho↵mann. A simple linear algorithm for com-
puting rectangular three-centers. In Proc. 11th Can.

Conf. Comp. Geom., pages 72-75, 1999.

[14] N. Megiddo and K.J. Supowit. On the complexity of
some common geometric location problems. SIAM J.

Comp. 13(1):182196, 1984.

[15] D. Nussbaum. Rectilinear p-piercing problems. In
Proc. 1997 Int. Symp. Symb. Algebraic Comp., pages
316–324, 1997.

[16] M. Segal. On piercing of axis-parallel rectangles and
rings. In Proc. 1997 Int. Symp. Symb. Algebraic

Comp., pages 430–442, 1997.

[17] M. Segal. Lower bounds for covering problems. J.

Math. Model. Alg. 1(1):17–29, 2002.

[18] M. Sharir. A near-linear algorithm for the planar
2-center problem. Disc. Comp. Geom. 18:125–134,
1997.

[19] M. Sharir and E. Welzl. Rectilinear and polygonal p-
piercing and p-center problems. In Proc. 12th ACM

Symp. Comp. Geom., pages 122–132, 1996.

[20] J.J. Sylvester. A question in the geometry of situa-
tion. Quart. J. Math. 1:79, 1857.

176

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

New representation results for planar graphs

Farhad Shahrokhi
Department of Computer Science and Engineering, UNT

P.O.Box 13886, Denton, TX 76203-3886, USA farhad@cs.unt.edu

Abstract

A universal representation theorem is derived that
shows any graph is the intersection graph of one
chordal graph, a number of co-bipartite graphs, and
one unit interval graph. Central to the the result is
the notion of the clique cover width which is a gener-
alization of the bandwidth parameter. Specifically,
we show that any planar graph is the intersection
graph of one chordal graph, four co-bipartite graphs,
and one unit interval graph. Equivalently, any planar
graph is the intersection graph of a chordal graph and
a graph that has clique cover width of at most seven.
We further describe the extensions of the results to
graphs drawn on surfaces and graphs excluding a mi-
nor of crossing number of at most one.

1 Introduction and Summary

Graph theory, geometry, and topology stem from the
same roots. Representing graphs as the intersection
graphs of geometric or combinatorial objects is highly
desired in certain branches of combinatorics, discrete
and computational geometry, graph drawing and in-
formation visualization, and the design of geographic
information systems (GIS). A suitable intersection
model not only provides a better understanding of
the underlying graph, but it can also lead to compu-
tational advances. A remarkable result in this area is
Koebe’s (also Thurston’s) theorem, asserting that ev-
ery planar graph is the touching graph of planar disks.
A similar result is due to Thomassen [12] who showed
that every planar graph is the intersection graph of
axis parallel boxes in R3. Another noteworthy result
is due to Gavril [7] who proved that every chordal
graph (a graph with no chordless cycles) is the inter-
section graph of a collection of subtrees of a tree.

Any (strict) partially ordered set [14] (S, <) has a
directed acyclic graph Ĝ associated with it in a nat-
ural way: V (G) = S, and ab ∈ E(G) if and only if
a < b. The comparability graph associated with (S, <)
is the undirected graph which is obtained by dropping
the orientation on edges of Ĝ. The complement of a
comparability graph is an incomparability graph. In-
comparability graphs are well studied due to their rich
structures and are known to be the intersection graph
of planar curves [3]. A interesting result in this area is

due to Pach and Törőcsik [9] who showed, given a set
of straight line segments in the plane, there are four
incomparability graphs whose edge intersections gives
rise to the intersections of the segments. Moreover, re-
cent work in combinatorial geometry has shown the
connections between the intersection patterns of arbi-
trary planar curves and properties of incomparability
graphs [6], [5].

An an interval graph is the intersection graph of a
set of intervals on the real line [13]. It is easily seen
that an interval graph is an incomparability graph. A
unit interval graph is the intersection graph of a set
of unit intervals.

Throughout this paper, G = (V (G), E(G)) denotes
a connected undirected graph. Let d ≥ 1, be an in-
teger, and for i = 1, 2, ..., d let Hi be a graph with
V (Hi) = V , and let G be a graph with V (G) = V and
E(G) = ∩d

i=1E(Gi). Then we say G is the intersec-
tion graph of H1, H2, ..., Hd, and write G = ∩t

i=1Hi.
A clique cover C in G is a partition of V (G) into
cliques. Throughout this paper, we will write C =
{C0, C1, ..., Ct} to indicate that C is an ordered set
of cliques. For a clique cover C = {C0, C1, ..., Ct},
in G, let the width of C, denoted by W (C), denote
max{|j − i||xy ∈ E(G), x ∈ Ci, y ∈ Cj , Ci, Cj ∈ C}.
The clique cover width of G denoted by CCW (G) is
the smallest width all ordered clique covers in G. Note
that CCW (G) ≤ BW (G), where BW (G) denotes the
bandwidth of G. A co-bipartite graph is the comple-
ment of a bipartite graph. Clearly, any co-bipartite
graph is an incomparability graph.

1.1 Our Results

We recently proved the following result [11].

Theorem 1 Let C be a clique cover in G with 0 <
W (C) ≤ w, w ≥ 1. Then, there are &log(w)' + 1
co-bipartite graphs Hi, i = 1, 2, ..., &log(w)' + 1, and
a unit interval graph H!log(w)" + 2, so that G =

∩!log(w)"+2
i=1 Hi.

The main result in this paper is Theorem 5, which
asserts any planar graph is the intersection graph of a
chordal graph and a graph whose clique cover width
is bounded by seven. The application of Theorem 1,
then, gives another version of the result as stated in

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

177

29th European Workshop on Computational Geometry, 2013

the abstract. Theorem 5 is obtained using the Uni-
versal Representation Theorem, or Theorem 2, which
is interesting on its own, and asserts that any graph
is intersection graph of a chordal graph and a graph
whose clique cover width is bounded. Nonetheless, the
upper bound on the clique cover width of the second
graph depends on the properties of the tree decom-
positions of the original graph. Theorem 5 is further
extended to graphs drawn on surfaces, and graphs ex-
cluding a minor with the crossing number of at most
one.

2 Main Results

Definition 1 A tree decomposition [10] of a graph G
is a pair (X, T) where T is a tree, and X = {Xi|i ∈
V (T)} is a family of subsets of V (G), each called a
bag, so that the following hold:

• ∪i∈V (T)Xi = V (G)
• for any uv ∈ E(G), there is an i ∈ V (T) so that

v ∈ Xi and u ∈ Xi.

• for any i, j, k ∈ V (T), if j is on the path from i
to k in T , then Xi ∩ Xk ⊆ Xj.

Theorem 2 (Universal Representation Theorem)
Let G be a graph and let L = {L1, L2, ..., Lk} be a
partition of vertices, so that for any xy ∈ E(G), ei-
ther x, y ∈ Li where 1 ≤ i ≤ k, or, x ∈ Li, y ∈ Li+1,
where, 1 ≤ i ≤ k−1. Let (X, T) be a tree decomposi-
tion of G. Let t∗ = maxi=1,2,...,k{|Li∩Xj ||j ∈ V (T)}.
(Thus, t∗ is the largest number of vertices in any ele-
ment of L that appears in any bag of T). Then, there
is a graph G1 with CCW (G1) ≤ 2t∗−1 and a chordal
graph G2 so that G = G1 ∩ G2.

Proof. For any v ∈ V (G), let Xv be the set of bags
in X that contains vertex v, and let Tv be the subtree
of T on the vertex set Xv. Let G2 be the intersection
graph of these subtrees. Thus, for any v, w ∈ V (G),
vw ∈ E(G2), if Xv ∩ Xw '= ∅. It is well known that
G2 is chordal. See work of Gavril [7]. Now let ω be
the largest clique in G2 among all cliques whose ver-
tices are entirely in Li, for some i = 1, 2, ..., k. It
follows from established properties on the tree de-
composition that all vertices in ω should appear in
one bag B in X . Consequently, |ω| ≤ |B ∩ Li| ≤ t∗.
Next observe that for i = 1, 2, ..., k, G2[Li] is chordal
and hence perfect, and thus there must be at most
t∗ disjoint independent sets Lj

i , j = 1, 2, ..., t∗ whose
union is Li. Now construct G1, V (G1) = V (G), as
follows: E(G1) = E(G) ∪ E′, where E′ is obtained
by placing an edge between any vertex pair in each
independent set Li

j for i = 1, 2, , ..., k, j = 1, 2, ..., t∗.
Clearly, G = G1 ∩ G2. In addition, for i = 1, 2, ..., k,
G1[Li] is covered with at most t∗ disjoint cliques,
hence any ordering of these cliques will give rise to
a clique cover C of G1 with W (C) ≤ 2t∗ − 1, since

any edge e ∈ E(G1) either has both ends in one pre-
viously prescribed clique in G1[Li], or must have end
points in two consecutive elements in L. !.

The following definitions are from [2].

Definition 2 A maximal spanning forest of G is a
spanning forest T that contains a spanning tree from
each component of G. Thus, when G is connected,
any spanning tree of G is also a maximal spanning
forest. Let T be a maximal spanning tree of G, and
let ab ∈ E(G) − E(T); The detour of ab in T is the
unique ab path in T . Let e ∈ E(T). The edge re-
member number of e, denoted by er(e, T, G), is the
number of edges in E(G) − E(T) whose detour con-
tains e; Equivalently, er(e, T, G) is the number of fun-
damental cycles in G relative to T , that contain e.
Similarly, for v ∈ V (G), the vertex remember num-
ber number of v denoted by vr(v, T, G), is the num-
ber of edges in E(G) − E(T) whose detour, or the
fundamental cycle associated with it, contains v. To
remedy technical issues, for any e ∈ E(G) − E(T),
we define er(e, T, G) = 0. The edge remember num-
ber and vertex remember number of G in T , denoted
by er(G, T) and vr(G, T), are the largest remember
numbers overall edges in E(T) and vertices in V (T),
respectively.

Definition 3 Let T be a maximal spanning tree of
G, and let T̂ be a forest that is obtained by inserting
vertices of degree two to the edges of T . Thus, T̂ =
(V (T) ∪ E(T), E(T̂)). Now, for any v ∈ V (T) place
v in Xv, and for any e = ab ∈ E(T) place a and b in
Xe. Next, for any e = ab ∈ E(G) − E(T), take one
of a or b, say a, and place it in Xv, for any v which
is on the unique ab−detour in T ; Similarly, place a in
Xe for any edge e which is on the unique ab−detour
in T . Finally, define, X̂ = {Xi|i ∈ V (T) ∪ E(T)}.

Bodlaender [2] showed the following.

Theorem 3 Let T be a maximal spanning tree of G,
and let T̂ and X̂ be as defined above. Then, (X̂, T̂)
is a tree decomposition of G whose width is at most
max{vr(G, T), er(G, T) + 1}.

In light of the above result, we will refer to (T̂ , X̂)
(in definition 3) as a tree decomposition of G relative
to T . Note that the construction in definition 3 would
allow the same vertex to appear in Xv or Xe more
than once, where each appearance is associated with
an end point of an edge e ∈ E(G) − E(T), represent-
ing a distinct fundamental cycle containing v, or, e.
With that in mind, we have , |Xv| = vr(v, T, G) + 1
and |Xe| = er(e, T, G)+2. However, when viewing
|Xv| and |Xe| as sets, the duplicate members would
be removed, thereby, = would become ≤.

The following Lemma is extended from [2]. The
notations and claims are slightly perturbed to exhibit

178

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

additional properties of the construction of Bodlaen-
der, that we will use later.

Lemma 4 Let G be a plane graph, let O be the set of
all vertices in the outer boundary of G, let H, V (H) =
V (G) be a graph obtained by removing all edges in
the outer boundary G. Let T ′ be a maximal spanning
forest of H and let (X̂ ′, T̂ ′) be a tree decomposition
of H relative to T ′.

(i) T can be extended to a maximum spanning
forest T of G so that vr(v, T, G) ≤ vr(v, T ′, H)+∆(G)
and er(e, T, G) ≤ er(e, T ′, H) + 2, for all v ∈ V (G)
and e ∈ E(T).

(ii) (X̂ ′, T̂ ′) can be extended to a tree decompo-
sition (X̂, T̂) of G relative to T so that |Xv ∩ O| ≤
|X ′

v ∩ O| + ∆(G) and |Xe ∪ O| ≤ |X ′
e ∪ O| + 2 for all

v ∈ V (G) and e ∈ E(T) .1

Proof. For (i), let K be graph with V (K) = V (G)
and E(K) = E(T ′) ∪ (E(G) − E(H)), and note that
the external face of K is the same as external face of
G. Extend T ′ to a maximal spanning tree T of K by
adding edges from E(G) − E(H). Note that for any
e = xy ∈ E(K)−E(T), x and y must be on the bound-
ary of G. Thus, the associated xy detour p in T plus e
must form the boundary of a non-external face in K.
Since any edge in T is common to at most 2 non exter-
nal faces, and each vertex in T is common to at most
∆(G) many non-external faces, in K, it follows that
for any e ∈ E(T) and any v ∈ V (G), er(e, T, K) ≤ 2
and vr(v, K, T) ≤ ∆(G). As T is also a maximal
spanning tree of G and each fundamental cycle in G
is either a fundamental cycle of K relative to T , or a
fundamental cycle of H relative to T ′, we must have
er(e, G, T) ≤ er(e, T ′, H)+er(e, T, K) ≤ er(e, T ′H)+
2, and vr(v, G, T) ≤ er(e, T ′, H) + vr(v, T, K) ≤
vr(v, T ′, H) + ∆(G).

(ii) follows from (i). In particular, note that addi-
tional 2 or ∆(G) fundamental edges that contribute
to vr(v, G, T) and er(e, G, T), respectively, are those
edges in E(G)−E(T) that have both end points in O.
Now obtain a tree decomposition of G relative to T ,
by extending each bag of T̂ ′, to a bag of T̂ by the pos-
sible addition f one end point of such a fundamental
edge, as described in definition 3. !

By a plane graph we mean an embedding of a planar
graph in the plane. A plane graph is 1−outer planar,
if it is outer planar. For k ≥ 2, a plane graph G is
k−outer planar, if after removal of all vertices (and
edges incident to these vertices) in the external face
of G, a k − 1outer planar graph is obtained.

Theorem 5 Let G be a planar graph, then, there is
a graph G1 with CCW (G1) ≤ 7 and a chordal graph
G2 so that G = G1 ∩ G2.

1In (i) and (ii) we follow the assumption that er(e, T ′
, G) =

0 and X

′
e

= ∅, for e ∈ E(T) − E(T ′).

Proof. Assume G is k−outer planar. Thus,
there are graphs G = G1, G2, ..., Gk so that for i =
1, 2, ..., k, Gi is (k − i + 1)−outer planar, and Gi+1

is obtained by removing the vertices in the outer
face of Gi. For i = 1, 2, ..., k, let Oi denote the set
of vertices on the outer face of Gi. Note that for
i = 1, 2, ..., k, one can replace any vertex v of de-
gree d ≥ 4 in the outer face of Oi by a path pv of
d − 2 vertices of degree 3, so that G is transformed
to another k−outer planar graph G′. Specifically, for
i = 1, 2, ..., k, let O′

i denote the set of vertices cor-
responding to Oi, after this transformation. Note
that G′ is k−outer planar and has maximum degree
3, let G′

1 = G′, and for i = 2, ..., k + 1, let G′
i de-

note the graph that is obtained after removing all
edges in the outer face of G′

i−1, and note that G′
i

is (k − i + 1)−outer planar and of maximum degree
3. Note that G′

k+1 is acyclic and let Tk+1 = G′
k+1.

Clearly, vr(v, Tk+1, Tk+1) = 0, er(e, Tk+1, Tk+1) = 0,
for any x ∈ V (G), and any e ∈ E(Tk+1). Thus,
for the tree decomposition (X̂k+1, T̂k+1) of Gk+1 rel-
ative to Tk+1, and bags Xv, Xe, v ∈ V (G), e = ab ∈
E(Tk+1), we have |Xv| = 1 (since Xv = {v}), and
|Xe| = 2 (since Xe = {a, b}), respectively. Next,
for j = k, k − 1, ...1, let Tj and (X̂j , T̂j) be a max-
imal spanning forest and a tree decomposition of G′

j

relative to Tj, that are obtained by the application
of Part (i) and Part (ii) of Lemma 4, to Tj+1 and

(X̂j+1, T̂j+1), respectively. Thus, (X̂1, T̂1) is a tree de-
composition of G′. Then, one can show (by induction)
that for any j, i = k, k−1, ..., 1, and any Xj

v , Xj
e ∈ X̂j

with v ∈ V (G), e ∈ E(Tj)
|Xj

v ∩ O′
i| = |Xj−1

v ∩ O′
i| if i '= j, whereas, |Xj

v ∩
O′

i| ≤ 1 + ∆(G′
j) ≤ 1 + 3 = 4 if i = j,

and
|Xj

e ∩ O′
i| = |Xj−1

e ∩ O′
i| if i '= j, whereas, |Xj

e ∩
O′

i| ≤ 2 + 2 = 4 if i = j.

Hence, for i = 1, 2, ..., k, and X1
v , X1

e ∈ X̂1 with
v ∈ V (G) and e ∈ E(T1), we have, |X1

v ∩ O′
i| ≤ 4

and |X1
e ∩ O′

i| ≤ 4. Next, for any v ∈ V (G), contract
all the vertices in pv to v, thereby, for i = 1, 2, ..., k
contracting O′

i to Oi. For any bag X1
t ∈ X̂1 with

t ∈ V (G) ∪ E(T1), let Yt = (X1 − pv) ∪ {v}. Now
let Y = {Yt|t ∈ V (G) ∪ E(T1)}. Since G is a minor
of G′, it follows that (Y, T 1) is a tree decomposition
of G with the property that for any Yt ∈ Y with
t ∈ V (T1) ∪ E(T1), and any i = 1, 2, ..., k, we have
|Yt ∩ Oi| ≤ 4. Now the result follows from Theorem
2, by taking L = {O1, O2, ..., Ok}. !.

Combining Theorems 1 and 5 we obtain the follow-
ing.

Theorem 6 Let G be a planar graph, then, there
are co-bipartite graphs G1, G2, G3, G4, a unit inter-
val graph G5, and a chordal graph G6 so that G =
∩6

i=1Gi.

179

29th European Workshop on Computational Geometry, 2013

2.1 Extensions

The result for planar graphs give rise to the following.

Theorem 7 Let G be a graph of genus g. Then,
there is an integer c = O(log(g)), co-bipartite graphs
Gi, i = 1, 2, ..., c, a unit interval graph Gc+1, and a
chordal graph Gc+2 so that G = ∩c+2

i=1Gi.

Proof Sketch. One can show the claim by induction
on g, where Theorems 5 and 6 establish the base of
the induction. !

Theorem 8 Let G be a graph that does not have
as a minor, a graph H whose crossing number is at
most one. Then there is an integer c = O(log(CH)),
co-bipartite graphs Gi, i = 1, 2, ..., c, a unit interval
graph Gc+1, and a chordal graph Gc+2 so that G =

∩c+2
i=1Gi. Here, CH = 202(2|V (H0)|+4|E(H0)|)5 .

Proof Sketch. It is known that any graph that
does not have a minor H of crossing number of at
most one, can be obtained by taking the clique sum
of a finite set of graphs, where each graph is either
planar, or has a tree width of at most CH [10]. So
G = H1

⊕

H2...
⊕

Hk, where
⊕

stands for the clique
sum operation, and for i = 1, 2, ..., k, each Hi is either
planar, or has a tree width of at most CH . We prove
the claim by induction on k. When k = 1 the result
follows from Theorems 5, 2, 1, and the definition of
CH . Now assume that the claim is true for k = t −
1, let k = t ≥ 2, and set F = H1

⊕

H2...
⊕

Ht−1.
Then, G = F

⊕

Hk. By induction, F = F1 ∩ F2,
where F2 is chordal and CCW (F1) ≤ CH . Moreover,
since Ht−1 is either planar, or has a tree width of at
most CH , by Theorem 5 we have Gt−1 = F3 ∩ F4,
where CCW (F3) ≤ 2CH and F4 is chordal. Now let
G1 = F1

⊕

F3, and G2 = F2

⊕

F4, then, it is easy
to verify that G2 is chordal. To finish the proof, one
can verify using properties of the clique cover width
that, CCW (G2) ≤ 2CH . Now the claim follows from
Theorem 1. !

3 Computational Aspects

All constructions provided here can be done in poly-
nomial time, with the exception of Theorem 8.

In [11] we have shown that if G is the intersection
graph of a chordal graph and a graph whose clique
cover width is bounded by a constant, then G can be
separated with a splitting ratio of 1/3− 2/3, for a va-
riety of measures, where the measure associated with
the separator is “small”. Consequently, the planar
separator theorem [8] and its extensions follow from
the representation results in this paper.

We highly suspect that the computation of the
clique cover width is an NP−hard problem, due to
its connection with the bandwidth problem.

References

[1] Bodlaender H.L, A Tourist Guide through
Treewidth. Acta Cybern. 11, 1993, 1-22.

[2] Bodlaender H., A partial k-arboretum of graphs with
bounded treewidth. Theoretical Computer Science,
209, 1998, 1-45.

[3] Golumbic M., Rotem D., Urrutia J., Comparability
graphs and intersection graphs, Discrete Mathemat-
ics 43 (1), 1983, 37-6.

[4] Chan T., Polynomial-time approximation schemes
for packing and piercing fat objects , Journal of Al-
gorithms, 46(2), 2003, 178 - 189.

[5] Fox J. and Pach J., String graphs and incompara-
bility graphs, Advances in Mathematics, 2012, 1381-
1401.

[6] Fox J., Pach J., A separator theorem for string
graphs and its applications, Combinatorics, Proba-
bility and Computing 19, 2010, 371-390.

[7] Gavril, F., The intersection graphs of subtrees in
trees are exactly the chordal graphs, Journal of Com-
binatorial Theory, Series B 16, 1974, 47-56.

[8] Lipton R. J., Tarjan R.E. , A separator theorem for
planar graphs, SIAM Journal on Applied Mathemat-
ics 36, 1979, 177-189

[9] Pach J., Törőcsik J., Some geometric applications
of Dilworth’s theorem, Disc. Comput. Geometry, 21,
1994, 1-7.

[10] Robertson N., Seymour, P. D. Graph minors III: Pla-
nar tree-width, Journal of Combinatorial Theory, Se-
ries B 36 (1), 1984, 49-64.

[11] Shahrokhi F., in preparation.

[12] Thomassen, C., Interval representations of planar
graphs, Journal of Combinatorial Theory, Series B
40, 1986, 9-20.

[13] Trotter W.T., New perspectives on interval orders
and interval graphs, in Surveys in Combinatorics,
Cambridge Univ. Press, 1977, 237-286.

[14] Trotter, W.T., Combinatorics and partially ordered
sets: Dimension theory, Johns Hopkins series in the
mathematical sciences, The Johns Hopkins Univer-
sity Press, 1992.

180

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

New sequential and parallel algorithms for computing β-spectrum ∗

Miros!law Kowaluk † Gabriela Majewska ‡

1 Abstract

β-skeletons, a prominent member of the neighborhood
graph family, have interesting geometric properties
and a broad range of interesting applications. This
paper focuses on computing β-spectrum, a labeling
of the edges of the Delaunay Triangulation, DT (V),
which makes it possible to quickly find the lune-based
β-skeleton of V for any query value β ∈ [1, 2]. We con-
sider planar n point sets V with Lp metric, 1 < p < ∞
and present two new algorithms: a O(n log2 n) time
sequential, and a O(log4 n) time parallel β-spectrum
labeling. The parallel algorithm uses O(n) processors
in the CREW-PRAM model.

2 Introduction

β-skeletons [KR85] in R2 belong to the family of prox-
imity graphs, geometric graphs in which two vertices
(points) produce an edge if and only if they satisfy
particular geometric requirements.

Well-known examples of these graphs include
Gabriel Graph (1-beta skeleton), defined by Gabriel
and Sokal [GS69]; they can be computed from the De-
launay Triangulation of the point set in linear time.

Relative Neighborhood Graph RNG, β-skeletons for
β = 2, were introduced by Toussaint [Tou80] in the
context of pattern recognition. Supowit [Su83] de-
signed the first O(n log n) time algorithm and Jarom-
czyk and Kowaluk [JK87] showed how to construct
RNG from Delaunay Triangulation DT for the lp
metric (1 < p < ∞) in O(nα(n)) time, where α is
a functional inverse of Ackermann’s function; the al-
gorithm is based on the concept of elimination paths
that will play a role in this paper as well. This re-
sult was later improved to O(n) time [JKY89] for β-
skeletons for 1 ≤ β ≤ 2.

Two different forms of β-neighborhoods have been
studied for β > 1 (see e.g. [ABE98, E02]), lead-
ing to two different families of graphs: lune-based β-
skeletons and circle-based β-skeletons. In this work,
we focus on lune-based β-skeletons.

With each pair of vertices u, v we can associate the
largest value β, called β-value of uv, such that the

∗This research is supported by the ESF EUROCORES pro-
gramme EUROGIGA, CRP VORONOI.

†Institute of Informatics, University of Warsaw,
kowaluk@mimuw.edu.pl

‡Institute of Informatics, University of Warsaw,
gm248309@students.mimuw.edu.pl

edge uv belongs to the β-skeleton. A set of all edges
spanned by set of points V , each labeled with its β-
value is called a β-spectrum of V . Hurtado, Liotta
and Meijer [HLM02] showed an algorithm which com-
putes both lune-based and circle-based β-spectrum for
a set of n points in O(n2) time.

On the other hand, there are very few parallel al-
gorithms for proximity graphs [AL93, CG92, CK10].
In particular, parallel algorithms for β-skeletons have
not been studied and this paper makes an initial effort
to fill this gap.

We will present two new algorithms computing β-
spectrum for 1 ≤ β ≤ 2: a sequential algorithm with
a O(n log2 n) running time, and a parallel one that
takes O(log4 n) time and uses O(n) processors in the
CREW PRAM model.

3 Basic definitions and facts

We consider point sets in the two-dimensional plane
R2 with the Lp metric (with distance function dp),
where 1 < p < ∞.

Definition 1 For a given set of points V =
{v1, v2, . . . , vn} in R2 and parameters β ≥ 0 and p we
define graph Gβ(V) – called a lune-based β-skeleton
– as follows: two points v1, v2 are connected with an
edge if and only if no point from V \ {v1, v2} belongs
to the set Np(v1, v2, β) where:

1. for β = 0 the set Np(v1, v2, β) is simply a segment
v1v2;

2. if 0 < β < 1 then Np(v1, v2, β) is an intersection

of two discs in lp, each with radius |v1v2|
2β

, whose
boundaries contain both v1 and v2;

3. for 1 ≤ β < ∞ the set Np(v1, v2, β) is an inter-

section of two lp discs, each with radius β|v1v2|
2

,

whose centers are in points (β

2
)v1 +(1− β

2
)v2 and

in (1 − β

2
)v1 + (β

2
)v2 respectively;

4. for β = ∞, Np(v1, v2, β) is the unbounded strip
between lines perpendicular to the segment v1v2

and containing v1 and v2.

Definition 2 For an edge v1v2 let β̄ be the largest
real number such that no point from V \ {v1, v2} be-
longs to Np(v1, v2, β̄). We call this β̄ a β-value for
v1v2. The set of all edges spanned by V , each labeled
by its β-value is called a β-spectrum of V . Addition-
ally, the β-spectrum of V for β ∈ [x, y] is the subset

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

181

29th European Workshop on Computational Geometry, 2013

of β-spectrum of V such that β-values for all edges in
this subset satisfy x ≤ β-value≤ y.

Let us assume that points in V are in general posi-
tion. The following fact connecting β-skeletons with
the minimum spanning tree MST (V) and Delaunay
triangulation DT (V) of V is due to Kirkpatrick and
Radke [KR85]:

Fact 1 For 1 ≤ β ≤ β′ ≤ 2 the following inclusions
hold true: RNG(V) ⊆ Gβ′(V) ⊆ Gβ(V) ⊆ GG(V) ⊆
DT (V).

4 β-spectrum for β ∈ [1, 2]

This section describes two algorithms (sequential and
parallel) for computing β-spectrum for 1 ≤ β ≤ 2 by
using generalized elimination paths defined as follows:

Definition 3 Two triangles t1 and t2 in DT (V) are
called neighbors in DT (V) if they share a common
edge.

For each vertex v and edge e that belong to the
same triangle t0 ∈ DT (V), we define inductively a
generalized elimination path as a sequence of edges in
DT (V) that starts with e0 = e. Every pair of con-
secutive edges in this sequence belong to a triangle
in DT (V). Inductively, let us assume that we have
already constructed a path e0, . . . , ei and for i > 0 let
ti in DT (V) be defined by edges ei−1 and ei. Fur-
thermore, for i ≥ 0 let ti+1 and ti be neighbors that
share edge ei in DT (V). As ei+1, we select a longer
(if there exists) of the two, different from ei, edges of
triangle ti+1. When we reach a triangle and an edge,
such that its neighbor triangle does not exist, or we
reach a base of an isosceles triangle, or we reach an
already visited triangle, then the construction of the
elimination path terminates. We call the last edge of
the sequence a root.

By merging generalized paths, we form generalized
elimination trees GET and a generalized elimination
forest GEF (V).

We can construct the forest of generalized elimina-
tion trees in linear time.

Based on [JKY89], we know that for β ∈ [1, 2],
every edge that does not belong to the β-skeleton,
belongs to some generalized elimination path. There-
fore, to compute the β-value for edge e, it suffices to
locate in the generalized elimination tree the begin-
ning (vertex) of a generalized elimination path cor-
responding to the largest empty region Np for edge
e.

Recall that GET is a tree of the elimination paths
and the polygon of GET is defined as the union of all
the DT (V) triangles that are crossed by elimination
paths.

Definition 4 The central polygon for GET is defined
as this part of the polygon of GET that corresponds
to the DT (V) triangles intersected by the generalized
elimination path in GET leading to the middle vertex
on the boundary of the polygon of GET. The order of
vertices of the polygon of GET is defined by starting
with the leftmost vertex of the root edge and moving
clockwise around the polygon (see Figure 1).

1
2

3

4

5

6

7
8

9

10

11

12

Figure 1: Generalized elimination tree and central
polygon

We remove from the sequence of vertices the ver-
tices that belong to the just constructed central poly-
gon and recur on the two remaining sets of vertices
constructing recursively a central polygons tree CPT ,
the tree of central polygons connected by their com-
mon edges. The common edge of a central polygon C
and its parent D in CPT is called the base of C.

Lemma 1 All central polygons can be constructed in
O(n) time.

As the next step, for each central polygon, we con-
struct its logarithmic structure of Voronoi Diagrams,
as follows. The vertices of the central polygon are
numbered starting from the leftmost vertex of the root
or the base edge in the CPT . First, Voronoi Diagrams
are constructed for individual vertices on the bound-
ary of this central polygon. Then, Voronoi diagrams
are constructed for sets of vertices with numbers from
[s2k, (s + 1)2k] where 0 ≤ s ≤ % n

2k &, 0 ≤ k ≤ %log n&.

Lemma 2 Constructing the logarithmic structure of
Voronoi Diagrams for a given central polygon takes
O(n log n) time.

Now we are ready to present the algorithm. First,
let us consider the Euclidean metric. The bisector of
edge ab contains vertices of the lune N2(a, b, β) for all
1 ≤ β ≤ 2. This bisector and the line containing the
segment ab divide the plane into four parts. We con-
sider logarithmic structure of Voronoi Diagrams for
each closed quarter plane. Let Q be a given closed
quarter plane and let c be the endpoint of edge ab

182

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

such that c ∈ Q. We search for the closest to c inter-
section point P (a, b, Q) of the edge ab and the Voronoi
Diagram of Q ∩ V , if it exists.
To this end, we analyze the boundary of the Voronoi
region for c and elements of the logarithmic structure
of Voronoi Diagrams for vertices of analyzed central
polygon belonging to the quarter plane Q (we con-
sider diagrams containing maximum number of cen-
ters such that intersection of the sets of centers of
diagrams is empty).

For each analyzed Voronoi Diagram in the logarith-
mic structure, we obtain one candidate for β-value.
Starting at the point where the previous analysis has
terminated, we traverse Voronoi Diagrams in one
direction: we analyze vertices of the central polygon
from the point c towards the intersection of the
boundary of the central polygon with the bisector of
the edge ab. All the tests take a total of O(n log n)
time. Additionally, it is necessary to analyze all
of the O(log n) central polygons intersected by the
bisector of ab and belonging to the same CPT . The
minimum of all the β-value candidates for the given
edge is selected.

For metrics Lp, when p #= 2, the line k passing
through vertices of Np(a, b, β) does not have to be the
bisector of ab; the direction of k depends on the β.
However, our algorithm does not depend on the direc-
tion of the line k and the necessary information, such
as a position of the analyzed centre with respect to k,
point P (a, b, Q), can be precomputed during analyz-
ing consecutive regions of the logarithmic structure of
Voronoi Diagrams.

Theorem 3 β-spectrum for a set V of n points,
where 1 ≤ β ≤ 2 and 1 < p < ∞ can be computed in
a O(n log2 n) time.

Now we will sketch a O(n) processors CREW-
PRAM algorithm for computing the β-spectrum. We
start with constructing the Delaunay Triangulation
of V ; this step takes O(log2 n) time. Next, we create
GEF (V) and divide polygons corresponding to the
trees into central polygons; this step takes O(log2 n)
time. Then, we build the logarithmic structure of the
Voronoi Diagrams for all of these central polygons in
a O(log3 n) time.

An additional data structure is needed to quickly
search for candidate β-values in all of the Voronoi Di-
agrams. Any edge of a generalized elimination path
in a central polygon is called a diagonal of this poly-
gon. We are interested in finding Voronoi regions that
intersect the respective diagonal of the central poly-
gon. To this end, we compute the convex hull of the
set of centers of the Voronoi Diagram [AG86] and the
intersection of the diagram edges with the boundary
of this convex hull.

With binary search for each edge of the diagrams,
we can find in O(log n) time a sequence of the centers
that belong to regions intersecting the border of the
convex hull and the interior of the central polygon.
We divide the set of centers into halves. Edges that
separate the corresponding two sets of the Voronoi
regions are ordered with pointer-jumping. We repeat
this procedure until all the regions have been sepa-
rated.

Lemma 4 Let ab be a diagonal of a central poly-
gon and Q be the part of the plane bounded by
lines passing through ab and vertices of Np(a, b, β).
For each diagram in the logarithmic structure of
Voronoi Diagrams a data structure for searching for
points P (a, b, Q) can be created in a O(log2 n) time.
Each query, the location of a point P (a, b, Q) takes a
O(log2) time.

For each diagonal ab we have to check O(log n) di-
agrams in the logarithmic structure of the Voronoi
Diagrams. The next central polygon which can affect
the β-value can be found in a O(log n) time.

Theorem 5 In PRAM-CREW model, β-spectrum,
1 ≤ β ≤ 2, can be computed with O(n) processors
in a O(log4 n) time.

Acknowledgements
The authors would like to thank Jerzy W. Jaromczyk
for important discussions and comments.

References

[AL93] S.G. Akl, K.A. Lyons, Parallel Computational
Geometry, Prentice Hall, 1993

[ABE98] A.B. Amenta, M.W. Bern, D. Eppstein, The
crust and the β-skeleton: combinatorial curve
reconstruction, Graphical Models Image Pro-
cessing, 60/2 (2), 1998, 125-135

[AG86] M.J. Atallah and M. T. Goodrich, Eficient
parallel solutions to some geometric problems,
J. Parallel Distrib. Comput., 3, 1986, 293-327

[CG92] R. Cole, M.T. Goodrich, Optimal parallel al-
gorithms for polygon and point-set problems,
Algorithmica, tom 7, 1992, 3-23

[CK10] M.Connor, P.Kumar, Fast Construction of k-
Nearest Neighbor Graphs for Point Clouds,
IEEE Transactions on Visualization and
Computer Graphics, issue 4, 2010, 599-608

[E02] D. Eppstein, β-skeletons have unbounded di-
lation, Computational Geometry, volume 23,
2002, 43-52

183

29th European Workshop on Computational Geometry, 2013

[GS69] K.R. Gabriel, R.R. Sokal, A new statisti-
cal approach to geographic variation analysis,
Systematic Zoology 18, 1969, 259-278

[HLM02] F. Hurtado, G. Liotta, H. Meijer, Optimal
and suboptimal robust algorithms for proxim-
ity graphs, Computational Geometry, North
Holland, Amsterdam, 1985, 217-248

[JK87] J.W. Jaromczyk, M. Kowaluk, A note on
relative neighborhood graphs, Proceedings 3rd
Annual Symposium on Computational Geom-
etry, Canada, Waterloo, ACM Press, 1987,
233-241

[JKY89] J.W. Jaromczyk, M. Kowaluk, F. Yao,
An optimal algorithm for constructing β-
skeletons in Lp metric, manuscript, 1989

[KR85] D.G. Kirkpatrick, J.D. Radke, A frame-
work for computational morphology, Compu-
tational Geometry, North Holland, Amster-
dam, 1985, 217-248

[Su83] K.J. Supowit, The relative neighborhood
graph, with an aplication to minimum span-
ning trees, Journal of the ACM volume 30,
issue 3, 1983, 428-448

[Tou80] G.T. Toussaint, The relative neighborhood
graph of a finite planar set, Pattern Recog-
nition 12, 1980, 261-268

184

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Voronoi Diagrams from Distance Graphs ∗

Mario Kapl† Franz Aurenhammer‡ Bert Jüttler†

Abstract

We present a new type of Voronoi diagram in R2

that respects the anisotropy exerted on the plane by
a given distance graph. It is based on a metric ob-
tained by smoothly and injectively embedding of R2

into Rm, and a scalar-valued function for re-scaling
the distances.
A spline representation of the embedding surface is

constructed with the Gauß-Newton algorithm, which
approximates the given distance graph in the sense
of least squares. The graph is required to satisfy the
generalized polygon inequality.
We explain a simple method to compute the

Voronoi diagrams for such metrics, and give condi-
tions under which Voronoi cells stay connected. Sev-
eral examples of diagrams resulting from different
metrics are presented.

1 Introduction

The Voronoi diagram of a given set of sites is a power-
ful and popular concept in geometry which possesses
a wide range of applications, e.g. to motion plan-
ning, geometrical clustering and meshing [2]. Beside
the classical Euclidean Voronoi diagram there exists
a large number of generalizations of this structure.
Two examples relevant for the present note are the

anisotropic Voronoi diagrams described in [7] and [9].
For each point p (say in R2), a different metric is de-
fined which specifies the distances to all other points,
as seen from p. However, the distance between two
arbitrary points does not define a metric, because ei-
ther the triangle inequality or the symmetry is vio-
lated. This is no serious hinderance for computing
the anisotropic Voronoi diagram, though.
A different approach is followed in [8]. A Voronoi

diagram on a parametric surface is generated, by tak-
ing geodesic distances between the points on the sur-
face. The corresponding structure in the parameter
domain of the surface is a Voronoi diagram which is
possibly anisotropic. The computation of this type

∗This work has been supported by the ESF EUROCORES
Programme EuroGIGA - Voronoi, Austrian Science Foundation
(FWF).

†Institute of Applied Geometry, Johannes Kepler University,
Linz, Austria, {mario.kapl|bert.juettler}@jku.at

‡Institute for Theoretical Computer Science, University of
Technology, Graz, Austria, auren@igi.tu-graz.ac.at.

of diagram is rather expensive, as geodesic distances
have to be computed frequently.
In this note we introduce a new metric framework

on R2, called scaled embedding-generated (SEG) met-
rics, and use it to define a class of anisotropic Voronoi
diagrams. It is based on a smooth one-to-one embed-
ding of R2 into Rm, for m ≥ 2, and a scalar-valued
scaling function. The construction of SEG metric
Voronoi diagrams has several advantages. We have
only one distance function for all points, which in-
deed defines a metric on R2, and the computation of
distances is fast and simple. Also, some properties of
such diagrams can be derived from the properties of
the Euclidean Voronoi diagram in R2 and R3.

2 Preliminaries

We recall some basic concepts needed in the subse-
quent considerations.

Definition 1 The medial axis of a set X ⊂ Rm is the
(closure of the) set of all points in Rm that have at
least two closest points in X.

Definition 2 [1, 6] The local feature size at a point
p ∈ X, denoted by LFS(p), is the Euclidean distance
from p to the nearest point of the medial axis of X.

Definition 3 [1, 6] Let Px = {x1,x2, . . .} be a finite
subset of X. We call Px an ε-sample of X if for each
point p ∈ X there is a sample point xi ∈ Px with
||p− xi|| ≤ ε · LFS(p).

Definition 4 Let P = {p1,p2, . . .} be a finite set
of points (called sites) in Rm. For a given metric D
on Rm, we define the Voronoi cell of a site pi ∈ P as
the open set

V i
D(P) = {p ∈ R

m | D(p,pi) < D(p,pj) for all j '= i}.

The Voronoi diagram VD(P) is given by the comple-
ment of all Voronoi cells in Rm,

VD(P) = R
m \

(

⋃

i

V i
D(P)

)

.

We denote the Voronoi diagram with respect to
the Euclidean metric by V (P). A Voronoi diagram
is called orphan-free if all its Voronoi cells are con-
nected. In the case of the Euclidean metric, the di-
agram is always orphan-free, because its regions are

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

185

29th European Workshop on Computational Geometry, 2013

intersections of open halfspaces of Rm, and thus are
convex polyhedra.

3 The SEG metric framework

We now introduce the metric framework we would like
to work with.

Definition 5 Let x : R2 → Rm, for m ≥ 2, be
a continuous one-to-one embedding, with x(u, v) =
(x1(u, v), . . . , xm(u, v)). In addition, let r #→ d(r), for
r ≥ 0, be a scalar-valued scaling function with the
following properties:

• d(0) = 0

• d(r) > 0, for r > 0

• d′(r) ≥ 0, for r ≥ 0

• d(r)/r is monotonically decreasing, for r > 0

We define the distance D between two points u1 =
(u1, v1) and u2 = (u2, v2) in R2 as

D(u1,u2) = d(||x(u1, v1)− x(u2, v2)||). (1)

Theorem 6 The distance D given by (1) defines a
metric on R2.

Proof. For all u1,u2,u3 ∈ R2, the distance D has to
satisfy the following conditions:

(i) D(u1,u2) ≥ 0,

(ii) D(u1,u2) = 0 iff u1 = u2,

(iii) D(u1,u2) = D(u2,u1), and

(iv) D(u1,u3) ≤ D(u1,u2) +D(u2,u3).

Conditions (i) and (iii) are trivially fulfilled. To show
condition (ii), we have to use the fact that the embed-
ding x(u, v) has no self-intersections, since the map
x : R2 → Rm is one-to-one. The triangle inequal-
ity (iv) remains to be shown. For the sake of brevity
we denote the Euclidean distance ||x(ui)−x(uj)|| by
li,j . Since the Euclidean metric satisfies the triangle
inequality, we have

l1,3 ≤ l1,2 + l2,3.

Now we distinguish two cases.
Case 1: (l1,3 ≤ l1,2) or (l1,3 ≤ l2,3).
Since d′(r) ≥ 0 for r ≥ 0 we have

d(l1,3) ≤ d(l1,2) or d(l1,3) ≤ d(l2,3),

d(l1,3) ≤ d(l1,2) + d(l2,3).

This shows the triangle inequality (iv).
Case 2: l1,3 > l1,2 and l1,3 > l2,3.
Since d(r)/r is monotonic decreasing we know that

d(l1,3)

l1,3
≤

d(l1,2)

l1,2
and

d(l1,3)

l1,3
≤

d(l2,3)

l2,3
.

Now we have

d(l1,2) + d(l2,3) = l1,2
d(l1,2)

l1,2
+ l2,3

d(l2,3)

l2,3
≥

≥ l1,2
d(l1,3)

l1,3
+ l2,3

d(l1,3)

l1,3
= (l1,2 + l2,3)

d(l1,3)

l1,3
≥

≥ l1,3
d(l1,3)

l1,3
= l1,3,

which proves the triangle inequality (iv). !

We will call D the scaled embedding-generated
(SEG) metric in the sequel. For m = 2 or m = 3,
the embedding x(u, v) is a parametric surface with-
out self-intersections in R2 and R3, respectively. Two
examples of possible scaling functions are

d(r) = ar or d(r) = a ln(br + 1) (2)

for suitable constants a, b > 0.
With the help of the metric D, we can define gen-

eralized disks with radius r > 0 and center c ∈ R2,

Br(c) = {p ∈ R
2 | D(p, c) ≤ r}.

Clearly, for embedding dimension m = 2, these disks
are topological disks, by the properties of x(u, v).
Moreover, we have:

Lemma 7 Let m = 3, c ∈ R2, and r̄ = d−1(r). If
r̄ < LFS(x(c)), then the disks Br(c) are topological
disks (and generalized circles are topological circles).

4 Fitting SEG metrics to distance graphs

We now explain a method for computing suitable
SEG metrics. The idea is to construct a spline em-
bedding x(u, v) which approximates a given distance
graph G on n points in the unit square [0, 1]2 of the
parameter domain R2.
To achieve high accuracy in the approximation, we

require G to satisfy the generalized polygon inequality,
that is, for each edge (p, q) the associated length Lp,q

is at most the length of any existing path in G from
p to q.
For simplicity, the scaling function is temporarily

set to the identity, d(r) = r.
We will construct an embedding surface x(u, v) =

(x1(u, v), . . . , xm(u, v)) with m ≥ 3, where the first
two coordinate functions are the linear functions
x1(u, v) = c(1) u and x2(u, v) = c(2) v. The remaining
coordinate functions xi(u, v) for i ≥ 3 are given by
B-spline functions of degree (p1, p2),

xi(u, v) =
n1
∑

j=0

n2
∑

k=0

c(i)j,kM
p1
j (u)Np2

k (v)

with c(i)j,k ∈ R. The basic functions (Mp1
j (u))j=0,...,n1

and (Np2

k (u))k=0,...,n2 are B-splines of degree (p1, p2)

186

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

with respect to the open knot sequences S =
(sj)j=0,...,n1+p1+1 and T = (tk)k=0,...,n1+p1+1, respec-
tively. Now we compute the unknown coefficients

c = (c(1), c(2), c(3)0,0, . . . , , c
(3)
n1,n2) by solving the mini-

mization problem

c = argmin
∑

(p,q)∈G

(

||x(p)− x(q)||2 − L2
p,q

︸ ︷︷ ︸

Rp,q(c)

)2
.

Since this optimization problem is non-linear and
the objective function is a sum of squares, we use the
Gauß-Newton algorithm to solve it. For each iteration
step, we minimize the objective function
(

∑

(p,q)∈G

(Rp,q(c
0)+∇Rp,q(c

0)(∆c−c
0))2
)

+ω||∆c−c
0||2, (3)

which includes a Tikhonov regularization term, with
respect to ∆c.
In the objective function (3), the vector c0 denotes

the solution from the last step, ∆c is the update, and
∇Rp,q is the row vector given by the partial deriva-
tives of Rp,q with respect to the control points cj,k.
In addition, ω > 0 is the parameter for the Tikhonov
regularization term.
The obtained embedding x(u, v) has no self-

intersections, as long as none of the coefficients c(1)

and c(2) becomes zero in the optimization process. To
avoid this case, or the case that one of them is close
to zero, we allow the user to specify these coefficients
in our implementation. We have used this approach
in all the examples presented below.
The use of the two linear functions above can be

seen as some kind of regularization. By using suffi-
ciently small coefficients c(1) and c(2) (combined with
a sufficiently large dimension of the embedding), one
can minimize the influence of this regularization while
still avoiding self-intersections of the embedding. The

remaining coefficients c(i)j,k of the initial solutions were

chosen randomly from the interval [− 1
10 ,

1
10].

Note that different initial solutions give different re-
sults. In our experience, however, the obtained differ-
ent solutions were approximations of similar quality of
the distance graph G. Moreover, we noticed that for
most of our tested distance graphs an embedding of
R2 into Rm for m ∈ {3, 4, 5} leads to a satisfactory re-
sult. It seems, that as long as the generalized polygon
inequality is fulfilled, the distance graph is usually ‘al-
most exactly’ approximated by the produced embed-
ding. But especially in the case of a distance graph
with a high valency for each point, an embedding into
a higher dimension could probably be needed.
The resulting embedding x(u, v) induces an SEG

metric on the unit square [0, 1]2. By extending this
restricted embedding to a continuous one-to-one em-
bedding x : R2 → Rm, we obtain an SEG metric
on R2, which accurately approximates a given dis-
tance graph.

5 SEG metric Voronoi diagrams

We will now use the metric D in (1) to construct a
respective Voronoi diagram in R2, in a simple way.
Let P = {u1,u2, . . .} be a set of sites in R2. The

SEGmetric Voronoi diagram VD(P) forD can be gen-
erated in the following way. Given the sites ui ∈ R2,
we first calculate the corresponding points xi = x(ui)
on the embedding x(u, v), which has been used to
define D. Then we compute, for the obtained set
of points Px = {x1,x2, . . .} in Rm, their Euclidean
Voronoi diagram V (Px). By intersecting the resulting
Voronoi cells with the embedding surface x(u, v), we
obtain a Voronoi diagram on x(u, v), which defines for
the corresponding parameter values (u, v) ∈ R2 the
desired SEG metric Voronoi diagram VD(P) in R2.
This approach is similar to that in [3], who showed

that the anisotropic Voronoi diagram of [9] can be
obtained by intersecting a so-called power diagram in
R5 with a suitable surface. (Power diagrams are gen-
eralized Voronoi diagrams whose cells are still convex
polyhedra; see e.g. [2].)
Before giving examples of SEG metric Voronoi dia-

grams constructed with our approach, let us consider
some conditions under which VD(P) is orphan-free.
Disconnectedness of a Voronoi cell in VD(P) means
that the corresponding m-dimensional polyhedral cell
in the Euclidean Voronoi diagram intersects the em-
bedding surface more than once.
Clearly, VD(P) is orphan-free in the case m = 2,

since x(u, v) then is a smooth one-to-one embedding
into R2, and the Euclidean Voronoi diagram is always
orphan-free. We further have:

Lemma 8 Let m = 3, and assume that x(u, v) is
C2-smooth. If the set of sites x(P) is a 0.18-sample
of the surface X = x(R2), then the resulting dia-
gram VD(P) is orphan-free.

Proof. It is sufficient to show that each Voronoi
cell V i(Px) of the Euclidean Voronoi diagram V (Px)
in R3 intersects the embedding x(u, v) in a topologi-
cal disk. Since x(u, v) is a C2-smooth embedding into
R3, and x(P) is a 0.18-sample of X, we can apply
Lemma 3.10 in [6], which exactly states the desired
fact. !

6 Examples

Consider the two distance graphs shown in Figure 1.
For both graphs we have constructed embeddings
into R3. Voronoi diagrams have been generated for
the resulting approximating SEG metrics, for a set of
uniformly distributed sites.
Two more involved distance graphs are depicted in

Figure 2. To obtain SEG metrics with accurrate ap-
proximations, we have generated spline embeddings
into R5 and R7, respectively. The obtained SEG met-
ric Voronoi diagrams are shown for a set of uniformly

187

29th European Workshop on Computational Geometry, 2013

(a)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

222

222

222

222

222

5

5

5

5

5

44

444

44

444

44

66

66

66

66

√
8

√
8
√
8

√
8

√
8

√
8

√
8

√
8

(b)

(c)

Figure 1: (a) Distance graphs; (b) Embeddings into
R3; (c) Examples of SEG metric Voronoi diagrams.

(a)

1212

12 12 12

1212

12 12 12

1212
6

6

6

6

6

66

6

8

8

8

8

8

8

8

8
8

7
7

7

7

7

7

(b)

(c)

Figure 2: (a) Distance graphs; (b) and (c) Examples
of SEG metric Voronoi diagrams.

distributed sites in (b), and for a set of non-uniformly
distributed sites in (c). Occurring orphans are indi-
cated by arrows.

7 Conclusion

We have introduced the concept of scaled embedding-
generated (SEG) metrics, and have studied some of
their properties. SEG metrics are a versatile tool for
reflecting the anisotropy specified by distance graphs
in the plane. Also, they lead to a new type of gener-
alized Voronoi diagram in R2 in a canonical way.
As a possible application of our framework, we

could generate a metric, which gives us the time of
travel between cities. For the construction of the as-
sociated spline embedding, only a small number of
selected times would be needed.
Various questions remain open, for example, con-

ditions under which Voronoi cells are connected (or
simply connected), if the embedding is in dimensions
higher than 3; cf. the results in [4, 5]. In the non-
orphan-free case, bounds on the number of connected
Voronoi sub-cells are of interest.
Instead of the Voronoi diagram, also the medial axis

for shapes with respect to the generalized disks de-
fined by the new metric is worth studying.

References

[1] N. Amenta, S. Choi, and R.K. Kolluri. The power
crust, unions of balls, and the medial axis transform.
Computational Geometry: Theory and Applications
19 (2001), 127–153.

[2] F. Aurenhammer and R. Klein. Voronoi diagrams. In:
J. Sack and G. Urrutia (eds.), Handbook of Compu-

tational Geometry, Elsevier, Amsterdam, 2000, 201–
290.

[3] J.-D. Boissonnat, C. Wormser, and M. Yvinec.
Anisotropic diagrams: Labelle Shewchuk approach
revisited. Theoretical Computer Science 408 (2008),
163–173.

[4] G.D. Canas and S.J. Gortler. Orphan-free anisotropic
Voronoi diagrams. Discrete & Computational Geom-
etry 46 (2011), 526–541.

[5] G.D. Canas and S.J. Gortler. Duals of orphan-
free anisotropic Voronoi diagrams are triangulations.
Proc. 28th Ann. Symposium on Computational Ge-
ometry, 2012, 219–228.

[6] T.K. Dey. Curve and Surface Reconstruction: Al-

gorithms with Mathematical Analysis. Cambridge
Monographs on Applied and Computational Math-
ematics 23, Cambridge University Press, 2007.

[7] Q. Du and D. Wang. Anisotropic centroidal Voronoi
tessellations and their applications. SIAM Journal
on Scientific Computing 26 (2005), 737–761.

[8] R. Kunze, F.-E. Wolter, and T. Rausch. Geodesic
Voronoi diagrams on parametric surfaces. Proc. Con-
ference on Computer Graphics International, 1997,
230–237.

[9] F. Labelle and J.R. Shewchuk. Anisotropic Voronoi
diagrams and guaranteed-quality anisotropic mesh
generation. Proc. 19th Ann. Symposium on Compu-

tational Geometry, 2003, 191–200.

188

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

A Sweepline Algorithm for Higher Order Voronoi Diagrams⇤

Evanthia Papadopoulou† Maksym Zavershynskyi†

Abstract

We present an algorithm to construct order-k Voronoi
diagrams with a sweepline technique. The sites
can be points or line segments. The algorithm has
O(k2n logn) time complexity and O(nk) space com-
plexity.

1 Introduction

Given a set of n simple geometric objects in the plane,
called sites, the order-k Voronoi diagram of S, Vk(S)
is a partitioning of the plane into regions, such that
every point within a fixed order-k Voronoi region has
the same set of k nearest sites. For k = 1 this is the
nearest-neighbor Voronoi diagram and for k = n � 1
the farthest-site Voronoi diagram.
The structural complexity of the order-k Voronoi

diagram in the Lp metric is O(k(n�k)) for both points
[11, 13] and line segments [15].
A standard simple technique to compute the order-

k Voronoi diagram is an iterative construction [11],
where the order-k Voronoi diagram is computed from
the order-(k�1) diagram, for increasing values of k, in
O(k2n logn) time and O(k2(n�k)) space. For points,
more sophisticated techniques have been developed
based on randomized approaches and duality between
the order-k Voronoi diagram and the k-level of planes
in R3, see e.g. [16, 1, 5, 4]. These algorithms exploit
the fact that the sites are points, they construct the
k-level in an arrangement of planes, and they are not
simple to generalize to line segments, to the best of
our knowledge. The best expected running time is
O(n logn+ nk2c log

⇤ k) [16], for a constant c, which is
near-optimal, however, mostly of theoretical interest
as mentioned in [16].
In this paper we investigate the plane sweep

paradigm for the construction of higher order Voronoi
diagrams of polygonal sites (including points and line
segments) as a simple alternative to the iterative con-
struction. Plane sweep has not been considered so far
for the construction of higher order Voronoi diagrams.
It is essentially an iterative construction, which, does

⇤Supported in part by the Swiss National Science Foun-
dation (SNF) grant 200021-127137. Also by SNF grant
20GG21-134355 within the collaborative research project Eu-
roGIGA/VORONOI of the European Science Foundation.

†Faculty of Informatics, Università della Svizzera italiana,
Lugano, Switzerland,
{evanthia.papadopoulou, maksym.zavershynskyi}@usi.ch

not require the pre-computation and storage of lower
order Voronoi diagrams, but achieves the construc-
tion in a single plane sweep pass of the input data.
This ability can be useful in practice, especially when
information involving all order-i, i k, Voronoi dia-
grams is required. For example, in [14], the geometric
min-cut problem in a VLSI layout is addressed by it-
eratively computing higher order Voronoi diagrams of
(weighted) line segments that represent polygons. In-
formation of low-order Voronoi diagrams is important
in this application and the importance grows weaker
fast as k increases. However, an order-1 diagram is
not su�cient. A direct plane sweep construction of
the order-i Voronoi diagram, i k, for small k, is
valuable to this application (see [14]).
Our algorithm is based on planesweep [8], where the

nearest neighbor Voronoi diagram is constructed in
O(n log n) time and O(n) space. It constructs order-
i Voronoi diagrams, i k, in O(k2n log n) time and
O(nk) space.

2 Preliminaries

In this abstract we describe the algorithm for disjoint
line segments (including points). It can be extended
to any planar straight-line graph (for the definition of
the order�k Voronoi diagram in this case see [15]).
Let S = {s

1

, s
2

, . . . , sn} be a set of n disjoint line
segments in R2, called sites. We make a general po-

sition assumption that no more than three sites can
touch the same circle (excluding abutting line seg-
ments). The assumption can later be removed. The
Euclidean distance between two points p, q is de-
noted as d(p, q). The distance between point p and
line segment s is the minimum Euclidean distance
d(p, s) = minq2s d(p, q). The order-k Voronoi dia-
gram Vk(S) of S is a partitioning of the plane into
order-k Voronoi regions such that every point within
a fixed region Vk(H,S) has the same k nearest sites
H. A maximal interior-connected subset of a region
is called a face.
Let l be a horizontal line such that the halfplane l+

above l intersects at least k line segments in S0 ✓ S.
The locus of points equidistant from line segment s 2
S0 and l is denoted as w(s) and it is called the wave-

curve of s (see Fig. 1). Consider an arrangement A of
wave-curves w(s), s 2 S0. The i-level of A is the set of
points x, such that x belongs to some wave-curve w(s)
and has i wave-curves below, including w(s) [7]. The

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

189

29th European Workshop on Computational Geometry, 2013

intersection point of two wave-curves w(s
1

) and w(s
2

)
on level i has i or i+ 1 wave-curves below, including
w(s

1

) and w(s
2

); x is called a breakpoint of level i. The
i-level of A is denoted as Ai. Level Ai is a sequence
of waves, each wave being a portion of a wave-curve
between two consecutive intersection points on level
i. A single wave-curve may contribute more than one
wave to Ai. The ordinary wavefront in the standard
plane sweep construction of Voronoi diagrams is the
1-level of A.
The following lemma states the basic idea of the

sweepline technique for Voronoi diagrams [6].

Lemma 1 Let l be a horizontal line and let S0 ✓ S
be set of sites that intersect l+. Consider a point x
above Ai and let x 2 Vi(H,S0) then x 2 Vi(H,S). In
other words the part of Vi(S) above Ai is not a↵ected

by the sites strictly below l.

Lemma 2 Let l be a horizontal line and let S0 ✓ S
be a set of sites that intersect l+. Consider a point

x, x 2 Ai and x belongs to a single wave-curve w(si).
Let w(s

1

), . . . , w(si�1

) be a set of wave-curves that are
below x. Then x 2 Vi(H,S), where H = {s

1

, . . . , si}.

The bisector of two segments sj and sh is the
locus of points equidistant from both, b(sj , sh) =
{x | d(x, sj) = d(x, sh)}. The edge of the order-i
Voronoi diagram that bounds two adjacent faces Fj

and Fh of regions Vi(H[{sj}, S) and Vi(H[{sh}, S)
is portion of bisector b(sj , sh). The following corollary
implies that while the sweepline moves down, the in-
tersections of two levels Ai and Ai+1

move along the
Voronoi edges of the order-i Voronoi diagram.

Corollary 3 Let x be an intersection point of two

levels Ai and Ai+1

incident to wave-curves w(sj) and
w(sh). Let H be a set of sites that correspond to the

wave-curves below x. Then x belongs to the Voronoi

edge bounding two faces of regions Vi(H [{sj}, S)
and Vi(H [{sh}, S).

Voronoi vertices in Vi(S) are classified into new and
old [11, 15]. A Voronoi vertex of Vi(S) is called new

(respectively old) if it is the center of a disk that
touches 3 sites and its interior intersects exactly i� 1
(respectively i � 2) sites. By the definition of the
order-i Voronoi diagram every Voronoi vertex of Vi(S)
is either new or old. A new Voronoi vertex in Vi(S) is
an old Voronoi vertex in Vi+1

(S). Under the general
position assumption, an old Voronoi vertex in Vi(S)
is a new Voronoi vertex in Vi�1

(S).
During the sweeping process events occur when

three wave-curves intersect at a common point. The
following lemma ties up such an event with a Voronoi
vertex of the order-i Voronoi diagram of S.

A4

A3

A2

A1

l

x

s

A5

Figure 1: Constructing order-4 Voronoi diargam via
sweepline technique.

Lemma 4 Let l, H and A be a horizontal line, a set

of line segments that intersect l+ and an arrangement

of wave-curves created by the line segments in H. Let

x be an intersection point of three waves (see Fig. 1)

such that x belongs to three levels Ai+2

, Ai+1

and Ai.

Then x is a new Voronoi vertex of Vi(S) and an old

Voronoi vertex of Vi+1

(S).

Since wave-curves are x-monotone level Ai is also an
x-monotone curve. Corollary 3 implies that the break-
points of Ai lie on Voronoi edges of the final diagrams
Vi(S) and Vi�1

(S). As line l moves down the waves
forming Ai change their shapes continuously. We
maintain the sweepline status for level Ai and we are
interested in simulating the discrete event points that
change the topological structure of Ai and Voronoi
diagrams Vi(S) and Vi�1

(S). There are two types of
events:

Site-event: Line l hits a new site s. Then a new
wave-curve w(s) should be added to A. w(s) is
added to all levels of A, in level-i similarly to the
processing of a standard site event at level-1.

Circle-event: Three wave-curves intersect at a com-
mon point. A circle event corresponds to a new
vertex at some level-i and an old vertex at level-
i+ 1 (Lemma 4).

The following lemma describes how the topology of
A changes during a circle-event.

Lemma 5 Consider a circle-event at point x 2 Ai

such that x is a new Voronoi vertex of Vi(S). Then

at this event a single wave disappears from Ai.

The circle-event triggers topological changes on

190

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

three levels Ai, Ai+1

, Ai+2

1. Thus to handle a circle-
event we simulate the changes on all three levels. At
the instant when the three wave-curves intersect at
a common point the sweepline touches the bottom-
most point of the disk that is tangent to three sites.
For every triple of consecutive waves we create a
circle-event in advance and we process it when the
sweepline touches the bottom-most point of the disk.
Let w(s

1

), w(s
2

), w(s
3

) be three consecutive waves
that generate such event on level Ai. We delete the
middle wave w(s

2

) from the level Ai. On level Ai+1

the waves appear as w(s
2

), w(s
1

), w(s
3

), w(s
2

), so we
switch the order of waves w(s

1

) and w(s
3

). And on
level Ai+2

the waves appear as w(s
3

), w(s
1

) so we add
the wave w(s

2

) in between.
A new wave may be introduced to a level Ai by a

site-event or from the levels below Ai. Therefore in
order to maintain Ai during the sweepline it is suf-
ficient to handle all site-events and all circle-events
that appear on levels 1, . . . , i.

3 The Algorithm

We sweep the plane with the horizontal line l while
maintaining levels A

1

, . . . , Ak. Each level Ai corre-
sponds to a sequence of waves w(s

1

), w(s
2

), · · · . For
each level Ai we store the ordered list Li of corre-
sponding sites allowing search/insertion/deletion in
logarithmic time. We also store a priority queue Q
of events ordered lexicographically by y-coordinate.
A site-event occurs when line l hits a new line seg-
ment. We order site-events by their y-coordinate of
the top-most endpoint. We also create site-events for
all the bottom-most endpoints.
We store circle-event as a disk that touches three

line segments and we order them by their y-coordinate
of the bottom-most point of the disk. We create
circle-events every time the new consecutive triple
of waves appears at some level after the site-events
and circle-events. Every time the adjacency relations
of levels A

1

, . . . , Ak change we need to create new
events for new consecutive triples of waves and re-
move those events that do not correspond to con-
secutive triples anymore. For brievity we denote as
update triplets(Li, rj , rh) an operation that updates
those triples that involve positions rj , . . . , rh in list
Li. Operation substitute(Li, r, [a, b, c], [d, e, f]) sub-
stitutes in list Li at position r subsequence a, b, c with
subsequence d, e, f . We output order-i Voronoi dia-
gram as a set of Voronoi vertices and incident bisec-
tors.

1: Initialize Q = [s
1

, . . . , sn] sorted by y-coordinate
of their topmost endpoint.

2: Extract the first site s
1

.

1This is under the general position assumption. If we remove
the general position assumption then the changes may occur to
more than 3 levels.

3: Initialize L
1

= [s
1

] and Li = [] for i = 2, . . . , k.
4: while Q non empty do

5: x top most(Q)
6: if x is a new site then

7: Search for the wave in L
1

to which x belongs.
8: Let s 2 L

1

be the corresponding line segment
and r be the position in list L

1

.
9: substitute(L

1

, r, [s], [s, x, s])
10: update triplets(L

1

, r, r + 2)
11: s0 s
12: for i = 2, . . . , k do

13: if Li is empty then

14: Li = [x, s0, x]
15: exit for loop

16: else

17: Search for a position in Li to which be-
longs x.

18: Let s 2 Li be the corresponding line seg-
ment and r be the position in list Li.

19: substitute(Li, r, [s], [s, x, s0, x, s])
20: update triplets(Li, r, r + 4)
21: s0 s.
22: end if

23: end for

24: else

25: Let x be a disk tangent to line segments
s
1

, s
2

, s
3

and the event occurs at levels
Ai, Ai+1

, Ai+2

at positions r, r0, r00, respec-
tively (if i + 1 > k or i + 2 > k then the
corresponding values are empty).

26: if i = k or i+ 1 = k then

27: output x and three bisectors incident to it
28: substitute(Li, r, [s1, s2, s3], [s1, s3])
29: update triplets(Li, r, r + 2)
30: if i+ 1 k then

31: substitute(Li+1

, r0, [s
2

, s
1

, s
3

, s
2

], [s
2

, s
3

, s
1

, s
2

])
32: update triplets(Li+1

, r0, r0 + 3)
33: end if

34: if i+ 2 k then

35: substitute(Li+2

, r00, [s
3

, s
1

], [s
3

, s
2

, s
1

])
36: update triplets(Li+2

, r00, r00 + 2)
37: end if

38: end if

39: end while

The algorithm maintains the i-levels of arrange-
ment A, i k, while sweeping the plane with a hori-
zontal line. Since the breakpoints of the i-level move
along the edges of Vi(S) and Vi�1

(S) the correctness
of the algorithm follows.

The algorithm can extend to line segments forming
a straight-line graph. Note that in this case if two line
segments sq and st share a common endpoint p then
the intersection of wave-curves w(sq) and w(st) is not
a point but a curve. We assign this common portion
to endpoint p, w(p), and we treat w(sq) and w(st) as
they are undefined at w(p).

191

29th European Workshop on Computational Geometry, 2013

4 Complexity analysis

Lemma 6 The maximum size of queue Q and the

maximum total size of lists L
1

, . . . , Lk are O(nk).

Proof. Lists L
1

, . . . , Lk correspond to levels
A

1

, . . . , Ak. Since the wave-curves are Jordan curves
gk(n) = O

�
k2g

1

(bn/kc)
�
[17, 5] where gk(n) is the

maximum complexity of levels A
1

, . . . , Ak and g
1

(m)
is the maximum complexity of the lower envelope
of m wave-curves. The lower envelope of waves
corresponds to wavefront of the order-1 Voronoi
diagram [8], therefore g

1

(m) = O(m). Thus the
maximum complexity of A

1

, . . . , Ak, gk(n) is equal
to O(nk).
The number of site-events is O(n). Every circle-

event in event queue Q corresponds to a triple of ad-
jacent waves at some level Ai, 1 i k. Therefore
the number of circle-events is proportional to the to-
tal size of levels A

1

, . . . , Ak, which is O(nk). Thus Q
is of size O(nk). ⇤

Theorem 7 The algorithm can be implemented to

run in time O(k2n logn) and O(nk) space.

Proof. The site-events correspond to the insertion of
the new wave-curves in levels A

1

, . . . , Ak. The number
of site-events is bounded by the number of sites, O(n).
When a new line segment intersects a halplane l+ we
insert it in lists L

1

, . . . , Lk. This requires a binary
search on every list and therefore it takes O(log |Li|)
per list, where |Li| denotes the size of the list. Since
the maximum complexity of Li is bounded by the
structural complexity of the order-i Voronoi diagram,
we need O (log (i(n� i))) = O(logn) per level Li, or
O(k logn) for all levels. Therefore it takes O(nk logn)
time to process all the site-events.
The circle-events correspond to the Voronoi vertices

of the order-i Voronoi diagrams, i = 1, . . . , k. Every
such event requires constant time. Since the number
of order-i Voronoi vertices is bounded by O(i(n� i))
thus it implies that the total number of circle-events
is bounded by

Pk
i=1

O(i(n�i)) = O(k2n). Every site-
event and circle-event requires an update of the triples
that involve the line segments that are adjacent to
the places where the changes occured. Insertions and
deletions into the event queue Q require log |Q| time
per each inserted/removed circle-event, where |Q| - is
the size of the queue. Lemma 6 implies that the size of
the queue is O(nk). Therefore it takes O(log (nk)) =
O(logn) time per event. And the total running time
is O

�
k2n logn

�
.

During the execution of the algorithm we store the
event queue Q, lists L

1

, . . . , Lk and we output the
order-k Voronoi diagram Vk(S). Then Lemma 6 im-
plies the total space complexity. ⇤

References

[1] P. Agarwal, M. de Berg, J. Matousek, and O.
Schwarzkopf. Constructing levels in arrangements
and higher order Voronoi diagrams. SIAM J. Com-
put. 27(3): 654-667 (1998)

[2] F. Aurenhammer Voronoi Diagrams - A Survey of a
Fundamental Geometric Data Structure ACM Com-
put. Surv. 23(3): 345-405 (1991)

[3] F. Aurenhammer, R. Drysdale, and H. Krasser. Far-
thest line segment Voronoi diagrams. Inf. Process.
Lett. 100(6): 220-225 (2006)

[4] T. Chan. Random Sampling, Halfspace Range Re-
porting, and Construction of k-Levels in Three Di-
mensions SIAM J. Comput. 30(2): 561-575 (2000)

[5] K. L. Clarkson New applications of random sampling
in computational geometry. Discrete and Computa-
tional Geometry. 2: 195-222 (1987)

[6] F. K. H. A. Dehne and R. Klein “The Big Sweep”:
On the Power of the Wavefront Approach to Voronoi
Diagrams. Algorithmica 17(1): 19-32 (1997)

[7] H. Edelsbrunner and R. Seidel Voronoi Diagrams and
Arrangements. Discrete & Computational Geometry
1: 25-44 (1986)

[8] S. Fortune. A Sweepline Algorithm for Voronoi Dia-
grams. Algorithmica 2: 153-174 (1987)

[9] M. I. Karavelas. A robust and e�cient implementa-
tion for the segment Voronoi diagram. In Proc. 1st
Int. Symp. on Voronoi Diagrams in Science and En-
gineering, Tokyo: 51-62 (2004)

[10] D. G. Kirkpatrick. E�cient Computation of Contin-
uous Skeletons FOCS 1979: 18-27

[11] D. T. Lee. On k-Nearest Neighbor Voronoi Diagrams
in the Plane. IEEE Trans. Computers 31(6): 478-487
(1982)

[12] D. T. Lee and R. L. S. Drysdale. Generalization of
Voronoi Diagrams in the Plane. SIAM J. Comput.
10(1): 73-87 (1981)

[13] C.H. Liu, E. Papadopoulou, and D.T. Lee An
output-sensitive approach for the L1;/L1 k-Nearest-
Neighbor Voronoi diagram. ESA, LNCS 6942, 70-81
(2011).

[14] E. Papadopoulou Net-aware critical area extraction
for opens in circuits via higher-order Voronoi dia-
grams. IEEE Trans. on Comp.-Aided Design, vol.
20, no.5, 583-597, May 2011.

[15] E. Papadopoulou and M. Zavershynskyi On higher
order Voronoi diagrams of line segments. ISAAC,
Taipei: 177-186 (2012)

[16] E.A. Ramos On Range Reporting, Ray Shooting and
k-Level Construction. Symposium on Computational
Geometry. 390-399 (1999)

[17] M. Sharir and P. Agarwal. Davenport-Schinzel Se-
quences and their Geometric Applications. Cam-
bridge University Press, 1995.

[18] C.-K. Yap. An O(n log n) Algorithm for the Voronoi
Diagram of a Set of Simple Curve Segments. Discrete
& Computational Geometry 2: 365-393 (1987)

192

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

On the complexity of the partial least-squares matching Voronoi diagram

Matthias Henze⇤ Rafel Jaume† Balázs Keszegh‡

Abstract

Given two point sets of sizes n and m, we study the
partial matching problem of translating the smaller
point set to a position where it is best resembled by
an equally sized subset of the larger point set. Mea-
suring the similarity is done by the sum of squares of
the Euclidean distances between the matched points
in either set. A Voronoi-type diagram can be associ-
ated in a natural way. We prove that the complexity
of this diagram is O(m!mdn2d), where n is the size
of the bigger set. A combinatorial problem on stable
matchings that arises from our argument is of inde-
pendent interest.

1 Introduction

Let A = {a1, . . . , an} and B = {b1, . . . , bm} be finite
point sets in Rd with m n. In the partial point
matching problem, we are interested in finding an op-
timal injective match of B within A with respect to
a given measure of similarity and a set of available
transformations. In this paper, we study the sum of
squared Euclidean distances as a measure and will al-
low the point set B to be translated to any desired
position, that is, we want to solve

minimize c⇡(t) =
mX

i=1

kbi + t� a⇡(i)k2 (1)

subject to ⇡ : [m] ,! [n] an injection,

t 2 Rd.

The injectivity requirement on the matching is cru-
cial. Dropping it reduces the problem to traversing
regions of an overlay of the m Voronoi diagrams of
the point sets A � bi, i 2 [m], which can be done
e�ciently.
As an approach to decide whether problem (1) can

be solved in polynomial time in n and m, Rote [8] as-
sociated a Voronoi-type diagram with this matching

⇤Institute of Computer Science, Freie Universität Berlin,
Germany, matthias.henze@fu-berlin.de; Research supported
by ESF EUROCORES programme EuroGIGA-VORONOI,
(DFG): RO 2338/5-1.

†Institute of Computer Science, Freie Universität Berlin,
Germany, jaume@mi.fu-berlin.de; Research supported by La-
Caixa and the DAAD.

‡Alfréd Rényi Institute of Mathematics, Hungarian Acade-
my of Sciences Budapest, Hungary, keszegh@renyi.hu; Re-
search supported by OTKA, grant NK 78439 and by OTKA
under EUROGIGA project GraDR 10-EuroGIGA-OP-003.

problem, that may be called the partial (least-squares)
matching Voronoi diagram V(A,B) of A and B. In
this diagram each injection ⇡ : [m] ,! [n] defines a
(possibly empty) region P⇡ that consists of all trans-
lations t for which ⇡ is the optimal assignment for
B + t. More precisely,

P⇡ =
�
t 2 Rd : c⇡(t) c�(t) for all � : [m] ,! [n]

.

Rote [8] observed that every m-element subset of A
is the image of at most one injection that contributes
a region to the diagram. This is due to the transla-
tion invariance of the optimal matching between two
equally sized sets. Further, by

c⇡(t) =
mX

i=1

kbi�a⇡(i)k2+2
D
t,

mX

i=1

(bi�a⇡(i))
E
+mktk2,

the regions P⇡ are intersections of finitely many a�ne
half-spaces and hence the partial matching Voronoi
diagram is a polyhedral subdivision of Rd. Allowing
multiplicities in the point set B, we get as a special
case the mth order Voronoi diagram Vm(A) of A by
setting b1 = . . . = bm = 0.

A polynomial bound on the number of cells, i.e.,
full-dimensional regions, of V(A,B) would yield an
e�cient algorithm to solve the matching problem (1).
Such an algorithm would traverse all cells and solve
the minimization problem inside a fixed cell by means
of quadratic programming. For more details on this
approach we refer to [8]. In the special case Vm(A) the
number of cells is known to be polynomial in n and m.
A rough bound of O(n2d) follows from the complexity
of hyperplane arrangements (see [3]), and the best
bound that is sensitive to m is due to Clarkson &
Shor [2] and reads O(nb d

2 cmd d
2 e) for n/m ! 1.

The following result implies that, for d = 1, the
number of cells in V(A,B) is at most quadratic.

Theorem 1 (Rote [8]) Every line intersects the in-
terior of at most m(n�m) + 1 cells of V(A,B).

This bound is best possible which can be seen by
taking A and B to be equally spaced points on a line,
and where the spacing between the points in A is very
small and between the points in B very large.
We may generalize this example to arbitrary dimen-

sion by putting such an instance on n
d and m

d points
in each of the d coordinate axes. Doing this carefully

leads to a diagram with ⌦
⇣

md(n�m)d

d2d

⌘
cells and mo-

tivates the subsequent conjecture.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

193

29th European Workshop on Computational Geometry, 2013

Conjecture 1 The partial matching Voronoi dia-
gram of point sets A,B ⇢ Rd of sizes n = |A| �
|B| = m consists of O(md(n�m)d) cells.

2 Counting stable matchings

In this section, we present a combinatorial result that
will be used later on in order to derive first bounds on
the complexity of V(A,B). The combinatorial prob-
lem we are considering is a stable marriage type ques-
tion.
The stable marriage problem was first introduced

by Gale & Shapley [4] in 1962. It is usually stated as
trying to marry n men with n women, each of them
with a ranking of the people of the opposite gender, in
a way that no non-married pair would bilaterally want
to have an a↵air. In the classical paper [4], it is shown
that such a stable marriage exists for any given set of
rankings. In fact, in general there are a lot of stable
marriages for a single instance. Knuth [7] and Irving
& Leather [5] gave some bounds on this number.
A lot of variants of the problem have been studied

(see [6] for a survey), e.g., stable marriages with in-
complete rankings or with ties, the stable roommates
problem or the hospital/residents problem. The vari-
ant we are interested in was first introduced by Shap-
ley & Scarf [9] in 1974, and is called the “House Al-
location Problem.” The literature on this problem
focuses on algorithmic questions, while we are inter-
ested in a bound on the number of stable marriages.
Throughout this section, we let D = (d1, . . . , dm) 2

Sm
n be a list of permutations on n elements. These

may be regarded as m linear orderings on [n] in the
sense that a i b if and only if d�1

i (a) d�1
i (b). The

elements of [m] are usually denoted by i, j, . . . and the
elements of [n] by a, b,

Definition 1 We say that an injection µ : [m] ,! [n]
is a matching and its image M(µ) = µ([m]) is called
the matched set of µ.

• A matching µ is said to be better than ⌫ (with
respect to D), if

µ(i) i ⌫(i) for all i 2 [m].

• A matching µ is called stable (with respect to D),
if there is no better matching ⌫ 6= µ.

The following observations about this kind of mat-
chings can be easily proved.

Observation 1

i) Stable matchings are non-parallel, i.e., given two
stable matchings µ and ⌫, there are i, j 2 [m]
such that µ(i) <i ⌫(i) and ⌫(j) <j µ(j).

ii) If µ is stable, then

{a 2 [n] : 9i 2 [m] s.t. a i µ(i)} ✓ M(µ).

In particular, only the m smallest values in each
of the orderings 1, . . . ,m can appear in a sta-
ble matching. Hence, at most m2 di↵erent ele-
ments a 2 [n] are used.

iii) If µ is stable, there is no sequence i1, . . . , im0 of
length m0 m satisfying

µ(ik�1) <ik µ(ik) for all k 2 [m0],

where i0 := im0 .

Definition 2 Let ⇢ 2 Sm be a permutation on [m].
The ⇢-greedy matching µ for D is the unique injection
that satisfies µ(i) ⇢(i) b, for all i 2 [m] and for all
b 2 [n] \ {µ(1), . . . , µ(i � 1)}. A matching is called
greedy if it is ⇢-greedy for some ⇢ 2 Sm.

The following characterization of stable matchings
already appears in [1, Lem. 1] for the case m = n.
Therein, stable matchings are called Pareto-e�cient
and greedy matchings serial-dictatorship mechanisms.
We give a more focused and shorter proof of this result
that moreover covers the general case m n.

Theorem 2 A matching is stable if and only if it is
greedy.

Proof. First of all, let µ be a ⇢-greedy matching and
let us assume on the contrary that there is a better
matching ⌫. Let i 2 [m] be the smallest index such
that ⌫(i) <⇢(i) µ(i). This contradicts the definition of
the greedy matching µ since it would have chosen the
element ⌫(i). Hence, µ is stable.

Conversely, if µ is a stable matching, then there
must be some index i 2 [m] such that µ(i) = di(1),
i.e., µ(i) is the smallest in the order i. Assuming
the contrary means, by Observation 1 ii), that for all
i 2 [m] there exists an i0 2 [m] \ {i} such that µ(i0) =
di(1). In particular, there is a cycle i1, . . . , im0 such
that µ(ik�1) = dik(1), for all k 2 [m0], where i0 :=
im0 . The matching ⌫ obtained from µ by exchanging
µ(ik) for dik(1), for all k 2 [m0], is then better than µ,
contradicting stability.
We now construct the permutation ⇢ as follows. Let

⇢(1) = i1, where µ(i1) = di1(1). Then, we consider
the induced matching µ1 : [m] \ {i1} ,! [n] \ {µ(i1)}.
It is easy to see that this is a stable matching, as a
better matching would yield a better matching for µ
as well. Again we find an element i2 2 [m] \ {i1} such
that µ1(i2) = di2(1) and set ⇢(2) = i2. Repeating
this process yields the permutation ⇢ 2 Sm and µ is
⇢-greedy. ⇤

194

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Corollary 3 The number of stable matchings with
respect to a given D is at most m! and, in general,
this bound cannot be improved.

Proof. By Theorem 2, stable matchings are greedy
matchings. There exists only one greedy matching for
each of the m! permutations of [m].
For the lower bound construction observe that if

all the permutations di are equal, then every ⇢ 2 Sm

induces a di↵erent greedy matching. ⇤
Motivated by the translation invariance discussed

in the introduction, we are actually interested in the
number of matched sets of stable matchings. To this
end, we define

mg = {M(µ) : µ is a stable/greedy matching}

and

Mg =
[

µ is a stable/greedy matching

M(µ).

The latter set contains those elements of [n] that
appear in some stable/greedy matching. Clearly,
|mg|

�|Mg|
m

�
, which motivates us to determine the

order of magnitude of |Mg| in the worst case. We have
already seen in Observation 1 ii), that |Mg| m2. We
are not aware of an upper bound of the type o(m2).
Our best lower bound construction is quite apart from
this upper bound and comes from the following recur-
sive example:

Claim 1 There exists a D such that

|Mg| � m

2
log 4m 2 ⌦(m logm).

Proof. We give a recursive construction. In each
step we double the size of m. For m = 1, evidently
|Mg| = 1. We say that a construction reaches some
element a 2 [n] if a 2 Mg, i.e., a 2 M(µ) for some
stable/greedy matching µ. Assuming that we already
constructed aD form that reaches m

2 log 4m elements,
we construct a D0 for 2m that reaches m log 8m ele-
ments. In order to do that, we let m new elements
be the smallest in the preference orders of d1, . . . , dm
and let the same elements in the same order be the
smallest in the preference orders for dm+1, . . . , d2m.
Thus di(1) = di+m(1) for all i 2 [m]. The remain-
ing preferences of d1, . . . , dm are chosen according to
the construction for D. The rest of the preferences of
dm+1, . . . , d2m are set equivalently, just using a new
set of elements of [n] (we consider n not to be fixed).
In this way, any ⇢ that starts with the firstm elements
of [2m] in some order and then traverses the second m
elements behaves exactly like a ⇢0 preference order on
the previous construction D. The same thing applies
to any ⇢ that starts on the second m elements. Thus,
the number of elements of [n] that belong to some set
M(⇢) is at least m+ |Mg|+ |Mg| = m+2m

2 log 4m =
m log 8m, as desired. ⇤

A curious observation is that it is NP-hard to decide
whether an element of [n] belongs to Mg.
We now investigate |mg| directly, because from the

considerations above we only get |mg|
�|Mg|

m

�

�m2

m

�
2 O ((me)m). The trivial bound |mg| m! is

much better and basically this is the best upper bound
we know up to the order of magnitude.
Our best lower bound comes from the following sim-

ple example:

Claim 2 There exists a D such that

|mg| �
✓

m

bm
2 c

◆
2 ⌦

✓
2mp
m

◆
.

Proof. Choose D such that for every i the bm
2 c

smallest elements are the same, i.e., di(k) = dj(k)
for all i, j 2 [m], k 2 [bm

2 c], and the next elements
are all di↵erent, i.e., di(bm

2 c + 1) 6= dj(bm
2 c + 1) for

i 6= j. Now, when we greedily choose the smallest
elements according to the order of some ⇢ 2 Sm, in
the first bm

2 c steps we choose one of the smallest bm
2 c

elements and after exactly bm
2 c steps all of these have

been chosen. Then, in the last dm
2 e steps we choose by

construction the bm
2 c+ 1st smallest element with re-

spect to the actual i. Thus, any subset of size dm
2 e

appears in the second half of some ordering ⇢, and
hence we have

� m
bm

2 c
�
di↵erent sets in mg. ⇤

Problem 1 Determine if the two previous claims ex-
hibit worst case examples, i.e., is it true that |mg| 2
O(2m) and |Mg| 2 O(m logm)?

3 A polynomial bound in the size of the bigger set

We are now prepared to discuss the geometric part of
the argument that establishes an upper bound for the
number of cells of V(A,B) which is polynomial in the
size of the bigger set A. This result is formalized in
the following theorem.

Theorem 4 The partial matching Voronoi diagram
V(A,B) of point sets A,B ⇢ Rd of sizes n = |A| �
|B| = m consists of O(m!mdn2d) cells.

The bisector between two points ai, aj 2 A is the
hyperplane defined by

B(ai, aj) = {x 2 Rd : kx� aik = kx� ajk}.

Consider the hyperplane arrangement A in Rd con-
sisting of the m

�n
2

�
hyperplanes B(ai, aj)� bk, where

i, j 2 [n] and k 2 [m].

Lemma 5 Every cell C 2 A intersects the interior of
at most m! di↵erent cells of V(A,B).

195

29th European Workshop on Computational Geometry, 2013

Proof. Let C 2 A be a cell and let bk 2 B. Every
t 2 intC defines a linear ordering k on [n]: For
i, j 2 [n], we write i k j if and only if kbk+ t�aik
kbk + t � ajk. This ordering induces a permutation
dk on [n] that, by definition of A, depends on k and
C, but not on the actual t 2 intC. In addition, it is
easy to see that the optimal matching for any t must
be stable in the sense of Definition 1. Otherwise, a
better matching would attain a smaller value for the
cost function, contradicting the optimality of the first.
Hence, by Corollary 3, at most m! matchings can be
optimal for some t 2 intC and the lemma follows. ⇤

Proof. [Theorem 4] With the help of Lemma 5, The-
orem 4 follows by observing that the number of cells
in A is O(mdn2d). This is true because the number of
cells in a d-dimensional arrangement of h hyperplanes
is O(hd) (see [3]) and, in our case, we are dealing with
m
�n
2

�
= O(mn2) bisecting hyperplanes. ⇤

The arguments leading to Theorem 4 are not spe-
cific to the choice of the sum of squared Euclidean dis-
tances as the cost function nor to the choice of transla-
tions as transformations in the matching problem (1).
They apply to arbitrary distance functions and to ev-
ery cost function that is increasing with the distances.
Considering other transformations amounts to subdi-
viding other parameter spaces. The resulting bounds
on the number of optimal assignments will then de-
pend on the complexity of the arrangement of bisec-
tors in that parameter space. Note, that the bisectors
are defined by the chosen distance function.
A particularly interesting example is the case in

which, instead of translating B, we look to find opti-
mal assignments when we are allowed to transform B
subject to any linear mapping. In this case, the pa-
rameter space we want to subdivide is Rd⇥d, the space
of all (d⇥d)-matrices. The preference orders are now
defined by the relations kM · bk �aik kM · bk �ajk,
whereM 2 Rd⇥d, which again correspond to linear in-
equalities in the parameter space. The associated hy-
perplane arrangement in Rd⇥d consists of O(md2

n2d2

)
cells, and hence the number of optimal assignments is
O(m!md2

n2d2

).
The particular case of rotating B around a fixed

point was posed as a problem in [8]. Still, our bound
is only useful when m is much smaller than n and the
polynomiality remains open even for equally sized sets
A and B.

4 Conclusions and further work

We considered the problem of bounding the number
of optimal assignments of a point set B to a subset of
a bigger set A with respect to the sum of squared dis-
tances and translations. Our main result is a bound
that is polynomial in the size of the bigger set, inde-
pendently of the size of the smaller one. We have also

seen that our arguments extend to assignments with
respect to more general cost functions and other sets
of available transformations.
In view of Conjecture 1, the natural line of fur-

ther investigations is reducing the factor m! that ap-
pears in the bound of Theorem 4. As illustrated by
Claim 2, our combinatorial approach cannot yield an
upper bound of the type o

�
2mp
m

�
. Further improve-

ments have to rely more on the geometric properties
of the problem. For instance, in the least-squares
matching Voronoi diagram, each subset A0 ✓ A of
size |A0| = m gives rise to at most one cell, and also
not every stable matching that is counted in Section 2
necessarily comes from an optimal assignment. Both
are properties that we have not been able to exploit
so far.
Acknowledgement. This work was carried out dur-
ing a visit of the third author in Berlin, funded by
a EUROCORES short term visit grant in the frame-
work of the EuroGIGA programme.

References

[1] A. Abdulkadiroğlu and T. Sönmez, Random serial dic-
tatorship and the core from random endowments in
house allocation problems, Econometrica 66 (1998),
no. 3, 689–701.

[2] K. L. Clarkson and P. W. Shor, Applications of Ran-
dom Sampling in Computational Geometry, II, Dis-
crete Comput. Geom. 4 (1989), 387–421.

[3] H. Edelsbrunner, Algorithms in combinatorial geom-
etry, EATCS Monographs on Theoretical Computer
Science, vol. 10, Springer-Verlag, Berlin, Heidelberg,
1987.

[4] D. Gale and L. S. Shapley, College admissions and the
stability of marriage, Amer. Math. Monthly 69 (1962),
no. 1, 9–15.

[5] R. W. Irving and P. Leather, The complexity of count-
ing stable marriages, SIAM J. Comput. 15 (1986),
no. 3, 655–667.

[6] K. Iwama and S. Miyazaki, A Survey of the Sta-
ble Marriage Problem and Its Variants, Proc. Inter-
national Conference on Informatics Education and
Research for Knowledge-Circulating Society (Wash-
ington, DC, USA), IEEE Computer Society, 2008,
pp. 131–136.

[7] D. E. Knuth, Mariages stables et leurs relations avec
d’autres problèmes combinatoires, Les Presses de l’Uni-
versité de Montréal, Montreal, Que., 1976, Introduc-
tion à l’analyse mathématique des algorithmes, Col-
lection de la Chaire Aisenstadt.

[8] G. Rote, Partial Least-Squares Point Matching under
Translations, Proc. 26th European Workshop on Com-
putational Geometry, 2010, pp. 249–251.

[9] L. S. Shapley and H. Scarf, On cores and indivisibility,
J. Math. Econom. 1 (1974), no. 1, 23–37.

196

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

A Truly Local Strategy for Ant Robots Cleaning Expanding Domains

Rolf Klein, David Kriesel and Elmar Langetepeú

Abstract

The problem of cleaning expanding domains requires
ant-like robots to clean a growing contamination in
a grid world. It can be seen as a dynamic variant
of online coverage. To the best of our knowledge,
we present the first approach that does not require
any central guidance or global data structure. We do
so by rendering the geometric complexity of problem
instances measurable and by maintaining complexity
guarantees over time.

1 Introduction

Four main principles characterize our everyday life.
(i) Our world is highly dynamic. (ii) We catch on to
very little of what happens in it, for we possess only
limited and local means of perception. (iii) Still, we
can store and process a vanishingly small part from
the little we perceive. (iv) If nothing else, at least
there are many of us. Boiled down, life itself can be
seen as a system of limited individuals organized in a
decentral manner.

Given this point of view, one might notice that most
theory of motion planning considers only subsets of
these principles. Various problems have been ana-
lyzed in the fields of o�ine and online motion plan-
ning, postulating computationally powerful agents,
often solitary ones, in mostly static domains, for ex-
ample [4]. During the last years, the awareness of
(iv) grew: Artificial multi-agent systems became in-
creasingly inspired by advantages of biological, de-
centrally organized systems – swarms. They exhibit
fault-resistance and cost-e�ciency while being able to
solve complex tasks. At the same time, their individ-
ual parts tend to lack computational power, storage
capacity and global domain knowledge. As a result,
awareness of (iii) and (ii) increased, too. Numerous
static ant robotics scenarios for single and multiple
agents have been theoretically analyzed [1, 5–7].

However, there is far less mathematical and geomet-
rical theory of ant-like systems in dynamic domains,
though consciousness for (i) is high in practice. A rea-
son might be that, despite heuristics for solving such
problems may be easy to find, exact mathematical
analysis often turns out to be surprisingly di�cult.
In this paper, we present an approach to the dynamic
problem of cleaning expanding domains [2, 3, 7]. To

ú
All: Department of Computer Science, University of Bonn,

Germany. EMails: rolf.klein@uni-bonn.de, mail@dkriesel.com,

elmar.langetepe@cs.uni-bonn.de.

the best of our knowledge, it is the first to operate
completely without global, knowledge.

The rest of the article is organized as follows. In
Section 2, we first give a problem definition. Secondly,
we render its complexity accessible to the reader’s in-
tuition by commenting on related work from our per-
spective. Compared to related work, we outline our
contributions in Section 2.2 as well as some restric-
tions we place on problem instances due to the fact
that our approach is work in progress and writing
space is tight. In Section 3, we briefly describe an
agent model and cleaning strategy for expanding do-
mains. The proposed strategy’s correctness and run
time analysis is then sketched in Section 4. Even-
tually, we draw some conclusions and sketch further
research in Section 5.

2 Cleaning Expanding Domains

Let time be discrete and the world uniformly tes-
selated into square cells. At any time t, a cell c
has a binary contamination property, taking either
the value contaminated or clean. Edges that sepa-
rate a contaminated and a clean cell are called border
edges. We refer to the set of all contaminated cells
as the contamination. We also make use of the com-
mon compass orientations and neighbourhood defini-
tions in grid worlds, named 8Neighbours (8nb(c)) and
4Neighbours (4nb(c)) in this paper.

Motivated by phenomena like oil spills, a contami-
nation spreads as time passes by. This happens every
d time steps. During a spread, any clean cell in the
4Neighbours of a contaminated one becomes contam-
inated as well. The contamination is assumed to be
connected in the beginning. We do not consider two
diagonally adjacent contaminated cells as connected.
Connectedness, in contrast to simply-connectedness,
means that we permit the contamination to contain
holes, i.e., clean enclaves within the contamination.

Before discussing the state of the art, let us shortly
define the concepts of boundary cells and critical cells
(depicted yellow and red in some of the following fig-
ures). Let c be a contaminated cell. We say that c
is a boundary cell if another cell x œ 8nb(c) is clean
and not part of a hole. In this paper, we refer to the
set of boundary cells as the boundary. In order to
see whether or not c is critical, let us consider only
8nb(c) isolated from the rest of the contamination. If
8nb(c) contains more than one connected, contami-
nated component, we call c critical. In other words,
an agent only able to sense 8nb(c) cannot guarantee
to maintain the contamination’s connectivity if clean-

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

197

29th European Workshop on Computational Geometry, 2013

ing c. The wish for local classification of critical cells
comes at the expense of restrictivity: Some cells may
be classified critical even though their cleaning might
actually have no impact on the contamination’s con-
nectivity.

2.1 History and State of the Art

The problem of grid domain cleaning using ant agents
was first adressed in [7] for the special case of static
contaminations without holes. The authors solve the
problem by – colloquially spoken – edge peeling. They
require a group of ant agents to start at a boundary
cell. Then, the agents traverse the boundary, peel-
ing o� layers by cleaning any non-critical cell they
encounter. The authors present an analysis of cor-
rectness and cleaning time for a number of k agents.

In a further article, the same authors proceed dis-
cussing dynamic contaminations as defined above [3].
They present a general lower bound for cleaning
strategies solving it and propose to reuse their edge
peeling strategy. In order to understand their solu-
tion, let us first explain that extending the discus-
sion from the static problem to its dynamic version
turns out to be not trivial at all. We name just a
few exemplary challenges faced during our own re-
search. First, boundary parts of a contamination
may be merged by spreads. This may not only leave
agents guideless, also such merges may create new
holes. From there, one is forced to take holes into ac-
count, regardless of an initial contamination’s simply-
connectedness. Consequently, when performing edge
peeling-like strategies, agents have to distinguish be-
tween contamination and hole boundaries by only lo-
cal means – a non-trivial task given that there are
no restrictions on the contamination’s size. Also, the
paradigm of ant-robots does not allow advanced tech-
niques like map building. As holes may cause arbi-
trarily located critical cells, agent cleaning operations
complicate things further. Critical cells may lead edge
peeling agents to create arbitrarily complex contam-
ination boundaries. Eventually, agents and spreads
can even complement one another in creating new,
arbitrarily complicated holes (Fig. 1).

The authors evaded this hardly controllable inter-
play by requiring not only the contamination’s ini-
tial simply-connectedness, but additionally an elas-
tic membrane. The membrane is a continuously-
updated global data structure acting like a rubber
band around the contamination, artificially maintain-
ing simply-connectedness over time (Fig. 2). Cells
separated by the membrane are not considered con-
nected.

It replaces the contamination boundary as guid-
ance – the agents now traverse a globally maintained
data structure. Given the membrane, the authors
can prove that a group of agents is able to clean
a membrane-enclosed problem instance if it spreads
slow enough. Unfortunately, in combination with

Figure 1: In the left image part, a section of a large, solid
rectangular contamination with some minimal holes is il-
lustrated. In the middle, the same section is illustrated
after several edge peeling agent traversals. On the right
side, we can see the spread outcome of the configuration
in the middle. Critical cells are depicted red.

Figure 2: A contamination C (left) and the spread out-
comes of C both without membrane (middle) and with
membrane (right). Even though holes emerge, C stays
simply-connected, if the elastic membrane restriction is
placed. Cells considered to be part of the boundary in
each of the cases are painted yellow.

spreads and the agent’s cleaning, the membrane can
become arbitrarily meandering, even causing critical
cells in actually solid contaminations. No geometric
properties of the contamination’s shape can be guar-
anteed at all. This is too bad, because one could make
a virtue out of necessity here: Without membrane,
boundaries of a dynamic contamination actually tend
to become less meandering by spreads. Consequently,
it is hard to find direct upper bounds on edge-peeling-
like cleaning strategies. The authors manage to do so
in a third article [2].

2.2 Contribution and Restrictions

To the best of our knowledge, we present the first
approach to cleaning of expanding domains that at
one go (i) does not require any global knowledge, and
(ii) allows holes. Further, (iii) agent starting locations
within the contamination are irrelevant. We achieve
this in three steps.

First, we define a way of measuring a contamina-
tion’s geometric complexity, rendering insightful anal-
ysis possible at all. Second, we propose a cleaning
strategy. Third, we precisely analyze what complex-
ity guarantees can be maintained across spreads and
agent cleaning. Note that in this paper, we restrict
the initial complexity of both contamination bound-
ary and holes. Further, we consider only one single
agent. This does not render our contributions invalid,

198

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Figure 3: Three contamination complexities from left to
right: 0, 1 and 2.

as we do prove them with respect to the given in-
stances. In particular, contribution (i) is not impaired
by the one-agent-limit, as we obviously do not make
use of any globally maintained data structure, where
related work requires one even if using only one agent.
The extension to instances with greater complexities
and more agents is subject to current research.

3 Complexities, Agent Model and Strategy

In order to be able to classify a contamination’s com-
plexity, let us make a few definitions. Let C be a
contamination. Simply put, a contamination bound-
ary can be considered complex, if it contains spiral
shaped parts. As one can easily see, C is enclosed by
a simple grid polygon poly(C) that consists of bor-
der edge sequences connected by left and right turns.
With respect to a clockwise traversal of poly(C), let
every left turn be of the value 1, and any right turn
of the value ≠1. Then, we define the complexity of
C, comp(C), as the maximum additive subvector of
these values. As one can always choose poly(C) sub-
sequences without any turn, comp(C) Ø 0. Example
contaminations for complexities 0, 1 and 2 are illus-
trated in Fig. 3. Moreover, let box(C) be the axis-
aligned bounding box of C, an important figure for
contamination size.

In this extended abstract, we limit the initial com-
plexity of contaminations to 1. They may contain
arbitrarily many rectangular holes.

Let an agent’s position be a contaminated cell p
oriented to one of the four cardinal directions. It is
equipped with memory of size O(1), can store inte-
gers, and perform the operations increment, decre-
ment, testzero, and setzero on them. Thus, it cannot
implicitly store maps in arbitrarily large integers or
similar sophisticated calculations. Any time step, an
agent may change orientation, move to a cell œ 4nb(p)
and clean p. It keeps an integer bearing counter for
the 90¶ turns it performed, initialized with 0, in-
creased at right turns and decreased at left turns. An
agent can sense the contamination states of any cell
in 8nb(p) fi p. An agent’s goal is to clean all contam-
inated cells.

We assume that in any time step t, first a spread
takes place if t mod d = 0, and second the strategy is
started (in the first time step) or resumed (in any fur-
ther time step). Due to the paper’s extended abstract
nature, we omit a formal writing of the strategy. The
agent can be seen as a finite state machine with two
internal states: Search mode and boundary mode.

The agent starts in search mode with bearing
counter Ê = 0. With this value, it moves through
the contamination towards the starting orientation,
searching for the outer boundary. If it encounters any
boundary, it turns right, increasing its Ê to 1. With
Ê Ø 1, it follows the boundary it found using left hand
rule. Note it cannot know, if it has found a neigh-
bour cell of a hole, or the real contamination bound-
ary. However, holes are rectangular by assumption,
so if traversing a hole boundary, the agent is guar-
anteed to turn back left later on. This would make
it decrease Ê to 0 again, causing it to move freely
through the contamination again. In this manner, the
agent leaves any holes encountered without doing any
change to them. As it moves monotonously towards
two compass orientations in search mode, it eventu-
ally encounters the outer contamination boundary.

Once Ê reaches 2, the agent knows to have reached
the outer contamination boundary for this value can-
not be caused by rectangular holes. It switches to
boundary mode. In this mode, the agent follows the
boundary using left-hand rule independently from Ê.
Only in boundary mode, cells are cleaned. As we are
used to from standard edge peeling, critical cells are
not cleaned. Thus, the contamination’s connectivity
is maintained, so if an agent cleans the last contam-
inated cell it sees, it knows to have reached the goal
and terminates. However, cleaning is controlled even
more carefully: The agent starts cleaning cells after
having performed a right turn on an uncritical cell.
Such a cleaning phase is stopped by turning left or
on critical cells. We call cells that are not cleaned
because of a left turn or critical cell passed before-
hand uncleanable. Additionally, tails (contaminated
cell that touches three border edges) are cleaned in-
dependently from these cleaning phases.

Obviously, our strategy does not clean every un-
critical boundary cell in encounters. What may seem
strange in the first place, does actually enable a
straight-forward and insightful analysis. We can prove
that while the cleaning of such cells would not con-
tribute to reducing box(C)’s size, it would disable us
to provide guarantees on the contamination’s com-
plexity across agent cleaning operations.

If an agent recognizes a spread, it performs a full
reset and switches to search mode again, rendering
spreads actually a third way to end cleaning. Spreads
are recognized if a clean cell located in an agent’s
perception range becomes contaminated. In case all
cells in an agent’s perception range already were con-
taminated before, an agent is unable to recognize a
spread. However, in this case an agent is already in
search mode, so spreads are not relevant at the time.

4 Correctness and Runtime Analysis Sketch

As stated above, the classification of contaminations’
geometrical complexities, as well as providing guar-

199

29th European Workshop on Computational Geometry, 2013

antees on them over time, constitutes the key to a
successful strategy and an insightful analysis. During
the following paragraphs, let C be a contamination
with comp(C) Æ 1.

How spreads change a contamination. By showing
that poly(C) can always be partitioned to a small set
of abstract building blocks, followed by an analysis
how spreads change these blocks, we can prove that
spreads cannot increase a contamination’s complexity
to a value greater than 1.

How the agent changes a contamination. Let an
agent be positioned at p, and let it decide to clean
p. By investigating all possible 8nb(p) configurations
that can occur when an agent decides to clean, we can
prove that it cannot create a poly(C) subsequence
with a maximum turn subvector greater than 1 ei-
ther. This is an achievement of our conservative way
of cleaning described above.

Putting up with holes. In contaminations with such
low complexities, obviously no boundary parts can
grow together by spreads, so no new holes can emerge.
By proving that a low initial complexity is main-
tained, we achieve not having to take new holes and
complexities into account across the entire run time.
As an agent does not change any hole, holes stay rect-
angular until annihilated by spreads – another invari-
ant maintained. Eventually, after the last hole disap-
peared, the contamination’s simply-connectedness is
also maintained from this point of time on.

Simply put, this leads to the following agent behav-
ior. The agent finds the boundary and peels cells from
it. If the contamination is simply-connected, we know
that it does so until the contamination is cleaned be-
cause in this case, we can prove there are always cells
cleanable for the agent. If holes exist, it cleans until
the boundary is rendered entirely uncleanable due to
critical cells caused by these holes (Fig. 4). In the
latter case, the agent makes a virtue out of necessity
and waits for the next spread, traversing the boundary
on and on without a chance to clean. We can prove,
that after a spread happened, an agent is guaranteed
to be able to clean as much cells as are necessary to
shrink both height and width of the contamination’s
bounding box by 4 cells, before cleaning can possibly
be obstructed again by critical cells. All in all, we
can prove our strategy’s correctness: The agent com-
pletely cleans the contamination, if it spreads slow
enough. More formally:

Theorem 1 (Correctness) For any connected con-

tamination C with initial comp(C) Æ 1 featuring arbi-

trarily many rectangular holes, there exists a spread-

ing time dmin so that one agent using our strategy

reaches the goal and terminates. Moreover, the strat-

egy terminates for any d > dmin.

Furthermore, we can prove that a spreading time
of dmin Ø 5w + 5h + 10 su�ces, where w is the width
and h is the height of box(C). In this case, an agent

Figure 4: A contamination rendered completely unclean-
able by four minimal holes.

can clean simply-connected contamination instances
in an optimal O(wh) time. As we already mentioned,
it may be that the agent has to wait for spreads in
order to get rid of holes. Let l be the number of
spreads needed to annihilate the thickest hole. Then,
for the same dmin, we further can prove, that the agent
reaches its goal in O(ld + wh) time.

5 Conclusions and future work

We presented the first solution to the problem of
cleaning complexity-restricted instances of dynamic
domains that (i) operates without central guidance
and global knowledge, and (ii) generalizes from
simply-connectedness to connectedness. We did so by
precisely analysing geometrical changes in the con-
tamination over time. Obviously, there remain inter-
esting questions. For instance, one might wish for
cleaning arbitrarily complex contaminations, or for
strategies to be implemented by more than one agent.
The mathematical analysis of both topics is subject
to our current research.

References

[1] H. Abelson and A.A. DiSessa. Turtle geometry: The

computer as a medium for exploring mathematics. The
MIT Press, 1986.

[2] Y. Altshuler and A.M. Bruckstein. Static and ex-
panding grid coverage with ant robots: Complexity
results. Theoretical computer science, 412(35):4661–
4674, 2011.

[3] Y. Altshuler, V. Yanovski, I.A. Wagner, and A.M.
Bruckstein. Multi-agent cooperative cleaning of ex-
panding domains. The International Journal of

Robotics Research, 30(8):1037–1071, 2011.
[4] H. Choset and P. Pignon. Coverage path planning:

The boustrophedon cellular decomposition. In Inter-

national Conference on Field and Service Robotics.
Citeseer, 1997.

[5] Y. Gabriely and E. Rimon. Competitive on-line cov-
erage of grid environments by a mobile robot. Com-

putational Geometry, 24(3):197–224, 2003.
[6] C. Icking, T. Kamphans, R. Klein, and E. Langetepe.

Exploring simple grid polygons. Computing and Com-

binatorics, pages 524–533, 2005.
[7] I.A. Wagner, Y. Altshuler, V. Yanovski, and A.M.

Bruckstein. Cooperative cleaners: A study in ant
robotics. The International Journal of Robotics Re-

search, 27(1):127–151, 2008.

200

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

2-modem Pursuit-Evasion Problem

Y. Bahoo ⇤ A. Mohades ⇤ M. Eskandari † M. sorouri †

Abstract

In this paper we introduce a new version of the
Pursuit-Evasion problem in which the pursuer is a
2-modem which pursues an unpredictable evader in
a polygonal environment. A 2-modem searcher is a
wireless device whose radio signal can penetrate two
walls. We will present a new cell decomposition of
a given polygon P for the 2-modem searcher such
that the combinatorial representation of the invisi-
ble regions of the searcher remains unchanged. In
other words, when the searcher moves inside a cell,
no evader can move from an invisible region to an-
other one without detecting by the pursuer.

1 Introduction

Consider a simple polygon P is given and there are
some evaders and a pursuer which moves continuously
in it. The classical pursuit-evasion problem asks for
planning the motion of the pursuers in a polygon to
eventually see an evader. During the motion of the
pursuer, some parts of polygon may be invisible for
him; these invisible regions completely depend on the
type of the pursuer and its position in P . Let p be
an arbitrary point in P (as an initial position of the
searcher). A maximal connected closed set of points
inside P which are invisible for p is called a shadow of
p. Actually the shadows of p are the subpolygons of P
which are denoted by Si(p). As shown in [1], when the
searcher moves continuously inside P , four geomet-
ric events may happen for its shadows: merge, split,
appear and disappear. Moreover, when two disjoint
shadows of p merge together and make one connected
subpolygon, it is called the merge event. In contrast,
when a shadow is divided into two components during
the motion of the searcher, it is called the split event.
Sometimes a shadow is destroyed when the searcher
moves; this event is known as the disappear event and
if a new shadow is created, we call it the appear event.
In [2], Guibas et al studied the problem of maintain-

ing the distribution of evaders that move out of view
and inferring the location of these targets from com-
binatorial data extracted by searchers. In this paper,
we consider a special type of searchers, 2-modems. As

⇤
Department of mathematics and computer sciences,

Amirkabir university of technology, bahoo@aut.ac.ir,

mohades@aut.ac.ir

†
Department of mathematics, Alzahra university,

eskandari@alzahra.ac.ir, sorouri@alzahra.ac.ir

defined in [3], we call a wireless device whose radio
signal can penetrate two walls, a 2-modem. We will
present a new cell decomposition of a given polygon
P for a 2-modem searcher such that the combinato-
rial representation of its shadows remains unchanged.
In other words, when the searcher moves continuously
inside a cell of this decomposition, the merge, appear,
disappear or split event does not occur. The study
of this problem is motivated by robotics applications
such as surveillance, as explained in [2].

2 The 2-Cell Decomposition

In this section, we introduce our new decomposition
of a given polygon P into convex cells, which provides
our main tool for avoiding four events defined above.
It is called the 2-cell decomposition.

Definition 1 Let v and u be two vertices of P . The

vertex u is a critical vertex for v if both of its edges

are in the same half-plane bounded by the line uv.

The 2-cell decomposition is created by three kinds of
lines which are called the partition lines:
1)The lines that are the extensions of both edges of
the reflex vertices of P in it.
2)The portions of the lines through a pair of reflex
vertices which are critical for each other.
3)The lines used in the 2-modem visibility polygon of
each vertex of the polygon which is introduced in [3].
The 2-visibility polygon of a vertex v 2 P is a sub-

polygon of P which is visible by a 2-modem lied on
v. Now we determine the exact portions of these lines
which contribute to the 2-cell decomposition.

Constructing the 2-cell decomposition of P:

i) For each reflex vertex of P , draw the extensions of
its edges until they hit the boundary of P .
ii) For each pair of reflex vertices u and v which are
critical for each other and uv 2 P , draw the line
through uv until it hits @P and then omit uv.
iii) For each vertex v of P , construct the 2-visibility
polygon of v as defined in [3].
For illustration of the lines of type 3 which are in the

2-visibility polygon of the vertices, we provide some
examples. Let u be an arbitrary vertex of P and v be a
critical vertex of u. In Figure 1, we illustrate the parts
of the ray uv which is drawn in 2-cell decomposition
by the bold pieces.
Observation 1 The third type of the segments in

the 2-cell decomposition guarantees neither merge nor

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

201

29th European Workshop on Computational Geometry, 2013

u
v

u
v

u v

Figure 1: The bold parts are drawn in 2-cell decom-
position.

split event happen while moving within one cell of the

decomposition.

Now we would like to show that neither appear nor
disappear event occurs when the 2-modem searcher
moves inside a cell. For this purpose, we categorize
the shadows by having at least one vertex of the poly-
gon inside them or not. Thereby, two types of shadows
can be defined as follows:

Definition 2 The type 1 shadow is a shadow which

has at least one vertex of the polygon and the type 2
shadow is a shadow which has no vertex of the poly-

gon; it occurs between two edges of the polygon.

Theorem 1 When the 2-modem searcher moves con-

tinuously in a cell, no vertices of the polygon may

enter into or exit from its shadow.

Proof. Let R be a cell in the 2-cell decomposition
of P . At first we will show that if a searcher at an
arbitrary point p in R has a shadow of type 1, during
the moving from p inside R no vertices of P can exit
from its shadow. Let q be another arbitrary point
inside R such that the searcher has moved to q. Let v
be a vertex of P which is in S(p). Since the cells are
convex, the segment pq is completely inside R. We
suppose for a contradiction that v does not belong to
S(q), so the segment vp must intersect the polygon P
at least three times, but the segment vq can intersect
P at most two times. So there is at least one vertex
inside the triangle pqv that is critical for the vertex v
(otherwise v will be visible for p). We rotate the ray
�!vq around v towards inside the triangle pqv until reach
the first critical vertex for v. This vertex is denoted
by r. The supporting line of the segment vr is one
of the partition lines and intersects the segment pq.
Hence p and q are not in a same cell, a contradiction.
Now similarly, we can show that if a searcher (with a
shadow of type 1 or type 2) moves continuously in a
cell, no vertices of P can enter into its shadow. ⇤

Notice that by Theorem 1, we conclude that if a 2-
modem searcher which has a shadow of type 1, moves
in the cell, the appear and the disappear events cannot
occur for its shadow. Now we will prove this fact for
the case of the type 2 shadow.

Figure 2: mx intersects @P more than once.

Theorem 2 If a 2-modem searcher which is con-

tained in a cell R and has a shadow of type 2, moves

continuously in R, the appear and the disappear

events cannot occur for its shadow.

Proof. Assume that the 2-modem searcher lies on a
point p in R and it has a shadow of type 2 which oc-
curs between two edges of the polygon, named e and
e0. Let q be an arbitrary point inside R such that
the searcher moves to q. Now we erect a coordinate
system with y-axis lined up with the ray �!pq and the
origin at p. We connect the point q to the endpoints
of e and e0 and consider two of these line segments for
constructing a triangle named qq0q” such that both
segments qq0 and qq” intersect both edges e and e0,
see Figure 2. Also the shadow of the point p occurs
between two rays emitted from the point p. The inter-
sections of these rays with e0 are called by p0 and p”.
See Figure 2. If there exists a portion of the triangle
qq0q” enclosed by two edges e and e0 which is not vis-
ible for the point q, we are done. Otherwise, suppose
that the point q can see the whole of this region. As
shown in Figure 2, there is always a vertex of poly-
gon P on the line segment pp0 such that both edges
of m lie below the segment pp0 (because the shadow

of p is started by the ray
�!
pp0). The points t and s are

the intersections of the line qq” with the lines pp0 and
pp”, respectively. em is one of the edges of the vertex
m which makes the smaller angle with the positive x-
axis. Now we consider two cases, the supporting line
of edge em intersects the segment pq or not. At first,
we suppose that it does not have an intersection with
pq. In this case, the vertex m should lie on the seg-
ment pt. For this, we will show that it cannot lie on
the segment tp0. For a contradiction, suppose that m
is on the segment tp0. Since the supporting line of em
does not intersect the segment pq, the edge em will lie
below the line qm. Therefore a portion of the edge e0

will be invisible for the point q and this is a contra-
diction. Consequently, the vertex m should be on the
segment pt. Now we will show that if m lies on the
segment pt, the points p and q cannot be in a same
cell of our decomposition, which is a contradiction.
We assume that the vertex v is one of the two ver-

tices of the endpoints of the edges e or e0 which is
on the segment qq”. Since the supporting line of the
edge em does not have an intersection with the seg-
ment pq and the vertex m is on the segment pt, the

202

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

line em should lie below the line vm. Therefore the
other edge of the vertexm should be below the line vm
(according to the definition of the edge em). Hence,
the vertex m is a critical vertex for the vertex v. We
denote the intersection point of the supporting line of
vm and the segment pq by x (see Figure 2). Since
p and q are inside P , the segment vx intersects the
polygon, one or more times. If it intersects P at ex-
actly one point, the supporting line of vm is again
one of the partition lines and intersects the segment
pq and it means that the points p and q are not in
a same cell, a contradiction. So we can assume that
the segment vm intersects P in at least two points.
First we assume that the segment vx intersects poly-
gon P more than once and the segment vm intersects
P just once, see Figure 2. Note that the segment mx
intersects P at least two times (because the number of
intersections must be odd). Let c and d denote these
intersections. Consider two hypothetical walkers C
and D who traverse the boundary of the polygon P
such that they enter into the triangle mxp, starting
from the points c and d respectively. These two walk-
ers must cross the segment mx or the segment pm
for leaving triangle mxp. Note that if the walkers hit
px, then segment pq will not lie completely inside P ,
that is a contradiction. Note that since the shadow
region S(p) is started by the ray

�!
pp0, at most one of

the walkers D or C can cross the segment pm, thus at
least one of them can cross the segment mx (C). The
polygonal chain traversed by the walker C in triangle
mxp is denoted by CH(C). We rotate the ray �!mp
around m towards inside the triangle mxp until we
reach the first vertex of CH(C). It is clear that it is
critical for the vertex m. Hence in the triangle mxp,
there exists at least one vertex of P which is critical
for m. So we can rotate the ray �!mp around the point
m towards inside the triangle mxp, until we reach the
first ”critical” vertex for m in the triangle mxp, which
is denoted by u. See Figure 2. The intersection of the
supporting line of mu and the segment pq is denoted
by z. We distinguish two cases: the polygon P in-
tersects the segment mz or not. If it intersects the
segment mz, it will not intersect more than once be-
cause the vertex u is the first vertex which is reached
by rotating mx, so there is a part of the ray �!us which
belongs to the partition lines and intersects the seg-
ment pq at the point z, a contradiction. Now if the
polygon P does not intersect the segment mz, so the
vertices u and m are reflex and critical for each other,
then the segment uz belongs to the partition lines and
that is a contradiction. Now we can assume that the
segment vm intersects P in at least two points, a and
b. See Figure 3. Consider two hypothetical walkers A
and B who traverse the boundary of the polygon P
such that they enter into the triangle vmp, starting
from the points a and b respectively. One of these two
walkers should pass over the line vm. Because other-

Figure 3: mv intersects @P more than once.

wise, the walkers should intersect the line tm or the
line vt. It is clear that both of them cannot leave the
triangle vmt from the line tm. Because the ray

�!
pp0 de-

termines the border of the shadow region S(p). Thus
at least one of them (A) should cross the segment vt.
In this way, the walker A enters into the triangle vtp0,
and for leaving this triangle it should cross the line
p0t. Because otherwise, it will be an obstacle for the
point q (it can only cross the line qq”). On the other
hand, the walker B cannot cross the line tm, because
the walker A intersects the line p0t. The walker B

cannot cross the same line, because the ray
�!
pp0 deter-

mines the starting of the shadow region S(p). Also the
walker B cannot cross the line vt. Because otherwise,
it will be an obstacle for q (note that according to our
assumption the walker A crosses the line vt). So the
walker B should intersect the line vm. The polygo-
nal chain traversed by the walker B in triangle vtm is
denoted by CH(B) . We rotate the ray

�!
mt around m

towards inside the triangle vtm until we reach the first
vertex of CH(B). Obviously, this vertex is critical for
the vertex m. Then we can assume that there exists
always a critical vertex for m in the triangle vtm. So
we can rotate the ray

�!
mt around the point m towards

inside the triangle vtm, until we reach the first ”criti-
cal” vertex form in the triangle vtm, which is denoted
by v0. It is clear the vertices v0 and m are critical for

each other. The intersection of the ray
��!
mv0 and the

segment pq is denoted by y. Note that the segment
mv0 intersects P at most once (otherwise the vertex
v0 is not the first critical vertex). We distinguish two
cases: the polygon P doesn’t intersect the segment
mv0 or just one intersection occurs. In the first case,
it is clear that the vertices v0 and m are reflex and
critical for each other, so the supporting line of v0m
will be one of the partition lines and intersects the
segment pq and it means that the points p and q are
not in a same cell, a contradiction. In the second case,
when the polygon P just has one intersection with the
supporting line of mv0, there exists a part of the seg-
ment my which belongs to a partition line. It can be
shown that the points p and q are not in a same cell
which is a contradiction (similar to the way described
above for the case of the vertex u is a critical vertex
for the vertex m). According to the above discus-
sion, we have reached a contradiction when the edge
em does not intersect the segment pq, hence the sup-

203

29th European Workshop on Computational Geometry, 2013

Figure 4: em intersects pq.

porting line of em must intersect the segment pq. See
Figure 4. Note that the point q is inside the polygon
P , then the segment qq0 must have at least another
intersection with the polygon, except at e. Also, we
know that the point q0 is visible for q, hence the seg-
ment qq0 should intersect P at most once, except at
e. This intersection is denoted by l. Now we consider
a hypothetical walker L who traverses the boundary
of P inside the triangle qq0q”. This polygonal chain is
denoted by CH(L). The walker L should intersect the
segment pp0 for leaving the quadrilateral p0q0pq. This
intersection point is denoted by l0. We distinguish two
cases: the point l0 lies on the segment mp0 or pm. In
both cases we will reach a contradiction. First, we
suppose the point l0 lies on the segment mp0. In this
case, it is clear that the segment mq cannot intersect
the polygon P (otherwise the point q0 is invisible for
the point q or P is not a simple polygon). In addition,
it is easy to show that the vertex m is a reflex vertex
(because of the number of intersections between the
segment mq and P and q is an interior point of P).
Thus the supporting line of em is one of the parti-
tion lines and intersects the segment pq and it means
that the points p and q are not in a same cell, a con-
tradiction. In the second case where we consider the
point l0 lies on the segment mp, the vertex m must
be on the segment tp. Otherwise, since l0 is on the
segment mp, the polygonal chain traversed by walker
L from l to l0 is intersected by the segment mq, so
q cannot see whole segment qq0. Therefore the edge
em will be inside the triangle vtm and it cannot cross
the segment tm (note that the shadow region S(p) is

started by the ray
�!
pp0), furthermore it cannot cross

the segment tv (because L crosses the segment qq”
once, hence the vertex q” is not visible by q). Thus
the polygonal chain in the triangle vtm crosses the
segment vm at least one time. Thereby there exists
always one vertex inside the triangle tvm. We rotate
the ray

�!
vt around the point v towards inside the tri-

angle vtm, until we reach the first ”critical” vertex for
v in the triangle vtm (because v0 is the first vertex,
the polygon P doesn’t intersect the segment qq” and
the vertex q should see q”). This vertex is denoted
by v0. The intersection of the supporting line of vv0

and the segment pq is denoted by y. If the segment
v0y intersects the polygon just once (on CH(L)), the
supporting line of v0y is one of the partition lines (be-

cause vertex v0 is a critical vertex for the vertex v)
and intersects the segment pq and it means that the
points p and q are not in a same cell, a contradiction.
Then we suppose that segment v0y intersect P more

than once. All of these intersections are inside the tri-
angle tqp (when the ray

�!
vt is rotated towards inside

the triangle vtm, the vertex v0 is the first vertex).
The segment qq” should intersect the polygon P just
on CH(L) (q should see q”). So if the segment vy in-
tersects the polygon P except on CH(L), then there
exists a vertex inside region S = 4tpq \ 4qq”y. We
rotate the ray �!vq around the vertex v toward in trian-
gle tpq until we reach the first ”critical” vertex for v in
the region S which is denoted by u. The supporting
line of uv intersects P just once on CH(L) (otherwise
the vertex v0 is not the first critical vertex). Thus the
supporting line of uv is one of the partition lines and
intersects the segment pq and it means that the points
p and q are not in a same cell, a contradiction. In all
above cases, we showed that there is always a part of
the segment q0q” which is not visible from q. Hence q
should have a shadow between e and e0.

Also in a similar way, it can be shown that no ap-
pear event occurs. ⇤
Due to Theorems 1 and 2, when a 2-modem moves
continuously in a cell, neither disappear nor appear
event can happen, i. e., the 2-cell decomposition guar-
anties that the combinatorial representation of the in-
visible regions of the searcher remains unchanged.

3 Conclusion

In this study, we considered a new version of Pursuit-
Evasion problem and introduced a new decomposition
of a given polygon into convex cells which assures that
no evader can move from an invisible region to an-
other one without detecting by the pursuer while the
searcher moves inside a cell. Moreover it can be shown
that the number of cells in the 2-cell decomposition is
O(n3), but it takes a bit of e↵ort. Also the complexity
of the algorithm is the same.

References

[1] J. Yu and S. M. LaValle. Shadow information spaces:

Combinatorial filters for tracking targets. IEEE
Transactions on Robotics, 28(2):440-456, 2012.

[2] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D.
Lin, and R. Motwani. Visibility-based pursuit-evasion

in a polygonal environment. International Jour-
nal of Computational Geometry and Applications,
9(5):471-494, 1999.

[3] O. Aichholzer, R. Fabila-Monroy, D. Flores-Pealoza,
T. Hackl, C. Huemer, J. Urrutia, and B. Vogten-
huber. Modem Illumination of Monotone Polygons

Proc. 25th European Workshop on Computational
Geometry EuroCG09, pages 167-170, Brussels, Bel-
gium, 2009.

204

⇤ †

1 Introduction

n

NP

n

r

(1)

n
O(log log n)

E [L⇤
] (2)

O(logn)
E [L⇤

] (3)

µ
O(1)

2 Related Work

⇤
†

O(log n)

O(log n)

3 Preliminaries

D = {D
1

, D
2

, . . . , D
n

} n
D

i

= (c
i

, r
i

)

c
i

r
i

µ

D
R = (r

1

, r
2

, . . . , r
n

) IR

R I 2 IR

R �R

I = (x
1

, x
2

, . . . , x
n

)

�R(I) = �R(x
1

, x
2

, . . . , x
n

) =

nY

i=1

�(x
i

),

Z

x1

· · ·
Z

xn

�(x
1

) · · ·�(x
n

) dx
1

· · · dx
n

= 1 .

R µ(n)

n
µ M

205

M (M)

L⇤

D E [L⇤
]

Z 1

0

· · ·
Z 1

0

L⇤
(x

1

, . . . , x
n

)·�R(x
1

, . . . , x
n

) dx
1

. . . dx
n

,

L⇤
(I) L⇤ I

T |T |

s
0

2µ

M

| (M)| 2E [L⇤
]

3.1 The High Level Strategy

T (M)

M |T (M)| = O(| (M)|)
T (M)

I
T (M)

T (M)

I

M

M n
µ

2µ
D

i

D
i

(1 + ✏)

T (M)

T (M) = O(E [L⇤
])

(a)

(c)

> 2µ

Am

A2

(b)

µ

A1

|`i|

Bi

Ri

s0

`i

`i�1

`i+1

T (M) Bi Ri

T (M)

A = {a
1

, . . . , a
n

}
M

T (M)

s
0

n

2µ
A A

1

, A
2

, . . . , A
m

T (M) A
0

s
0

`
i

i = 1, 2, . . . ,m
y

A
i

`
i

A
i

A
i

T (M) m B
1

, . . . , B
m

B
i

T (M) A
i

A
i�1

A
i

B
i

T (M)

`
i�1

`
i

206

`
i

`
i+1

2µ B
i

2µ + |`
i

| |B
1

|
µ+ |`

1

| s
0

µ

|T (M)| =
P

m

i=1

|B
i

|

P
m

i=1

|B
i

| = O(E [L⇤
])

`
i

B
i

i j i < j

B
i

R
i

|`
i

| ⇥ 2µ `
i

O(log log n)

M

B
i

4 Stochastic O✏ine Tour

O(log log n)

B
i

i = 1, . . . ,m

E [L⇤
]

B
i

R
i

|`
i

| ⇥ 2µ
`
i

R
i

2µ ⇥ 2µ

2µ 2µ

n
2µ

4.1 Constructing a Subtour within a Square

D = {D
1

, . . . , D
n

}

R 2µ⇥2µ
µ

O(log log n)

D ✓ D
R D = ;

R
D 6= ;

N
2

(D
i

) ✓ D
D

i

= (c
i

, r
i

) D
2r

i

c
i

N
2

(D
i

)

2r
i

c
i

D
i

N
2

(D
i

)

D

N = ; D
i

2 D
N

2

(D
i

)

N D
i

N
2

(D
i

) D D
D

j

2 D N
D

i

D
j

N
D

1

, D
2

, . . . , D
k

D
i

\D
j

= ; 1 i, j k
r
1

 r
2

 · · ·
r
k

N 0
(D

i

) ✓ N
2

(D
i

)

N D
i

O(r
i

)

N 0
(D

i

)

0

D
| 0|

{D
1

, . . . , D
k

} k � 2

D | 0| �
P

k�1

i=1

⇣
ri

dlog ke

⌘

T (D) D

207

2µ

`i `i+1

2µ

`i `i+1

Bi

Bi+1

Ri Ri+1

B
i

B
i+1

E [|T (D)|] µ+O(log logn E [| 0|]) 0

D

4.2 Combining the Subtours

2µ⇥ 2µ

S
i

= {R
i1

, R
i2

, . . .}
R

i

2µ ⇥ 2µ
T
ij

O(log logn)

R
ij

R
ij

2 S
i

T
i

T
ij

{j : R
ij

2 S
i

}
i = 1, . . . ,m O(|`

i

|+µ)
T
i

i = 1, . . . ,m
D R

i

R
i+1P

m

i=1

O(B
i

)

B
i

B
i+1

T (D)

T (D) D
E [|T (D)|] = O(log logn) · E [L⇤

]

5 Online Tour and Almost Disjoint Disk

O(logn)

D

T (D) E [|T (D)|] =

O(log n) · E [L⇤
]

M
O(1) D D

c
c M

D

T (D) E [|T (D)|] = O(1) · E [L⇤
]

References

208

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Large-volume open sets in normed spaces without integral distances

Sascha Kurz⇤ Valery Mishkin†

Abstract

We study open sets P in normed spaces X attaining
a large volume while avoiding pairs of points at in-
tegral distance. The proposed task is to find sharp
inequalities for the maximum possible d-dimensional
volume. This problem can be viewed as an opposite to
known problems on point sets with pairwise integral
or rational distances.

1 Introduction

For quite some time it was not known whether there
exist seven points in the Euclidean plane, no three
on a line, no four on a circle, with pairwise integral
distances. Kreisel and Kurz [4] found such a set of
size 7, but it is unknown if there exists one of size 8.1

The hunt for those point sets was initiated by Ulam
in 1945 by asking for a dense point set in the plane
with pairwise rational distances.

Here we study a kind of opposite problem, recently
considered by the authors for Euclidean spaces, see
[5]: Given a normed space X, what is the maximum
volume f(X,n) of an open set P ✓ X with n con-
nected components without a pair of points at integral
distance. We drop some technical assumptions for the
normed spaces X and mostly consider the Euclidean
spaces Ed or Rd equipped with a p-norm. In Theo-
rem 5 we state an explicit formula for the Euclidean
case f(Ed

, n).

2 Basic notation and first observations

We assume that our normed space X admits a mea-
sure, which we denote by �X . By BX we de-
note the open ball with diameter one in X, i.e.
the set of points with distance smaller than 1

2 from
a given center. In the special case X = (Rd

, k ·
kp) with k (x1, . . . , xd) kX = k (x1, . . . , xd) kp :=

⇤University of Bayreuth, D-95440 Bayreuth, Germany,
sascha.kurz@uni-bayreuth.de

†York University, Toronto ON, M3J1P3 Canada,
vmichkin@mathstat.yorku.ca

1We remark that, even earlier, Noll and Simmons,
see http://www.isthe.com/chongo/tech/math/n-cluster, found
those sets in 2006 with the additional property of having inte-
gral coordinates, so-called 72-clusters.

⇣Pd
i=1 |xi|p

⌘ 1
p
, where p 2 R>0 [{1}, we have

�X(BX) = �

✓
1

p

+ 1

◆d

/�

✓
d

p

+ 1

◆
,

where � denotes the famous Gamma function, i.e. the
extension of the factorial function. In the Manhattan
metric, i.e. p = 1, the volumes of the resulting cross-
polytopes equal 1

d! and in the maximum norm, i.e.
p = 1, the volumes of the resulting hypercubes equal
1.
At first we observe that the diameter of a connected

component C of a set P ✓ X avoiding integral dis-
tances is at most 1.2 Otherwise we can consider two
points u, v 2 C having a distance larger than 1 and
conclude the existence of a point w 2 C on the curve
connecting u with v in C such that the distance be-
tween u and v is exactly 1.
Given two points u, v 2 X, where kv�ukX = 1, we

may consider the line L := {u+↵(v�u) | ↵ 2 R}✓X.
The restriction of X to L yields another, one-dimen-
sional, normed space, where we can pose the same
question.
We consider the map ' : L ! [0, 1), p 7! ↵ mod 1

where p = u + ↵(v � u) 2 L. If ' is not injective on
P \ L, the set P contains a pair of point an integral
distance apart. Since the map ' is length preserving
’modulo 1’, that is, kp1 � p2kX mod 1 = |'(p1) �
'(p2)|, its restriction to the connected components of
P \ L is length preserving. Thus, we conclude the
necessary condition for an open set avoiding integral
distances that the length of each intersection with a
line is at most 1.
Having those two necessary conditions, i.e. the di-

ameter of each connected component is at most 1 and
the length of each line intersection is at most 1, at
hand we define l(X,n) as the maximum volume of
open sets in X with n connected components, which
satisfy the two necessary conditions. We thus have
f(X,n) l(X,n) n · �X(BX) for all n 2 N.
In [5] the authors provided an example of a con-

nected open set U ✓ Rd such that the intersection of
U with each line has a total length of at most 1 but
the volume of U is unbounded.
Based on a simple averaging argument, any given

upper bound on one of the two introduced maximum

2We remark that the maximum volume of a set with diam-
eter 1 in X is at most �X(BX), see e.g. [7].

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

209

29th European Workshop on Computational Geometry, 2013

volumes for n components induces an upper bound
for k � n components in the same normed space X:

Lemma 1 For each k � n we have,

• l(X, k) k
n · ⇤ whenever l(X,n) ⇤;

• f(X, k) k
n · ⇤ whenever f(X,n) ⇤.

For lower bounds we consider the following con-
struction. Given a small constant 0 < " <

1
n , we

arrange one open ball of diameter 1 � (n � 1)" and
n � 1 open balls of diameter " each, so that there
centers are aligned on a line and that they are non-
intersecting. Since everything fits into an open ball of
diameter 1 there cannot be a pair of points at integral
distance. As " ! 0 the volume of the constructed set
approaches �X(BX), so that we have

�X(BX) f(X,n) l(X,n).

We then have f(X, 1) l(X, 1) = �X(BX). The
map ' shows that equality is also attained for normed
spaces X of dimension 1. So, in the following we con-
sider sets consisting of at least two components and
normed spaces of dimension at least two.

3 Two components

For one component the extremal example was the
open ball of diameter 1. By choosing the line through
the centers of two balls of diameter 1 we obtain a line
intersection of total length two, so that this cannot
happen in an integral distance avoiding set. The idea
to circumvent this fact is to truncate the open balls
in direction of the line connecting the centers so that
both components have a width of almost 1

2 , see Fig-
ure 1 for the Euclidean plane E2.

k + 1
2
� "

1
2
� " 1

2
� "

diameter 1� "

k

Figure 1: Truncated disks – a construction of 2 com-
ponents in E2 without integral distances.

The volume V of a convex body K ⇢ Ed with di-
ameter D and minimal width ! is bounded above by

V �Ed�1(BEd�1) ·Dd

Z arcsin !
D

0
cosd ✓ d✓, (1)

see e.g. [3, Theorem 1]. Equality holds i↵ K is the
d-dimensional spherical symmetric slice with diame-
ter D and minimal width !. We can easily check that
the maximum volume of two d-dimensional spherical
symmetric slices with diameter 1 each and minimal
widths !1 and !2, respectively, so that !1 + !2 1
is attained at !1 = !2 = 1

2 , independently from the
dimension.
Motivated by this fact we generally define SX to be

a spherical symmetric slice with diameter 1 and width
1
2 , i.e. a truncated open ball. In the d-dimensional
Euclidean case we have

�Ed(SEd) = �Ed�1(BEd�1)

⇡
6Z

0

cosd ✓ d✓. (2)

The truncated disc in dimension d = 2 has an area ofp
3
8 + ⇡

12 ⇡ 0.4783.

1
2
� " 1

2
� "

Figure 2: Spherical slices in dimension 2 for the maxi-
mum norm, p = 1, and the Manhattan metric, p = 1.

On the left hand side of Figure 2 we have drawn
the spherical slice, i.e. a truncated ball, in dimension
2 for the maximum norm, i.e. p = 1. For general
dimension d we have �X(SX) = 1

2 . On the right hand
side of Figure 2 we have drawn the spherical slice in
dimension 2 for the Manhattan metric, i.e. p = 1.
Here we have �X(SX) = 1

d! �
1

2d�2(d�1)! .
Since the line through the upper left corner of

the left component and the lower right corner of the
right component should have an intersection with the
shaded region of total length at most 1, we consider
truncated open balls of diameter 1�" and width 1

2�",
see Figure 1. For some special normed spaces X we
can choose " > 0 and move the centers of the two
components su�ciently away from each other such
that we can guarantee that no line intersection has
a total length of more than 1.

Lemma 2 For arbitrary dimension d � 2 and

normed spaces X = (Rd
, k · kp) with 1 < p < 1

we have l(X, 2) � f(X, 2) � 2�X(SX).

Proof. For a given small " > 0 place a truncated
open ball of diameter 1 � " and width 1

2 � " with
its center at the origin and a second copy so that
the two centers are at distance k + 1

2 � ", see Fig-
ure 1 for p = d = 2. Since both components have

210

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

diameters smaller than 1 there cannot be a pair of
points at integral distance within the same compo-
nent. So let a = (a1, . . . , ad) be a point of the left
and b = (b1, . . . , bd) a point of the right component,
where we assume that the centers of the components
are moved apart along the first coordinate axis. By
construction the distance between a and b is at least
k. Since |ai � bi| < 1 � " for all 2 i d and
|a1 � b1| < k+1� 2" the distance between a and b is
less than

⇣
(1� ")p · (d� 1) + (k + 1� 2")p

⌘ 1
p
.

By choosing a su�ciently large integer k we can guar-
antee that this term is at most k + 1, so that there
is no pair of points at integral distance. Finally, we
consider the limit as " ! 0. ⇤

We conjecture that the lower bound from Lemma 2
is sharp for all p > 1 and remark that this is true for
the Euclidean case p = 2 by Inequality (1).

4 Relation to finite point sets with pairwise odd

integral distances

In this section we restrict the connected components
to open balls of diameter 1

2 . We remark that if an
integral distance avoiding set contains an open ball of
diameter 0 < D < 1, which fits into one of its com-
ponents, then the other components can contain open
balls of diameter at most 1�D. One can easily check
that the maximum volume of the entire set P is at-
tained at D = 1

2 , at least for p-norms and dimensions
d � 2. If the set P, i.e. the collection of n open balls
of diameter 1

2 , does not contain a pair of points at
integral distance, then the mutual distances between
centers of di↵erent balls have to be elements of Z+ 1

2 .
Therefore dilating P by a factor of 2 yields the set Q
of the centers of the n balls with pairwise odd integral
distances.
However, for Euclidean spaces Ed, it is known, see

[2], that |Q| d + 2, where equality is possible if
and only if d ⌘ 2 (mod 16). It would be interesting
to determine the maximum number of odd integral
distances in other normed spaces.

5 Large-volume open sets with diameter and max-

imum length of line intersections at most one

Assuming that the construction using truncated open
balls from Section 3 is best possible or, at the very
least, competitive, we can try to arrange n copies of
those SX . Since we have to control that each line
meets at most two components we cannot arrange the
centers on a certain line. On the other hand, the
cutting directions, i.e. the directions where we cut of
the caps from the open balls, should be almost equal.

To meet both requirements, we arrange the centers of
the components on a parabola, where each component
has diameter 1�" and width 1

2�", for a small constant
" > 0, see Figure 3 for an example in E2.

Figure 3: Truncated discs – arranged on a parabola.

Lemma 3 For arbitrary dimension d � 2, n � 2, and
normed spaces X = (Rd

, k · kp) with p > 1 we have

l(X,n) � n�X(SX).

Proof. For a given small " > 0 consider n truncated
d-dimensional balls SX of width 1

2 � ", where the
truncation is oriented in the direction of the y-axis,
with centers located at

�
i · k, i · k2, 0, . . . , 0

�
and di-

ameter 1 � " for 1 i n, see Figure 3. For k

large, there is no line intersecting three or more com-
ponents. It remains to check that each line meeting
two d-dimensional balls centered at C1, C2 has an in-
tersection of length at most 1

2 with each of the trun-
cated balls. This can be done by performing a similar
calculation as in the proof of Lemma 2. Again, we
consider the limiting configuration as " ! 0. ⇤

We conjecture that the lower bound in Lemma 3 is
sharp.

6 Using results from Diophantine Approximation

In order to modify the construction from the previous
section to obtain a lower bound for f(X,n), we use
results from Diophantine Approximation and:

Lemma 4 Given an odd prime p, let ↵j = ⇣j�⇣2p�j

i

for 1 j p�1
2 , where the ⇣j are 2pth roots of unity.

Then the ↵j are irrational and linearly independent

over Q.

A proof, based on a theorem of vanishing sums of
roots of unity by Mann [6], is given in [5].
This result can be applied to construct sets avoiding

integral distances as follows. We fix an odd prime p

with p � n. For each integer k � 2 and each 1
4 >

" > 0 we consider a regular p-gon P with side lengths

2k · sin
⇣

⇡
p

⌘
, i.e. with circumradius k. At n arbitrarily

chosen vertices of the p-gon P we place the centers of
d-dimensional open balls with diameter 1 � ". Since
the diameter of each of the n components is less than
1 there is no pair of points at integral distance inside
one of these n components. For each pair of centers c1
and c2, we cut o↵ the corresponding two components

211

29th European Workshop on Computational Geometry, 2013

such that each component has a width of 1
2 �" in that

direction, see Figure 4 for an example with n = p = 5.

Figure 4: p-gon construction: Integral distance avoid-
ing point set for d = 2 and p = n = 5.

Next we consider two points a and b from di↵er-
ent components. We denote by ↵ the distance of the
centers of the corresponding components. From the
triangle inequality we conclude

↵�
✓
1� 2"

2

◆
< dist(a, b) < ↵+

✓
1� 2"

2

◆
.

Since the occurring distances ↵ are given by

2k sin
⇣

j⇡
p

⌘
for 1 j p�1

2 we look for a solution

of the following system of inequalities
⇢
2k · sin

✓
j⇡

p

◆
� 1

2
+ "

�
 2" (3)

with k 2 N, where {�} denotes the positive fractional
part of a real number �, i.e. there exists an integer
l with � = l + {�} and 0 {�} < 1. By Lemma 4

the factors 2 sin
⇣

j⇡
p

⌘
are irrational and linearly inde-

pendent over Q, so by Weyl’s Theorem [8] the sys-
tems admit a solution for all k. (Actually we only use
the denseness result, which Weyl himself attributed to
Kronecker.) We call the just described construction
the p-gon construction.
These ingredients we provided in more detail in [5]

enable us to establish the conjectured exact values of

the function f

⇣
(Ed

, k · k2), n
⌘
):

Theorem 5 For all n, d � 2 we have

f

⇣
Ed

, n

⌘
= n · �Ed(SEd).

Proof. (Sketch)
For a given number n of components we choose an
increasing sequence of primes n < p1 < p2 < For
each i = 1, 2, . . . we consider the p-gon construction
with p = pi and n neighbored vertices. If the scaling

factor k tends to infinity the d-dimensional volume
of the resulting sequence of integral distance avoiding
sets tends to the volume of the following set: Let Pi

arose as follows. Place an open ball of diameter 1 at
n neighbored vertices of a regular pi-gon with radius
2n2. Cut o↵ caps in the direction of the lines connect-
ing each pair of centers so that the components have a
width of 1

2 in that direction. In order to estimate the
volume of Pi we consider another set Ti, which arises
as follows. Place an open ball of diameter 1 ��i at
n neighbored vertices of a regular pi-gon with radius
2n2. Cut o↵ caps in the direction of the x-axis so that
the components have a width of 1

2 ��i. One can suit-
ably choose �i so that Ti is contained in Pi. Since the
centers of the components of Pi tend to be aligned,
as i increases, �i tends to 0 as i approaches infinity.
We thus have limi!1 �Ed(Ti) = n · �Ed(SEd). ⇤

7 Conclusion

We have proposed the question for the maximum vol-
ume of an open set P consisting of n components in
an arbitrary normed space X avoiding integral dis-
tances. For the Euclidean plane those sets need to
have upper density 0, see [1]. Theorem 5 proves a
conjecture stated in [5] and some of the concepts have
been transferred to more general spaces. Neverthe-
less, many problems remain unsolved and provoke fur-
ther research.

References

[1] H. Furstenberg, Y. Katznelson, and B. Weiss, Er-
godic theory and configurations in sets of positive den-
sity, Mathematics of Ramsey theory, Coll. Pap. Symp.
Graph Theory, Prague/Czech., Algorithms Comb. 5,
184–198, 1990.

[2] R.L. Graham, B.L. Rothschild, and E.G. Straus, Are
there n + 2 points in En with odd integral distances?,
Amer. Math. Mon. 81 (1974), 21–25.

[3] M.A. Hernández Cifre, G. Salinas, and S. Se-
gura Gomis, Two optimization problems for convex
bodies in the n-dimensional space, Beiträge Algebra
Geom. 45 (2004), no. 2, 549–555.

[4] T. Kreisel and S. Kurz, There are integral heptagons,
no three points on a line, no four on a circle, Discrete
Comput. Geom. 39 (2008), no. 4, 786–790.

[5] S. Kurz and V. Mishkin, Open sets
avoiding integral distances, (submitted),
http://arxiv.org/abs/1204.0403.

[6] H.B. Mann, On linear relations between roots of unity,
Mathematika, Lond. 12 (1965), 107–117.

[7] M.S. Mel’nikov, Dependence of volume and diameter of
sets in an n-dimensional banach space, Uspekhi Mat.
Nauk 18 (1963), no. 4(112), 165–170.

[8] H. Weyl, Über die Gleichverteilung von Zahlen
mod. Eins, Math. Ann. 77 (1916), 313–352.

212

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Clear Unit-Distance Graphs

⇤

Marc van Kreveld§ Maarten Lö✏er§ Frank Staals§

Abstract

We introduce a variation of unit-distance graphs
which we call clear unit-distance graphs. They require
the pairwise distances of the representing points to be
either exactly 1 or not close to 1. We discuss proper-
ties and applications of clear unit-distance graphs.

1 Introduction

Unit-distance graphs are embedded graphs, usually in
R2, with the property that there is an edge between
two vertices if and only if their distance is exactly 1.
Unit-distance graphs can be traced back to Erdös [3],
who asked the now-famous open question of how many
edges a unit-distance graph with n vertices can have.
Since then, many deep observations about the class of
unit-distance graphs have been made [1, 2, 5].
Unit-distance graphs appear in many applications,

but we focus here on the role they play in certain
games and puzzles. Figure 1 shows a maze puzzle
realized by a set of a holes in a metal plate, and a
movable ring that has a small part of the perimeter

⇤M. Lö✏er and F. Staals were supported by the Netherlands’
Organisation for Scientific Research (NWO) under project
no. 639.021.123 and 612.001.022, respectively.

§Department of Information and Computing
Sciences, Universiteit Utrecht, The Netherlands,
{m.j.vankreveld|m.loffler|f.staals}@uu.nl

Figure 1: A maze represented as the graph of a clear
unit distance point set. The goal is to get the ring
through the two holes connected by a line segment
(the text reads “GOAL”).

(a) (b)

Figure 2: (a) A set of points, forming a unite-the-dots
puzzle. (b) The drawing induced by the points as a clear
unit distance graph, with " = 0.1.

missing. The missing part allows the ring to navi-
gate from hole to hole, but only between holes at unit
distance.
As another example, we propose a new type of

drawing puzzle. The puzzle connect-the-dots is a well-
known activity for young children, where the goal is to
create a drawing by connecting a series of numbered
dots in the given order. The resulting curve usually
completes a simple picture. However, connecting the
dots by means of numbered dots su↵ers from some
profound disadvantages. The puzzle only allows for a
single polyline, which decreases the possible complex-
ity of the drawing. Usually this is circumvented by
pre-drawing some parts of the drawing. In addition,
the printed numbers do not improve the visual ap-
pearance of the completed drawing. Finally, the use of
numbers is not particularly challenging. We there-
fore propose an adapted version of this puzzle which
is both more challenging and allows not just polyline
drawings, without the use of numbering. In this puz-
zle, which we call unite-the-dots, two dots should be
connected by a line segment if the distance between
these two points is equal to a pre-defined distance.
Without loss of generality we assume this distance to
be 1, hence the drawing resulting from a unite-the-
dots puzzle corresponds to a unit-distance graph. An
example is shown in Figure 2.

Clear unit-distance graphs. In practice, it is hard
to distinguish points at unit distance, and points
at almost unit distance. This motivates studying a
new class of graphs, the clear unit-distance graphs, in
which points are either at unit distance, or a distance
significantly di↵erent from 1. Clear unit-distance
graphs can be seen as a variation on the unit-distance
graph that is useful in practical situations like the ones

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

213

29th European Workshop on Computational Geometry, 2013

just described. We will model the minimum required
deviation from the unit distance by an additive pa-
rameter ". Moreover, in the applications mentioned
above, it is also undesirable if pairs of points are too
close. For unite-the-dots, the disk-shaped drawings of
points must be disjoint, and for the mechanical mazes
the holes should not merge into bigger holes. For sim-
plicity we use the same parameter " to specify how far
two distinct points should be apart. Hence, for a given
value ", the allowed distances between points lie in the
range [", 1� "] [[1] [[1 + ",1).

Results and Organization. Section 2 formally in-
troduces clear unit-distance graphs and Section 3 in-
vestigates several properties of these graphs. Section 4
describes the unite-the-dots problem in more detail
and briefly discusses how these properties may be used
to obtain e�cient algorithms for automatically gener-
ating unite-the-dots puzzles.

2 Definitions

An "-distinguishable unit-distance point set is a set
of points in the plane with the property that every
pair (p, q) of points has a distance d(p, q) that is ei-
ther exactly 1, or at least " and at most 1 � ", or at
least 1+ ".1 An "-distinguishable unit-distance point
set induces an "-distinguishable unit-distance draw-

ing, by connecting all points at unit distance with an
edge. A graph G is an "-distinguishable unit-distance

graph if it has an "-distinguishable unit-distance draw-
ing whose points correspond to the vertices of G. For
brevity we will write (1, ")-point set, (1, ")-graph, and
(1, ")-drawing.

A clear unit-distance graph is an "-distinguishable
unit-distance graph for some constant " > 0.

3 Properties of clear unit-distance graphs

In this section, we investigate some properties of
(1, ")-point sets and graphs. We assume 0 < " < 1
is a given constant, and write � = 1/".

3.1 Density bounds

Observation 1 Let G be an (1, ")-graph, and R ⇢
R2

a region of constant diameter. There can be at

most O(�2) vertices of any (1, ")-drawing of G in R.

1While the extra condition that inter-point distance must
be at least " is natural from the point of view of the applica-
tions, the conceptually cleaner definition which only requires
distances to be either 1 or at least " di↵erent from 1 may also
be of theoretical interest. We argue that the extra condition
does not influence the results too much, since any two points
at distance less than " must have exactly the same neighbors in
the (relaxed) (1, ")-graph. We defer a more thorough discussion
of this issue to the full paper.

2"

(a)

p
"

(b)

Figure 3: (a) A connected graph may have ⌦(�2) vertices
in a constant-diameter area. (Not all edges are shown
to avoid visual clutter.) (b) A zig-zag path must have
distance

p
" between points to ensure a distance of at least

" from a point to the unit circle centered at the points on
the other side.

This upper bound follows directly from the require-
ment that inter-point distances are at least ". More
interestingly, the bound can actually be achieved,
even if the graph is required to be connected:

Lemma 2 There exist a connected (1, ")-graph G, a

(1, ")-drawing D of G and a region of constant diam-

eter R, such that there are ⌦(�2) vertices of D in R.

Proof. Note that placing points on the vertices of a
regular "-spaced �/4 by �/4 grid results in a valid
(1, ")-drawing, since all inter-point distances are at
least " and clearly smaller than 1 � ". To make
the graph connected, we slightly modify the grid and
place the points on the intersections of two sets of �/4
circles, whose centers lie 2"-spaced on a horizontal and
a vertical line, see Figure 3(a). ⇤

The construction above relies on high-degree ver-
tices to work. More interesting is the question of how
dense a connected (1, ")-graph with maximum vertex
degree d can be. Already for the case d = 2 (i.e., for
paths) this appears to be a challenging question. We
provide a lower bound of ⌦(

p
�):

Lemma 3 There exist a connected (1, ")-graph G of

maximum degree 2, a (1, ")-drawing D of G and a

region of constant diameter R, such that there are

⌦(
p
�) vertices of D in R.

Proof. We take two sets of
p
�/2 points, each ly-

ing
p
"-spaced on a vertical line, such that the first

two points on the first line both lie at distance 1 to
the first point on the second line. Then the induced

214

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

(a) (b)

Figure 4: (a) A fixed triangle strip forces a large diameter.
(b) For " =

p
3�1, a claw graph has a fixed drawing, which

can be replicated to get a linear diameter.

unit-distance graph is a path. Furthermore, the dis-
tance between any pair of points not at distance 1 is
at distance more than 1 + " if they lie on di↵erent
lines or less than 1/2 if they lie on the same line, see
Figure 3(b). ⇤

3.2 Crossing number bounds

The number of crossings in the example of Figure 3(a)
is ⇥(�4), showing that a constant-diameter region can
have as many crossings.

Lemma 4 Any (1, ")-drawing has O(�16/3) crossings
in a constant-diameter region.

Proof. Only O(�2) points can be within unit dis-
tance of a constant-diameter region because these
points must lie in a (slightly larger) constant-diameter
region themselves. These points realize at most
O(�8/3) unit distances which are the edges (using
the upper bound for the unit-distance problem by
Spencer, Szemerédi and Trotter [4]). ⇤

3.3 Diameter bounds

We now proceed to bound the (geometric) diameter
of (1, ")-drawings. Clearly, since all connected point
pairs are at unit distance, no drawing of a connected
(1, ")-graph can have diameter larger than n. We
show that (1, ")-graphs exist whose drawings neces-
sarily need this diameter:

Lemma 5 A connected (1, ")-graph G of maximum

degree 4 exists such that any (1, ")-drawing of G has

diameter ⌦(n), for any 0 < "
p
3� 1.

Proof. A rigid strip of triangles is a clear unit dis-
tance graph. See Figure 4(a). ⇤

For some specific values of ", we can show that even
trees may require a linear diameter:

Lemma 6 A (1, ")-tree G of maximum degree 3 ex-

ists such that any (1, ")-drawing of G has diameter

⌦(n), for " =
p
3� 1.

Proof. Let G be a caterpillar graph where all internal
nodes have degree 3 (i.e., a path turned into a tree by
adding a leaf to every internal path node). Now, the
three incident edges of any internal node must make
120� angles with each other; otherwise, two of them
would be at a distance less than

p
3 = 1 + " to each

other (note that they are not connected in G so they
cannot be at distance 1, and they also cannot be at
a distance bigger than " and smaller than 1� " since
" > 1/2). It remains to argue that the embedding has
a purely zigzagging backbone. But this is obvious,
since any deviation would place six points in regular
hexagonal position, creating a cycle. ⇤

Clearly, as a direct consequence of Observation 1,
a (1, ")-drawing must have diameter at least ⌦(

p
n").

Conversely, we show that there are graphs for which
every drawing has this diameter:

Lemma 7 A connected (1, ")-graph G exists such

that any (1, ")-drawing of G has diameter O(
p
n").

Proof. We construct a graph G consisting of O("2n)
copies of the construction in Figure 3(a), linked to a
c
p
n" by c

p
n" grid. Clearly, the grid ensures that

any drawing has diameter O(
p
n"), and by choosing c

su�ciently large we make sure that if the grid is drawn
regularly, there is enough room in its faces for the
O(�2) points without interfering with the grid points
themselves. ⇤

4 Unite-the-dots

Unite-the-dots puzzles are a variation of connect-the-
dots (a.k.a. follow-the-dots), where a set of numbered
points is given, and a polyline must be drawn that
connects them in the right order. Unite-the-dots does
not use numbers to annotate points. Instead, two
points are connected if and only if they are at exactly
the right (unit) distance. Unit-distance drawings are
the output for a given set of points, and clear unit-
distance point sets are suitable as the input for unite-
the-dots puzzles. The puzzle can be solved with the
help of a small coin or short stick.
In this section we study the problem of converting a

line drawing into a clear unit-distance point set whose
clear unit-distance drawing resembles the line draw-
ing. Let C be a curve between two points p, q at unit
distance. We say that the line segment pq u-models C
with respect to a parameter � � 0 if the length of C is
at most 1+ �, and C is fully inside the intersection of
the radius-1 disks centered at p and q. By extension,
we also say that the points p, q u-model C.
More generally, let C be any curve. Denote the

subcurve between any two points p, q 2 C by C(p, q).
Let p1, . . . , pk be a set of k points on C and ordered
along it. Then we say that p1, . . . , pk u-model C if
(i) p1 and pk coincide with the two endpoints of C,

215

29th European Workshop on Computational Geometry, 2013

(ii) points pi, pi+1 are at unit distance for all 1 i
k � 1, (iii) points pi, pi+1 u-model C(pi, pi+1) for all
1 i k � 1, and (iv) no other pair of points is at
unit distance. To be suitable as a (1, ")-point set, we
need to strengthen the last condition: (iv) every other
pair of points is at distance � " and 1�" or � 1+".

Even more generally, let C = {C1, . . . , Ch} be a col-
lection of curves. A (1, ")-set of points P u-models C
if and only if P is a (1, ")-point set, for every curve, a
subset of the points in P u-models it, and no pair of
points of P lies at distance 1 unless they u-model a
piece of some curve in C. Intuitively, this means that
the corresponding (1, ")-drawing resembles C. Fur-
thermore, we require that P be minimal: no subset of
P should also u-model C. This condition ensures that
P has no isolated points in its (1, ")-drawing.

Figure 5: A curve with points chosen from the one
end or the other end.

Most curves, even most line segments, are not u-
modeled by any point set. Since we must choose one
point of P at the endpoint of the curve, and the next
point must be at unit distance, it would be a coin-
cidence if a point (the last point) coincides with the
other endpoint. For example, only integer-length line
segments can be u-modeled. To overcome this caveat
we will allow one piece of each curve to be not u-
modeled. This may be an end piece or an interior
piece, but we would like it to be short. One could for
instance start at one end of C, choose a point in P ,
and then incrementally choose the next point where
the curve leaves the unit disk around the previously
chosen point, until the remaining part of C lies fully
inside the last disk, see Figure 5. We would then
have to check whether the chosen points p1, . . . , pk u-
model C(p1, pk) and form a (1, ")-point set. Similarly,
we could start at the other end, or start at both ends
and leave a part in the middle.
Given a drawing, represented by a set of curves, we

wish to compute the dots that make a unite-the-dots
puzzle, along with any curve pieces that are not u-
modeled by the dots. We observe by the u-modeling
definition with parameter � that the number of points
in P is always linear in the total length of the curves
in the input.
Suppose we are given a collection C of h curves and

parameters " and �, we can decide whether a (1, ")-
point set exists whose (1, ")-drawing resembles C with
the exception of at most one short ending piece per
curve (which would be pre-drawn). This is done as
follows. For each curve Ci, generate the two sets of

points Pi and Qi as in Figure 5. They are associated
with the True and False states of a variable xi. By
examining Pi and Qi separately we can decide if xi

can be True or False at all. By taking pairs of
points of di↵erent curves, say a point of Qi and a
point of Pj , we test their distance to decide if they
can be together in a (1, ")-point set. If not, we make
a clause (xi _ xj). This approach allows us to solve
the problem using 2-SAT in O(n2) time, where n is
the total length of all curves (and also the number of
points in a unite-the-dots puzzle, if one exists).
Using packing and algorithmic ideas we can im-

prove the bound to O(n log n). The dependency on
" is quartic, which can be derived from our results
in Section 3. We can use the same approach when
we allow to pre-draw at most one short interior curve
piece. Minimizing the total length of the pieces that
must be pre-drawn is NP-hard. We show these results
in the full paper.

5 Conclusions

We introduced clear unit-distance graphs and draw-
ings as a way to model situations where it is impor-
tant to clearly distinguish unit-distance point pairs
from other point pairs. We made several observations
about the properties of clear unit-distance graphs. We
expect that many of our bounds can be improved. It
would be of particular interest to improve the density
upper bound for paths: there is a substantial gap be-
tween the ⌦(

p
�) lower bound and the O(�2) upper

bound, and an improved upper bound would immedi-
ately imply a better "-dependency for our unite-the-
dots algorithm.

Acknowledgment. The authors thank Martin
Kodde for inspiring discussions in the early stages of
this work.

References

[1] S. Cabello, E. D. Demaine, and G. Rote. Planar em-
beddings of graphs with specified edge lengths. J.

Graph Algorithms Appl., 11(1):259–276, 2007.

[2] K. B. Chilakamarri. Unit distance graphs in rational
n-space. Discr. Math., 69:213–218, 1988.

[3] P. Erdös. On sets of distances of n points. The Amer-

ican Mathematical Monthly, 53(5):248–250, 1946.

[4] J. Spencer, E. Szemerédi, and W. Trotter. Unit dis-
tances in the Euclidean plane. In B. Bollobas, editor,
Graph Theory and Combinatorics (Proc. Cambridge

Conf. on Combinatorics), pages 293–308. Academic
Press, 1984.

[5] A. Žitnik, B. Horvat, and T. Pisanski. All generalized
Petersen graphs are unit-distance graphs, 2010. IMFM
preprints 1109.

216

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Extending partial representations of proper and unit interval graphs

Pavel Klav́ık⇤k Jan Kratochv́ıl⇤k Yota Otachi† Ignaz Rutter‡ Toshiki Saitoh§

Maria Saumell¶ k⇤⇤ Tomáš Vyskočil⇤k

Abstract

A recently introduced problem of extending partial in-
terval representations asks, for an interval graph with
some intervals pre-drawn by the input, whether it is
possible to extend this partial representation to a rep-
resentation of the entire graph. In this paper, we give
a linear-time algorithm for extending proper interval
representations and an almost quadratic-time algo-
rithm for extending unit interval representations.

1 Introduction

Geometric intersection graphs, and in particular in-
tersection graphs of objects in the plane, have gained
a lot of interest for their practical motivations, algo-
rithmic applications, and interesting theoretical prop-
erties. Undoubtedly the oldest and the most stud-
ied among them are interval graphs, i.e., intersec-
tion graphs of intervals on the real line. They were
introduced by Hájos [7] in the 1950’s and the first
polynomial-time recognition algorithm appeared al-
ready in the early 1960’s [6]. For overviews of interval
graphs and other intersection-defined classes, see [13].
Only recently, the following very natural general-

ization of the recognition problem has been consid-
ered [12]. The input of the partial representation ex-
tension problem consists of a graph and a part of the
representation and it asks whether it is possible to
extend this partial representation to the entire graph.
Klav́ık et al. [12] give a quadratic-time algorithm for
the class of interval graphs and a cubic-time algorithm
for the class of proper interval graphs. Polynomial-
time algorithms are given for interval graphs [1, 11],
and for function and permutation graphs [8]. Most of

⇤Department of Applied Mathematics, Charles University,
{klavik,honza,whisky}@kam.mff.cuni.cz

†School of Information Science, Japan Advanced Institute
of Science and Technology, otachi@jaist.ac.jp

‡Faculty of Informatics, Karlsruhe Institute of Technology,
rutter@kit.edu

§Graduate School of Engineering, Kobe University,
saitoh@eedept.kobe-u.ac.jp

¶Département d’Informatique, Université Libre de Brux-
elles, maria.saumell.m@gmail.com

kSupported by ESF EuroGIGA project GraDR as GAČR
GIG/11/E023.

⇤⇤Supported by ESF EuroGIGA project ComPoSe as F.R.S.-
FNRS - EUROGIGA NR 13604.

v1 v2 v3
v1 v3

Figure 1: Partial representation that can be extended
to a proper representation, but not to a unit one.

the cases of chordal graphs as subtrees-in-tree inter-
section graphs are hard to extend [10].
In this paper, we give a linear-time algorithm for

proper interval graphs and an almost quadratic-time
algorithm for unit interval graphs.

Problem Description. For a graph G, an interval

representation R is a collection of intervals {Ru : u 2
V (G)} such that Ru\Rv 6= ; if and only if uv 2 E(G).
For an interval Rv, we denote its left and right end-
point by `v and rv, respectively. For numbered ver-
tices v

1

, . . . , vn, we denote these endpoints by `i and
ri. A graph is an interval graph if it has an interval
representation.
We consider two subclasses of interval graphs. An

interval representation is called proper if no inter-
val is a proper subset of another interval. An inter-
val representation is called unit if the length of each
interval is one. The class of proper interval graphs

(PROPER INT) consists of all interval graphs having
proper interval representations, whereas the class of
unit interval graphs (UNIT INT) consists of all inter-
val graphs having unit interval representations.
The recognition problem of a class C asks whether

an input graph belongs to C; that is, whether it has
a representation by the specific type of sets Ru. A
partial representation R0 of G is a representation of
an induced subgraph G

0 of G. A vertex in V (G0) is
called pre-drawn. A representation R extends R0 if
Ru = R

0

u for each u 2 V (G0). Here we deal with
the problem Partial Representation Extension of C,
RepExt(C) for short. The input of the problem is
a graph G with a partial representation R0, and the
problem asks whether G has a representation R that
extends R0.

Our results. It is well-known that PROPER INT =
UNIT INT. However, partial representation extension
behaves di↵erently for these two classes (see Figure 1
for an example). In [12], the RepExt(PROPER INT)
problem is solved in time O(nm), where n is the num-
ber of vertices and m the number of edges of the input
graph. We show:

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

217

29th European Workshop on Computational Geometry, 2013

Theorem 1 The RepExt(PROPER INT) problem

can be solved in time O(n+m).

As for RepExt(UNIT INT), we deal with a more
general problem called bounded representation of unit
interval graphs, BoundRep for short. An input of
BoundRep gives a graph G and b constraints of the
form `i � lbound(vi), and `i ubound(vi). The
problem asks whether G has a unit interval represen-
tation respecting the bounds. In general, this problem
is NP-complete; see the full version [9] of this paper.
In each representation of a graph with c compo-

nents, these components are ordered from left to right.
Let us denote this ordering J. On the other hand, let
D(r) denote the complexity of dividing numbers of
length r in binary—the best known algorithm achieves
D(r) = O(r log r2log

⇤ r) [5].

Theorem 2 The BoundRep problem with a pre-

scribed ordering J can be solved in time O(n2 +
nD(r)), where r is the size of the input describing

bound constraints.

We obtain the following corollary:

Corollary 3 The RepExt(UNIT INT) problem can

be solved in time O(n2+nD(r)), where r is the size of
the input describing positions of pre-drawn intervals.

Our algorithms also construct the required repre-
sentations. Proofs and details that have been omitted
in this version can be found in [9].

2 Preliminaries and RepExt(PROPER INT)

We reserve n for the number of vertices and m for
the number of edges of G. We denote the sets of
vertices and edges by V (G) and E(G) respectively.
For a vertex v, we define N [v] = {x, vx 2 E(G)}[{v}.
Here we assume that G contains no two vertices u and
v such that N [u] = N [v]. See [9] for the case where
such vertices appear in G.

Unique Ordering. It is well-known that in each
proper interval representation, intervals are uniquely
ordered from left to right. This ordering < is the or-
der of the left endpoints and at the same time the
order of the right endpoints.

Lemma 4 (from [4]) For a connected proper/unit

interval graph, the left-to-right ordering < is uniquely

determined up to complete reversal.

Such an ordering can be computed in linear time [3].
Using this unique ordering, extendible instances of
RepExt(PROPER INT) can be simply characterized,
which yields the linear-time algorithm of Theorem 1;
see [9] for details.

Representations in "-grids. Given " = 1

K , where K

is an integer, the "-grid is the set of points {k" : k 2
Z}. For a given instance of BoundRep, we ask which
value of " ensures that we can construct a representa-
tion having all endpoints on the "-grid. For the stan-
dard unit interval graph representation problem a grid
of size 1

n is su�cient [3]. In the case of BoundRep,
consider all values lbound(vi) and ubound(vi) distinct
from �1,+1, and express them as irreducible frac-
tions p1

q1
,

p2

q2
, · · · , pb

qb
. Then we define:

"

0 :=
1

lcm(q
1

, q

2

, . . . , qb)
, and " :=

"

0

n

. (1)

Lemma 5 If there exists a valid representation R0

for an input of the problem BoundRep, there exists

a valid representation R in which all intervals have

endpoints on the "-grid, where " is defined by (1).

3 LP Algorithm for BoundRep with Prescribed J

We process components C

1

J C

2

J · · · J Cc from
left to right. For each component Ct, we calculate the
ordering < of Lemma 4 and its reversal.
When processing Ct, we solve one linear program

for each of the two orderings. Let v

1

< · · · < vk be
one such ordering. We denote the right-most endpoint
of a representation of Ct by Et (we also define E

0

=
�1). Additionally, we redefine all lower bounds as
lbound(vi) = max

�
lbound(vi), Et�1

+ "

. The linear

program has variables `

1

, . . . , `k. Let " be as in (1).
We minimize the value of Et = `k + 1 subject to:

`i `i+1

, 8i = 1, . . . , k � 1, (2)

`i � lbound(vi), 8i = 1, . . . , k, (3)

`i ubound(vi), 8i = 1, . . . , k, (4)

`i � `j � 1, 8vivj 2 E, vi < vj , (5)

`i + " `j � 1, 8vivj /2 E, vi < vj . (6)

We solve the same linear program for the other or-
dering of the vertices of Ct. If none of the two pro-
grams is feasible, we report that no bounded repre-
sentation exists. If at least one of them is feasible, we
take the solution minimizing Et.

Proposition 6 The BoundRep problem can be

solved in polynomial time.

This linear program can be solved in time O(k2r+
kD(r)), using the Bellman-Ford algorithm [2, Chapter
24.4]. In the next section we improve the time com-
plexity in the case of BoundRep to O(k2 + kD(r)).

4 Shifting Algorithm for BoundRep with Pre-
scribed J

The goal of this section is to prove Theorem 2. We
solve the linear program described in Section 3 by a

218

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

combinatorial algorithm based on shifting of intervals.

4.1 Preliminaries

First, we suppose that the unit interval graph is con-
nected, and that one left-to-right ordering < of the
intervals is prescribed.
Let Rep denote the set of all "-grid representations

in the ordering < satisfying the lower bounds (3) (but
not necessarily the upper bounds (4)). Clearly, this
set is non-empty. There is a natural partial ordering
of these representations: ForR,R0 2 Rep, we say that
R R0 if and only if `i `

0

i for every interval vi 2
V (G). The poset (Rep,) is a (meet)-semilattice:

Lemma 7 Every non-empty S ✓ Rep has an infi-

mum inf(S).

We call the infimum inf(Rep) the left-most repre-

sentation. Clearly, if this representation satisfies the
upper bound constraints, then it is an optimal solu-
tion of the linear program. On the other hand, it can
be proved that there exists a representation R0 satis-
fying both lower and upper bound constraints if and
only if the left-most representation satisfies the upper
bound constraints. Therefore, we can solve the linear
program by constructing the left-most representation.
Suppose that we construct some initial "-grid repre-

sentation that is not the left-most representation. We
transform this initial representation in Rep into the
left-most representation by applying the left-shifting

operation, which shifts one interval of the representa-
tion by " to the left such that this shift maintains the
correctness of the representation.

Proposition 8 For " = 1

K and K � n
2

, an "-grid

representation R 2 Rep is the left-most representa-

tion if and only if it is not possible to shift any single

interval to the left by " while maintaining correctness

of the representation.

An interval vi is called fixed if it is in the left-most
position, i.e., `i = min{`0i : R0 2 Rep}. A representa-
tion is the left-most representation if and only if every
interval is fixed.
An interval vi, having `i > lbound(vi), can be

shifted to the left by " if it does not make the repre-
sentation incorrect, and the incorrectness can be ob-
tained in two ways. First, there could be some interval
vj such that vj < vi, vivj /2 E(G), and `j +1+" = `i;
we call vj a left obstruction of vi. Second, there could
be some interval vj such that vi < vj , vivj 2 E(G),
and `i + 1 = `j ; then we call vj a right obstruction of
vi. Each vertex has at most one obstruction of each
type, and these obstructions are always the same: If
vi has a left obstruction, it is the first non-neighbor
of vi on the left. If vi has a right obstruction, it is the
right-most neighbor of vi.

�

�

1

�

2

�

3

�

4

�

5

�

6

� �

�

1

�

2

�

3

�

4

�

5

�

6

�

Figure 2: In the position cycle on the left, we shift �
2

in clockwise direction towards �

6

, which gives a new
representation with position cycle on the right. After
left-shifting, v

6

is not necessarily an obstruction of v
2

.

For each interval in some "-grid representation with
" = 1

K , we can write its position in the form `i =
↵i + �i", where ↵i 2 Z, �i 2 ZK . We can depict
ZK = {0, . . . ,K�1} as a cycle with K vertices where
the value decreases clockwise. The value �i assigns
to each interval vi one vertex of the cycle. Together
with placed vi’s, we call this the position cycle.
The position cycle allows us to visualize and work

with left-shifting very intuitively. When an interval
vi is shifted by " to the left, �i is cyclically decreased
by one, so it is moving clockwise along the cycle. If vj
is the left obstruction of vi, then �j = �i � 1; if it is
its right obstruction, then �i = �j . So in both cases
�j is very close to �i. See Figure 2 for an example.

4.2 The Shifting Algorithm

The shifting algorithm solves the linear program of
Section 3 in time O(k2+kD(r)), where k is the num-
ber of vertices of the component and r is the size of
the input describing bounds of the component.
The algorithm works in three basic steps:

1. Construct an initial "-grid representation (in the
ordering <) having `i � lbound(vi) for all inter-
vals, using the algorithm of Corneil et al. [3].

2. Shift intervals to the left while maintaining cor-
rectness of the representation until the left-
most representation is constructed, using Propo-
sition 8.

3. Check whether the left-most representation sat-
isfies the upper bounds. If so, this representation
satisfies all bound constraints and solves the lin-
ear program of Section 3. Otherwise, no repre-
sentation satisfying all bound constraints exists,
and thus the linear program has no solution.

Since " can be very small, we do not shift the in-
tervals on the "-grid. Instead, we position the in-
tervals on a larger �-grid, � = 1

n2 , and shift them
there. When some interval becomes fixed, it is re-
moved from the position cycle for the �-grid, and its
precise position on the "-grid is calculated. Working
on the �-grid allows to reduce the time complexity
from O(k2D(r)) to O(k2+kD(r)). See [9] for details.

219

29th European Workshop on Computational Geometry, 2013

We shift unfixed intervals by using gaps in the po-
sition cycle: When we shift interval vi from `i to `

0

i,
we decrease �i to �` + 1, where �` is the first �j

we encounter when we move clockwise from �i. We
also check whether this shift is valid with respect to
fixed intervals and the lower bound constraint. The
interval vi can become fixed in two ways: Either
`

0

i lbound(vi) or there is some fixed obstruction
vj to which vi is shifted. This can be checked in O(1)
time. If vi becomes fixed, it is removed from the posi-
tion cycle and its position on the "-grid is calculated.
We start with an initial �-grid representation sat-

isfying all lower bounds such that `i lbound(vi)+�
for at least one vi. Then every interval can be shifted
in total by distance at most O(k) from the initial po-
sition, since the component is connected. To obtain
the initial representation, we use the algorithm in [3].
The shifting of unfixed intervals proceeds in two

phases. The first phase creates one big gap by clus-
tering all �i’s in one part of the cycle. To do so, we
shift intervals in the order given by the position cycle.
We obtain one big gap of size at least n(n � 1). In
the second phase, we use this big gap to shift inter-
vals one by one, which also moves the cluster along
the position cycle. In both phases, if some interval
becomes fixed, it is removed from the position cycle.
The second phase finishes when each interval becomes
fixed and the left-most representation is constructed.
Now we are ready to prove Theorem 2:

Proof. [Theorem 2, sketch] We process the compo-
nents C

1

J · · · J Cc from left to right, and for each
component we solve two linear programs by construct-
ing the left-most representation. We use the shifting
algorithm described in this section. By Proposition 8,
the algorithm stops when each interval is fixed, and
it indeed constructs the left-most representation. As
already argued, for this representation it is su�cient
to check the upper bounds.
Concerning complexity, each interval is shifted by

distance at most k. The first phase performs O(k)
shifts. In the second phase, each interval is shifted
by at least n�1

n unless it becomes fixed. So in total,
the second phase performs O(k2) shifts. Each shift
can be implemented in time O(1) unless the interval
becomes fixed. We need additional time O(kD(r))
for precomputation and to compute exact positions
on the "-grid every time an interval becomes fixed.
Thus the total time per component is O(k2 + kD(r))
and we get O(n2 + nD(r)) for the entire graph. ⇤

5 RepExt(UNIT INT)

TheRepExt(UNIT INT) problem can be solved using
Theorem 2:

Proof. [Corollary 3] A connected component C of G
is called located if it contains at least one pre-drawn

interval, and unlocated otherwise. Unlocated compo-
nents can be placed far to the right and we can deal
with them using a standard recognition algorithm.
Concerning located components C

1

, . . . , Cc, they
have to be ordered from left to right according to
the left-to-right ordering of the pre-drawn intervals
(otherwise the problem has no solution). This gives
the required ordering J. We straightforwardly con-
struct the instance of BoundRep with this J as
follows. For each pre-drawn interval vi at position
`i, we set lbound(vi) = ubound(vi) = `i. For the
rest of intervals, we set no bounds. Clearly, this
instance of BoundRep is equivalent to the original
RepExt(UNIT INT) problem. And we can solve it in
time O(n2 + nD(r)) using Theorem 2. ⇤

References

[1] T. Bläsius, I. Rutter. Simultaneous PQ-ordering
with applications to constrained embedding problems.
Proc. SODA’13, pp. 1030-1043.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein.
Introduction to Algorithms, 3rd edition. The MIT
Press, 2009.

[3] D.G. Corneil, H. Kim, S. Natarajan, S. Olariu,
A.P. Sprague. Simple linear time recognition of unit
interval graphs. Inform. Process. Lett. 55(2):99-104,
1995.

[4] X. Deng, P. Hell, J. Huang. Linear-time represen-
tation algorithms for proper circular-arc graphs and
proper interval graphs. SIAM J. Comput. 25(2):390-
403, 1996.

[5] M. Fürer. Faster integer multiplication. SIAM J.
Comput. 39(3):979-1005, 2009.

[6] P.C. Gilmore, A.J. Ho↵man. A characterization of
comparability graphs and of interval graphs. Can. J.
Math. 16:539-548, 1964.

[7] G. Hajós. Über eine Art von Graphen. Internationale
Mathematische Nachrichten 11:65, 1957.

[8] P. Klav́ık, J. Kratochv́ıl, T. Krawczyk, B. Walczak.
Extending partial representations of function graphs
and permutation graphs. Proc. ESA’12, pp. 671-682.

[9] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, I. Rutter,
T. Saitoh, M. Saumell, T. Vyskočil. Extending partial
representations of proper and unit interval graphs.
arxiv:1207.6960 (2012).

[10] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, T. Saitoh. Hard-
ness of partial representation extension for chordal
graphs. Proc. ISAAC’12, pp. 444-454.

[11] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, T. Saitoh,
T. Vyskočil. Linear-time algorithm for partial rep-
resentation extension of interval graphs. In prepara-
tion.

[12] P. Klav́ık, J. Kratochv́ıl, T. Vyskočil. Extend-
ing partial representations of interval graphs. Proc.
TAMC’11, pp. 276-285.

[13] J.P. Spinrad. E�cient Graph Representations. Field
Institute Monographs, 2003.

220

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Augmentability of Geometric Matching and Needlework

Tillmann Miltzow⇤

Abstract

Given 2n points in the plane, it is well-known that
there always exists a perfect straight-line non-crossing
matching. We show that it is NP-complete to decide
if a partial matching can be augmented to a perfect
one, via a reduction from 1-in-3-SAT. This result also
holds for bichromatic matchings. From there by an
easy reduction scheme we can also show that the same
augmentability problem is NP-complete for planar 2-
regular, 3-regular, 4-regular and 5-regular graphs.

Introduction Matchings appear in everyday life and
are long studied mathematical objects. They give
rise to many natural mathematical questions and have
many applications.
It is well-known that any point set in general posi-

tion in the plane with an even number of points admits
a perfect non-crossing straight line matching. [2] Con-
sider the matching with smallest total edge-length; it
is necessarily non-crossing.
For related augmenting problems we refer to a re-

cent survey from Hurtado and Cs. D. Tóth [1]. After
we present the proof of our main Theorem 1, we will
present applications in the Paragraph Needlework.

Definitions To avoid confusions we repeat some def-
initions. A planar straight line graph (PSLG) is a geo-
metric graph; the vertices are points embedded in the
plane and the edges are non-crossing line segments. A
PSLG is a partial geometric matching if each vertex
is incident to at most one edge. In a perfect geometric

matching every vertex is incident to exactly one edge.
If the underlying point set is colored red and blue, we
say a PSLG is bichromatic if no two vertices with the
same color have a common edge. Here, we say that
a PSLG G = (V,E) augments PSLG G

0 = (V 0
, E

0) if
they have the same vertex set and E

0 ✓ E. We always
talk exclusively about straight line embeddings. We
say that two points p, q in the plane see each other If
the line segment pq doesn’t cross any other obstacle.
We will denote red and blue vertices by • and �. A
Graph is l-regular if every vertex has degree exactly
l. The problem of 1-in-3-SAT is to decide whether
there is an assignment of the variables of a boolean
formula such that exactly one literal is true in ev-
ery clause. Every clause consists of exactly 3 literals

⇤
Institute of Computer Science, Freie Universität Berlin,

Germany. t.m@fu-berlin.de

for such formulas. For a graph class G the geometric
augmentability problem is to decide whether a given
input PSLG G can be augmented to belong to G.

Matchings

Theorem 1 (Augmenting Matchings) It is NP-

complete to decide whether a partial geometric

matching can be augmented to a perfect one, both

for the monochromatic and bichromatic case. The

problem remains NP-complete even if there are no

two vertices of the same color that can see each other.

Proof. We prove the bichromatic case first. It can be
checked in quadratic time whether a given set of edges
augments a matching and has no crossings. Thus the
decision problem lies in NP. We describe gadgets and
then describe how to encode an instance of 1-in-3-SAT
in an instance of our augmentability problem using
these gadgets [4]. The construction not surprisingly
consists of variable gadgets and clause gadgets. We
will use lanes to transport the information from the
variable gadgets to the clause gadgets. Lanes might
have to cross each other on their way (One could avoid
crossings, but this would make the construction more
complicated.) from the variable gadget to the clause
gadget and at other points, which will become appar-
ent later. For this purpose junctions are introduced.
To encode the negation of a variable, we construct
multipliers, which also serve to split a lane in two.
This is necessary as our variable gadgets only emit
two lanes initially. Thus, we can create as many lanes
as we want with the multiplier to transport the infor-
mation from a certain variable. This is necessary if a
variable appears in more than one clause of the origi-
nal formula. We have the problem that some lanes are
not used. We let all of them go into a common basin,
where they can be taken care of easily. See Figure 1
and 3. All of our gadgets consist of the edges and free
vertices arranged in the plane. For the clarity of the
drawings we did not draw the edges separately, but
let them appear as one PSLG. This is not problem-
atic as one could perturb each edge slightly such that
they do not overlap nor cross and still all the visibility
properties remain.
The lane(Figure 1.1) consists of a tube bounded

by matching edges and unused points. The tube is
piked with matching edges to guarantee that each free
vertex has exactly two possible neighbors he could be

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

221

29th European Workshop on Computational Geometry, 2013

lane 1

arriving
unused
lanes

remaining
•-vertices

...

...

lane 2

lane 1

lane 2

lane 3

lane 1

lane 3

input lane
lane 2

lane 1

lane 3

input lane
lane 2

v

u

v

u

1 2

3 4

5 6

Figure 1

connected to. Thus any matching edge determines
the matching of all edges in the lane and there are
exactly two ways to match all the free vertices. Also
we attach to a lane a direction as we say it starts
at a variable gadget and ends in a clause gadget or
the basin; maybe bypassing several other gadgets in
between.

A lane is defined to transports the information true
if the orientation of the edge is •�(with respect to the
direction of the lane) and false if it is �•. Note that
lanes do not need to be straight, but can have any
kind of bends.

The variable gadget(Figure 1.3) consists of 2 free-
vertices at the start of 2 lanes. We say that a variable
is set to true if the two free vertices are matched to
one another, and false otherwise. The upper lane
transports the information x and the lower one trans-
ports the information ¬x by our convention.

The basin(Figure 1.2) only gathers all the lanes
to a common location and place su�ciently many •-
vertices next to these lanes to serve them (i.e. connect
the �-vertices, that are not connected yet.). It holds
(•-vertices in the basin) = # (�-vertices) � #(•-
vertices in the remaining construction).

The clause gadget(Figure 1.4) consists of exactly
one free �-vertex, which is exposed to three arriving
lanes. The �-vertex can only be matched to exactly
one of the three lanes. Thus all free vertices can be
matched i↵ exactly one of the lanes transports the
information true.

The multiplier(Figure 1.5&1.6) accepts one arriving

lane 2 lane 2

lane 1

lane 1

u

v

w

Figure 3

lane and emits 3 leaving ones. Lane 2 and 3 carry
the same information as the arriving lane and lane
1 will transport opposite information. Observe that
the vertex v in Figure 1 5 can only be adjacent to two
vertices. To which is determined by the information
of the arriving lane. This in turn determines what u
is connected to and will decide the edges for the three
emitting lanes.
The junction is depicted in Figure 3 together with

one possible assignments of the incoming lanes. De-
pending on lane 2 the vertex v must be matched with
u or w. This implies that either the left tunnel or the
right tunnel is blocked by an edge. This is no problem
when lane 1 carries the information true, as lane 1
will not cross lane 2. When lane 1 carries information

222

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

x1

m

x1

x1

¬x1

m

¬x1

¬x1

x1

x2

m

x2

x2

¬x2

m

x2

x2

¬x2

¬x2

c1

c2

c3

variables

populate variables

basin

clause
gadgetsordering the lanes

Figure 2

false lane 1 uses the tunnel that is not blocked by
the edge connected to v.

The whole construction is depicted in Figure 2. Let
' be an instance of 1-in-3-SAT, we explain how to
construct a partial geometric matching M('). The
construction consist of 5 parts. The first part consists
merely of variable gadgets. The second part popu-
lates the lanes from the variables using the multiplier.
This is done till each literal is at least as many times
present as it is used in the clauses. The third part
is the most important one, here the literals are con-
nected to the corresponding clauses. Note that we
have at most a quadratic number of crossings. At
the bottom of the third part is the fourth part, the
basin, which takes care of overmuch lanes. The last
part are the clause gadgets, where the lanes end. It is
clear, that this construction can be made in polyno-
mial time. If there is an assignment to the variables
such that ' is satisfied, we match the variable gadget
accordingly and transport these information over the
lanes and each clause gadget will be satisfied. Thus
it is possible to augment the matching of M(') to a
perfect one. On the other hand if M(') can be aug-
mented to a perfect matching we get an assignment
from the variable gadget, which satisfies each clause.

We will not match vertices of the same color as
this is not allowed. Thus inserting tiny segments that
block the visibilities of vertices of the same color and
no other visibilities doesn’t change the complexity of
the problem.

As we cannot connect vertices with the same color,
ignoring the color restriction does not change the com-
plexity of the problem either. ,

Needlework We show how to apply Theorem 1 to
get NP-hardness of other augmentability problems.
In the following we consider only graph classes1 G
that contain only planar graphs and have the follow-
ing natural property:

G1, G2 2 G , G1 tG2 2 G

For instance, connected graphs or graphs with
bounded diameter do not satisfy this property. We
cannot apply our technique to these classes.
A PSLG NG /2 G is called an one pointed needle for

graph class G if the following conditions are met:

• There exists a distinguished vertex v 2 NG on
the outer face of NG .

• When two copies of NG are connected with an
edge the resulting PSLG K lies in G.

• Other edges added to K immediately exclude the
option that an augmentation of K is in G.

The PSLG depicted in Figure 4 a) is an one pointed
needle for planar 3-regular graphs.

Theorem 2 Let N be a one pointed needle of the

graph class G then the geometric augmentability prob-

lem for G is NP-hard.

Proof. We make a reduction from the problem in
Theorem 1. Let M be a partial monochromatic
matching. Replace every vertex v by a small rotated
copy of the one pointed needle N . The edges of M re-
main where they were. We denote the resulting PSLG

1
We consider finite graphs with V (G) ⇢ N and therefore

think of graph classes as sets.

223

29th European Workshop on Computational Geometry, 2013

by G(M). It is clear that G(M) can be constructed in
polynomial time and we observe that M can be aug-
mented to a perfect matching i↵ each needle in G(M)
can be matched to another one. ,

a) b) c) d)

Figure 4

As an application we get: It is NP-complete to decide
whether a PSLG can be augmented to a cubic one.
Alexander Pilz proved the stronger statement, that
the problem remains NP-complete if the input graph
is connected [3]. Unfortunately 2- and 4-regular pla-
nar graphs admit no one pointed needle, due to parity
issues.
A PSLGNG is called bichromatic two pointed needle

if the following holds:

• NG has two distinguished vertices v and w on its
outer face, with largest and smallest y-coordinate
respectively.

• The v and w cannot see each other and we color
them blue and red respectively.

• LetM be a geometric perfect bichromatic match-
ing of the distinguished vertices of some copies of
NG . Then these copies together with M is in G.

• Any other edge added excludes immediately
membership in G.

The PSLGs in Figure 4 b) and c) are examples of
bichromatic two pointed needles for bichromatic 2-
regular and 3-regular graphs, respectively.

Theorem 3 Let N a bichromatic two pointed needle
of the graph class G then the geometric augmentabil-

ity problem of G is NP-hard.

Proof. Let M be a partial bichromatic matching,
without two vertices of the same color visible to one
another. Replace every •-vertex by a tiny copy of N
directed upwards and every �-vertex by such a copy
directed downwards. Denote the result by G(M). Re-
member that no two vertices of the same color see each
other in M . Hence every top vertex must be matched
to another top vertex. Therefore augmentations of M

can be translated to augmentations of G(M) and vice
versa. ,

A PSLG NG is a monochromatic two pointed needle

for a graph class G if it is a bichromatic one with
the exception that, edges between v and w do not
necessarily destroy membership in G. The PSLG in
Figure 4 d) is a monochromatic two pointed needle
for 5-regular planar graphs.

Theorem 4 Let N be a monochromatic two pointed
needle of the graph class G. Then the geometric aug-

mentability problem of G is NP-hard.

Proof. The proof is exactly the same as in the previ-
ous Theorem 3, except that we prevent vw-edges by
tiny copies of some G 2 G. ,

Theorem 5 The geometric augmentability problem

is NP-complete for planar, i-regular graphs (i =
2, 3, 4, 5).

Proof. Membership for these graph classes can be
tested in polynomial time. Thus the problem lies in
NP. We construct a monochromatic two pointed nee-
dle. Take any member of one of these classes and re-
move an edge (vw). The vertices v and w are the dis-
tinguished vertices. Find a straight line embedding,
where v and w have largest and smallest y-coordinate
and cannot see each other. Apply Theorem 4. ,

We think that needles for many more graph classes
can be found easily and the presented reduction
scheme is far from being exploited.

Acknowledgments The author thanks Andrei Asi-
nowski for his help for improving the presentation
and helpful discussions. I also thank Günter Rote for
his guidance and support. At last thanks goes to an
anonymous reviewer and Joe Mitchell for their advice
regarding the presentation.

References

[1] Ferran Hurtado and Csaba D. Tóth. Plane geometric
graph augmentation: a generic perspective. In Thirty

Essays on Geometric Graph Theory (J. Pach, ed.), vol.

29 of Algorithms and Combinatorics, vol. 29:327–354,
2013.

[2] A. Kaneko and M. Kano. Discrete geometry on red
and blue points in the plane - a survey. Discrete

and Computational Geometry. The Goodman-Pollack

Festschrift vol. 25 of Algorithms and Combinatorics,
25:551 – 570, 2003.

[3] Alexander Pilz. Augmentability to cubic graphs. In
28th European Workshop on Computational Geometry,
2012.

[4] Michael Sipser. Introduction to the theory of compu-

tation, volume 2. PWS Publishing Company, 1997.

224

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Quasi-Parallel Segments and
Characterization of Unique Bichromatic Matchings⇤

Andrei Asinowski†

Tillmann Miltzow‡

Günter Rote§

Abstract

Given n red and n blue points in general position
in the plane, it is well-known that there is a per-
fect matching formed by non-crossing line segments.
We characterize the bichromatic point sets which ad-
mit exactly one non-crossing matching. We give
several geometric descriptions of such sets, and find
an O(n logn) algorithm that checks whether a given
bichromatic set has this property.

1 Introduction

Basic notation and preliminary results. A bichro-

matic (n + n) point set F is a set of n blue points
and n red points in the plane. We assume that the
points of F are in general position, this is, no three
points lie on the same line. A perfect bichromatic

straight-line matching of F is a set of n non-crossing
segments that connect points of F so that each seg-
ment has one blue and one red endpoint, each blue
point is connected to exactly one red point, and vice
versa. Such matchings are also known in the litera-
ture as BR-matchings. However, we denote the colors
blue and red by � and •.
It is well known that any F has at least one BR-

matching. One way to construct such a matching is
to use recursively the Ham-Sandwich Theorem. In
this paper, we characterize bichromatic sets with a
unique BR-matching. In what follows, M denotes a
given BR-matching of F . The segments in M are
considered directed from the �-end to the •-end. For
A 2 M , the line that contains A is denoted by g(A),
and it is considered directed consistently with A. For
two directed segments A and B for which the lines
g(A) and g(B) do not cross, we say that the segments
(resp., the lines) are parallel if they have the same
orientation; otherwise we call them antiparallel. If we

⇤Supported by by the ESF EUROCORES programme Eu-
roGIGA, CRP ComPoSe, Deutsche Forschungsgemeinschaft
(DFG), under grant FE 340/9-1.

†Institute of Computer Science, Freie Universität Berlin,
Germany. asinowski@gmail.com

‡Institute of Computer Science, Freie Universität Berlin,
Germany. t.miltzow@gmail.com

§Institut für Informatik, Freie Universität Berlin, Germany.
rote@inf.fu-berlin.de

delete inner points of A from g(A), we obtain two
closed outer rays: the �-ray and the •-ray, according
to the endpoint of A that belongs to the ray.
The boundary of the convex hull of F will be de-

noted by @CH(F). Consider the circular sequence of
colors of the points of @CH(F); a color interval is a
maximal subsequence of this circular sequence that
consists of points of the same color. In the point set
in Fig. 1a, @CH(F) has four color intervals: two �-
intervals (of sizes 1 and 2) and two •-intervals (of
sizes 2 and 3).

(a) (b) (c)`1

`2

Figure 1: (a) A matching with chromatic cuts; (b) A
matching of type L; (c) A matching of type C. (An-
other matching for the same point set is indicated by
dashed lines.)

A chromatic cut of M is a line ` that crosses two
segments of M such that their •-ends are on di↵erent
sides of `. (` can as well cross other segments of M .)
For example, the lines `1 and `2 in Fig. 1a are chro-
matic cuts. The matchings in Fig. 1b–c have no chro-
matic cuts. Matchings without chromatic cuts will
play a central role in our work. We specify two types
of BR-matchings without chromatic cuts. A matching

of linear type (or, for shortness, matching of type L)
is a BR-matching without a chromatic cut such that
@CH(F) consists of exactly two color intervals (both
necessarily of size at least 2). A matching of circular

type (or matching of type C) is a BR-matching with-
out a chromatic cut such that all points of @CH(F)
have the same color. Fig. 1b–c shows matchings of
types L and C. We shall prove in Lemma 6 that any
BR-matching without chromatic cuts belongs to one
of these types. Aloupis et al. [1, Lemma 9] proved that
if a BR-matching M has a chromatic cut, then there
exists a compatible BR-matching M 0 6= M , which
means that the union of M and M 0 is a non-crossing

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

225

29th European Workshop on Computational Geometry, 2013

set of segments. Thus, having no chromatic cut is

a necessary condition for M being the unique BR-

matching of F . However, the matching in Fig. 1c
shows that this condition is not su�cient.

Main results. We prove the following results.

Theorem 1 Let M be a BR-matching without a
chromatic cut. Then:

1. M is either of type L or of type C.

2. If M is of type L, then it is unique.

3. If M is of type C, then it is not unique, and there
are at least two more matchings.

Together with the aforementioned necessary condi-
tion, this means that M is a unique BR-matching for
its point set if and only if it is a matching of type L.
Therefore, we study such matchings in more details;
see Theorem 2.

Definition 1 For any two segments A,B 2 M , A 6=
B, we define the relation A/B if B is contained in the
right half-plane bounded by g(A) and A is contained
in the left half-plane bounded by g(B).

Definition 2 A BR-matching M is called quasi-
parallel if there exists a directed line ` such that the
following conditions hold:

• No segment is perpendicular to `.

• For any A 2 M , the direction of its projection
on ` (as usual, from � to •) coincides with the
direction of `.

• For any non-parallel A,B 2 M , the projection
of the intersection point of g(A) and g(B) on `
doesn’t lie in the convex hull of the projections
of A and B on `.

Quasi-parallel segments were introduced as a general-
ization of parallel segments by Rote [4, 5] in the con-
text of a dynamic programming algorithm for some
instances of the traveling salesman problem. In that
work, the segments were uncolored; thus, our defini-
tion is a “colored” version of the original one. Fig. 2
shows an example of quasi-parallel matching, with
horizontal `.

Theorem 2 Let M be a BR-matching of F . Then
the following conditions are equivalent:

1. M is the only BR-matching of F .

2. M is a matching of type L.

`
A1

A2

A3

Figure 2: A quasi-parallel matching.

3. @CH(F) consists of two color intervals of length
at least 2; and for any A,B 2 M (A 6= B), ei-
ther g(A) and g(B) are parallel (including orien-
tation), or their intersection point belongs to the
outer rays of the same color.

4. The relation / is a linear order on M .

5. No subset of segments forms one of the three for-
bidden configurations from Fig. 3.

6. M is quasi-parallel.

(a) (c)(b)

Figure 3: Forbidden patterns for quasi-parallel match-
ings.

Moreover, ifM satisfies any of the above conditions,
then any submatching of M satisfies the above condi-
tions. This follows from the fact that conditions 4–6
directly imply that they hold for all subsets. (This is
most trivial for condition 5.)

Related work. Monochromatic and bichromatic
straight-line matchings have been intensively studied
in the recent years.
One direction is geometric augmentation. Given a

matching, one wants to determine whether it is possi-
ble to add segments in order to get a bigger matching
with a certain property, under what conditions can
this be done, how many segments one has to add, etc.
See Hurtado and Cs. D. Tóth [3] for a recent survey.
The bichromatic compatible matching graph of F

has as its node set the BR-matchings of F . Two BR-
matchings are joined by an edge if they are compat-
ible. Aloupis et al. [1] proved that the bichromatic
compatible matching graph is always connected.

Chromatic cuts. We start with a simple geometric
description of BR-matchings that admit a chromatic
cut.

226

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Lemma 3 LetM be a BR-matching. M has no chro-
matic cut if and only if no subset of segments forms
one of the two forbidden patterns from Fig. 3(a)–(b).

Lemma 4 Let M be a BR-matching. M has a chro-
matic cut if and only if there exists a balanced line
that crosses a segment of M .

(A line ` is a balanced line if in each open half-plane
determined by `, the number of •-points is equal to
the number of �-points.)

Corollary 5 Let M be a BR-matching of F with a
chromatic cut. Then there is a di↵erent matching
M 0 6= M .

Remark. As mentioned in the introduction, Corol-
lary 5 follows from the stronger statement of [1,
Lemma 9]: the existence of a compatible matching
M 0 6= M . The full version of our paper gives a sim-
pler alternative proof.

Lemma 6 Let M be a BR-matching of F that has
no chromatic cut. Then

• either all points of @CH(F) have the same color,

• or the points of @CH(F) form two color intervals
of size at least 2.

2 Quasi-Parallel, or Linear, Matchings

In this section we sketch the proof of Theorem 2. Con-
ditions 3, 4, 5 are di↵erent geometric characterizations
of quasi-parallel (or linear) matchings; their proofs
are omitted here. We want to give one proof that
quasi-parallel matchings are unique. This proof not
the shortest possible, but it is probably the most in-
tuitive one. We assume that the equivalence of 2–6 is
already established.
Consider a set V = {v1, . . . , vm} of pairwise non-

crossing unbounded Jordan curves (“ropes”). They
partition the plane into m+1 connected regions. We
assume that they are numbered in such a way that
in going from vi to vj (j > i + 1), one has to cross
vi+1, vi+2, . . . , vj�1. We will think of them as “ver-
tical” curves that are numbered from left to right.
Consider another set G = {g1, . . . , gn} of pairwise
non-crossing Jordan arcs, such that every curve gk
has its endpoints on two di↵erent vertical curves vi
and vj (j > i), has exactly one intersection point each
with vi, vi+1, vi+2, . . . , vj , and no intersection with the
other curves. See Figure 4a for an example. We say
that the curves V [G form a partial (combinatorial)

grid.

Lemma 7 [The Fishnet Lemma] The “horizontal”
arcs gk of a partial combinatorial grid V [G can

(b)(a)

v1 v2 v3 v4
h1

h2

h5

h3

h6

h4

g1

g2
g5

g6

g3

g4

Figure 4: (a) A partial grid. (b) Extension to a full
fishnet grid of ropes.

be extended to pairwise non-crossing unbounded Jor-
dan arcs hk in such a way that the curves H =
{h1, . . . , hn} together with V form a full combinato-
rial grid V [H: Each “horizontal” curve hk crosses
each “vertical” curve vi exactly once. See Figure 4b.

Theorem 8 Let M be a matching of type L on the
point set F . Then M is the only matching of F .

Remark: This statement was proven earlier for
compatible matchings [4, Lemma 2] and follows from
the connectedness of the bichromatic compatibility
graph.

Proof. (Sketch) Given a quasi-parallel matching M
it is easy to construct a set of Jordan curves V as in
Lemma 7 by considering the line arrangement formed
by the segments. At each intersection point, the
curves switch from one line to the other, and after
a slight deformation in the vicinity of the intersec-
tions, they become noncrossing. Now assume there is
another matching M 0; M and M 0 form at least one
alternating cycle. Let G = {g1, . . . , gk} be the seg-
ments of M 0 in the order when one would traverse
this cycle. Clearly, V,G satisfy the condition of the
Fishnet Lemma and thus can be extended to a full
combinatorial grid. Observe g1, . . . , gk also must be
in this order, because (w.l.o.g.) h1 is above h2, h2

above h3, and so on. This means that g1 and gk are
maximally apart, gk being below g1. So they cannot
be connected to the same segment in M . ,

3 Circular Matchings

Theorem 9 BR-matchingsM of type C have at least
two disjoint BR-matchings compatible to M .

Proof. (Sketch) Let M be a BR-matching of type C.
Since it is not of type L there must be one of the for-
bidden subconfigurations of Figure 3. Since M has
no chromatic cut, there must be 3 segments in M as
in Figure 3(a). The triangle bounded by the •-rays
(w.l.o.g.) is empty of segments. The rest of the plane

227

29th European Workshop on Computational Geometry, 2013

is partitioned into three convex regions, each defined
by a pair of segments as in Figure 5(a). All segments
in a region Qi together with the two defining seg-
ments are of type L. Thus in each region there is an
alternating path from the •-point of the left bound-
ing segment to the �-point of the right bounding edge
and vice versa. The union of the three paths forms
an alternating polygon and thus we have found two
di↵erent compatible BR-matchings M 0 and M 00 de-
pending on which paths we chose. ,

(a)
(b)

Q1

Q2
Q3

Figure 5: Illustrations to Theorem 9

4 Other Results and Remarks

Parallelizability. As we showed in Theorem 2,
quasi-parallel matchings generalize parallel matchings

(which consist of parallel segments) in the sense that
they are exactly the BR-matchings for which the rela-
tion / is a linear order. Therefore, it is natural to ask
whether all order types (determined by orientations
of triples of points) of bichromatic point sets with a
unique BR-matching are realizable by endpoints of a
parallel matching.
We construct an example that shows that the an-

swer to this question is negative. The construction is
based on the following observation.

Observation 1 Let A,B,C be three vertical seg-
ments such that A / B / C. Denote by a1, b1, c1 the
upper ends, and by a2, b2, c2 the lower ends of the cor-
responding segments. If the triple a1, b1, c2 is oriented
counterclockwise, and the triple a2, b2, c1 clockwise,
then B is shorter than A.

Now, the construction goes as follows. Refer to Fig-
ure 6: Consider first three pairs of parallel lines with
directions, say, 0�, 60�, and 120�, and three equal
vertical segments A0, B0, C0 as shown in Figure 6a.
Change slightly the slopes of the lines so that each
pair will intersect as indicated schematically in Fig-
ure 6b, and form the three corresponding segments
A,B,C. Add vertical segments in the wedges formed
by these pairs, as shown in the right part. These six
segments form a quasi-parallel matching M . Now,
assume that there exists a parallel matching M 0 with
corresponding endpoints of the same order type. De-
note by A0, B0, C 0 the segments of M 0 that correspond

in M 0 to A,B,C. Then, according to Observation 1,
A0 is longer than B0, B0 is longer than C 0, and C 0 is
longer than A0. This is a contradiction.

C0 A C

B0

A0

B

(a) (b)

Figure 6: Construction of a non-parallelizable quasi-
parallel matching.

Algorithm. Given a point set F we can compute a
BR-matching M in O(n log n) time. Now we pretend
that / is a linear order of M , and sort M by /, in
O(n log n) time. If this fails at any stage we know that
/ is not linear and, therefore, F admits more than one
matching. Finally we add the segments one by one in
the order given by /. By updating the convex hull,
and repeating the process in reverse order, one can
check in linear time if / is indeed a linear order.

Theorem 10 It can be checked in O(n log n) time
whether a bichromatic (n + n)-set has a unique non-
crossing BR-matching.

Acknowledgments. We thank Michael Payne,
Lothar Narins and Veit Wiechert for helpful dis-
cussions. An extended version of this abstract [2]
contains more details and further results about this
topic.

References

[1] G. Aloupis, L. Barba, S. Langerman, and D. L. Sou-
vaine. Bichromatic compatible matchings. In T. Chan
and R. Klein, editors, Proc. 29th Ann. Symp. Com-

put. Geometry, SoCG’13. ACM Press, June 2013, to
appear. Preprint arXiv:1207.2375.

[2] A. Asinowski, T. Miltzow, G. Rote. Quasi-parallel
segments and characterization of unique bichromatic
matchings. arXiv:1302.4400, Feb. 2013.

[3] F. Hurtado and Cs. D. Tóth. Plane geometric graph
augmentation: a generic perspective. In J. Pach,
ed., Thirty Essays on Geometric Graph Theory, Al-
gorithms and Combinatorics, vol. 29, pp. 327–354.
Springer, 2013.

[4] G. Rote. Two solvable cases of the traveling salesman

problem. PhD thesis, Technische Univ. Graz, 1988.

[5] G. Rote. The N -line traveling salesman problem. Net-

works 22 (1992), 91–108.

228

http://arxiv.org/abs/1207.2375
http://arxiv.org/abs/1302.4400

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Hierarchical Flows with an Application to Image Matching

Stefan Funke ⇤ Sabine Storandt†

Abstract

We study the task of computing a matching between
two images by formulating it as an instance of the
minimum-cost flow problem. Here, we use a cycle
cancelling algorithm to find the optimal flow. To re-
duce the practical runtime, we propose a hierarchical
scheme in which the images are first scaled down and
then the optimal solution for the smaller problem is
used as a starting point for the higher resolution. Our
experiments reveal a significant reduction of negative
cycle detection operations using our hierarchical ap-
proach.

1 Introduction

A typical task in image analysis and compression is to
find corresponding parts in two somewhat similar im-
ages A and B with dimension n ⇥m. One approach
to tackle the problem is computing a matching be-
tween the two images on pixel level (separated for the
red, green and blue color channel) and post-process
the family of correspondences for the final result, see
Figure 1 for an example. So the color value val of
every pixel aij in image A can be understood as a
supply, analogously every value of a pixel bij in im-
age B as a demand. Given some cost matrix indicat-
ing how expensive it is to shift ’mass’ from a certain
pixel in image A to a pixel in image B, the goal is to
fulfil as much of the demand as possible while mini-
mizing the total costs. This can be formulated as an
instance of the minimum-cost flow problem on a care-
fully constructed network. One common method to
compute the optimal flow is the so called cycle can-
celling approach, which allows to input an initial flow
and decreases the costs incrementally until an opti-
mal solution is found. Intuitively, if we scale down
the images slightly, the solution for this smaller prob-
lem should be close to the optimal solution for the
unscaled versions. Therefore we will present a hierar-
chical approach, that speeds up the cycle cancelling
algorithm by identifying good initial flows based on
optimal solutions for lower resolution versions.

⇤
FMI, Universität Stuttgart, 70569 Stuttgart, Germany,

stefan.funke@fmi.uni-stuttgart.de

†
Institut für Informatik, Albert-Ludwigs-Universität

Freiburg, 79110 Freiburg, Germany, storandt@informatik.uni-

freiburg.de

Figure 1: Overlay of two similar images along with
some correspondences on pixel level.

2 Preliminaries

2.1 The Minimum-Cost Flow Problem

In the minimum-cost flow problem, we are given a
graph or network G(V,E) with the edges having cer-
tain capacities c : E ! R+ and costs p : E ! R.
Moreover we have distinguished source and target ver-
tices s, t 2 V ; the goal is to send U 2 R+ units of flow
from s to t such that the edge capacities are respected
and the total costs are minimized.
There exist a variety of algorithms which solve this
problem optimally, e.g. based on linear programming
or combinatorial approaches, see [1] for an overview.
Several algorithms involve the construction of the so
called residual network. Here, given some feasible ini-
tial flow F 0, a reverse edge is added for each edge
(u, v) 2 E which transports flow according to F 0. This
edge (v, u) receives a capacity that equals the amount
of flow send through (u, v), so c(v, u) = f(u, v), and
costs p(v, u) = �p(u, v). The flow F 0 is a minimum-
cost flow if and only if the residual network does not
contain any negative cycles. Such a negative cycle can
be ’cancelled’ by sending the amount of flow through
it that is determined by the minimal capacity among
the participating edges. So algorithms that repeat-
edly identify and cancel negative cycles provide opti-
mal solutions for the minimum-cost flow problem.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

229

29th European Workshop on Computational Geometry, 2013

2.2 Cycle Cancelling

There are various approaches to detect negative cy-
cles in (residual) flow networks. In this paper we
will concentrate on the Robust Dijkstra (RD) method
[2], while our hierarchical flow construction scheme
allows for plugging in an arbitrary cycle cancelling al-
gorithm.
RD is an O(n)-pass algorithm expanding the idea of
Dijkstra’s algorithm. Here we also assign to every
node v a distance label d(v) (initially 0), to which
we refer from now on as the node’s potential. Like-
wise, we attach predecessor labels prev(v) (initially
null). In contrast to Dijkstra, we furthermore re-
late to every node its potential di↵erence �(v) (ini-
tially 0). Initially all nodes are stored in a max-
heap Q sorted by their �-values. To assure that
every node is examined at most once in every pass,
the nodes get divided in the following into Q and a
queue S. In every step, we extract the node v with
maximal � from Q and check for all edges (v, w) if
d(v) + c(v, w) < d(w). If this is the case, we replace
d(w) with the new potential d0(w) = d(v)+c(v, w) and
set �(w) = d(w) � d0(w), prev(w) = v. Obviously �
always stays non-negative while d strictly decreases.
If w has already be examined in the current pass, its
pushed into S, otherwise intoQ (if it was pushed there
before, we perform decrease key). If Q runs empty, we
swap the content of S and Q and heapify the latter.
So if both Q and S become empty, the graph does
not contain any negative cycles and RD terminates.
Otherwise a negative cycle in the graph equals a cycle
in the tree based on the prev tags of the nodes, which
we call dependency tree/forest. It can be identified
by backtracking after each change of a prev tag.

3 Constructing the Flow-Graph

Given the two images A and B with dimensions n⇥m,
we want to construct an instance of the minimum cost
flow problem for an arbitrary cost matrix. For that
purpose, we create a node for every pixel in each of
the images. To allow pixels of image A to be matched
to arbitrary pixels in image B via respective flows, we
add edges from every pixel aij in image A to all pix-
els bkl in image B with unlimited capacity and costs
d(aij , bkl) for some distance metric. Moreover we add
a source s and a target t. We connect s to every
node aij by an edge with costs of zero and a capacity
which equals the respective color value val of pixel aij
in the image. Analogously we connect all nodes bkl to
t, resulting in a total number of n2m2 + 2nm edges.
Let MA,MB denote the total mass (i.e. the summed
color values) of image A and B, then we aim to send
M = min(MA,MB) units of flow from s to t.

4 The Basic Hierarchical Algorithm

We now present a hierarchical approach that works
for arbitrary cost matrices. It starts by scaling down
both of the input images by a certain factor and solv-
ing the according minimum-cost flow problem opti-
mally. Then this solution is used an initial flow for
the next problem in the hierarchy with a smaller scal-
ing factor, see Algorithm 1 for the pseudo-code.

Algorithm 1: Hierarchical Flow Algorithm

Input: A[n][m], B[n][m], s (initial scaling factor)
Output: List of optimal flows F ⇤

begin1

As scale(A, 2s);2

Bs scale(B, 2s);3

F findInitialSolution(As, Bs);4

F ⇤ findOptimalF low(As, Bs, F);5

while 2s > 1 do6

s s� 1;7

As scale(A, 2s);8

Bs scale(B, 2s);9

F lift(As, Bs, 2s, F ⇤);10

F ⇤ findOptimalF low(As, Bs, F);11

return F ⇤;12

end13

Here, scale takes a matrix X[n][m] and an inte-
ger t as input, with t being a divisor of n and m.
The output is the matrix X 0[n/t][m/t] with x0

i,j =
Pit+t�1

l=it

Pjt+t�1
k=jt xl,k.

The procedure findInitialSolution computes a greedy
flow of M units according to the well known initial
solution for the transportation problem.
findOptimalFlow is an arbitrary cycle-cancelling algo-
rithm. Given an initial flow F of the required amount,
it first creates the residual graph G0 of G according to
F and then invokes the cycle cancelling process until
cost optimality is achieved.
The function lift takes the optimal solution of hierar-
chical level s and transforms it to a solution on level
s� 1. Let f⇤ = (i, j, i0, j0, u) 2 F ⇤ denote a flow from
aij 2 As�1 to bi0j0 2 Bs�1 of u units. In As and
Bs, there are now four (sub)nodes corresponding to
the (super)nodes aij and bi0j0 respectively. If u is less
than val(aij) or val(bi0j0) and more than one entry of
a subnode is greater than zero, it is not definite how to
transform the flow to the next higher level. Therefore
lift uses a greedy approach; it starts with the upper
left subnodes a2i,2j , b2i0,2j and adds a flow between
them with u0 = min(val(a2i,2j), val(b2i0,2j0), u) units.
Then we reset u to u�u0 and analogously decrease the
values of a2i,2j and b2i0,2j0 . If u = 0 the flow is com-
pletely lifted, otherwise it yields either val(2i, 2j) = 0
or val(2i0, 2j0) = 0. As soon as the value of a subnode
turns zero, we move on to the next one belonging to

230

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

the same supernode and proceed as before. We stop
as soon as u runs zero (which obviously must always
be possible).

5 An improved Approach for the L1 Metric

5.1 Modifying the Graph Structure

For image matching applications the L1 metric
often provides reasonable costs, because it counts the
number of pixels the ’mass’ has to be shifted. Luckily,
using the L1 metric, one can find a more e�cient
graph model. This new model is based on the fact,
that a flow under the L1 metric can be decomposed
into miniflows of length one without changing the
overall costs. Moreover this decomposition can be
done such that at first there are only horizontal mini-
flows going to the left or right neighbour, followed by
only vertical ones.
Therefore a new graph G⇤ can be created as follows:
The node set and edges adjacent to s and t stay
unmodified. Every node in A gets an edge to its
left and its right neighbour (if it exists), each with
unbounded capacity and cost 1. Analogously every
node in B is now connected with its neighbour above
and below, also with unbounded capacity and cost
1. Moreover every node in A has one edge to its
equivalent in B with the same coordinates. These
edges have zero costs and are unbounded as well.
Obviously every flow in G can also be represented as
a flow in G⇤ with equal costs. But now the out-degree
of a node of A/B in G⇤ is three at maximum (six in
the residual graph) and therefore the total number of
edges is O(nm) only.

But this change of the graph structure also requires
the modification of the lift procedure: In the residual
graph of G⇤ negative cycles are possible that use only
edges between nodes of A/B. Such a circle could not
occur in the residual network of G. Furthermore an
initial set of flows for findOptimalFlow is only feasible
i↵ every flow can be divided in a horizontal, a static
(flows between nodes in A and B with the same coor-
dinates) and a vertical component in that order and
no supply is overused and no demand oversupplied.
To take care of these new conditions, lift proceeds in
five phases:
1. Decomposing all input flows in miniflows of length
one and storing them divided in horizontal, static and
vertical flows in matrices: A positive entry in the hor-
izontal matrix equals a flow to the right neighbour
with mass according to the entry, a negative entry
means flow to the left. Analogously a positive entry
in the vertical flow matrix means flow down, a nega-
tive entry flow up. In the static flow matrix there are
positive entries only.
2. Upgrading all horizontal flows: Here, we parse

greedily through the source subnodes and shift the
minimum mass of the belonging entry and the to-
tal flow mass U horizontally until a subnode of the
target is reached. Then, we update U and the de-
mand/supply values accordingly. We proceed until
U = 0. To make sure that the mass of the source node
is always greater or equal to U , we first go through
each row from the left to right and consider all mini-
flows going right and afterwards vice versa.
3. Upgrading static flows where the mass of the
source node is smaller or equal to the one of the target
node: Because these are flows from A to B the general
lift algorithm can be used here.
4. Upgrading vertical flows: First we convert the
miniflows back to long flows in a greedily fashion.
These long flows are again flows between A and B, be-
cause the only possible sources are such supernodes in
A with their mass greater than the mass of the equiv-
alent supernode in B. So general lift can construct a
family of flows between the respective subnodes. Then
we update the vertical flow matrix by subtracting the
flow mass from all involved entries. This phase is fin-
ished when all entries in the vertical flow matrix are
zero.
5. Upgrading the remaining static flows.

Lemma 1 The lift procedure always returns a feasi-

ble flow of M units for the next hierarchical level.

Proof: lift always gets a flow of M units as an input
and upgrades all flows to the next level, so the total
flow is preserved.
For the general lift algorithm the feasibility is
obvious. In the special case of the L1 metric phase
2 clearly does not lead to a violation of feasibility.
In phase 3 updating those static flows does not
overfill any demands in B, because there are no
horizontal flows between supernodes left and so if
there is still too little mass in a supernode in A,
horizontal flows between the belonging subnodes
cannot change these lack. In phases 4 and 5 only
flows between A and B are created and all demands
get fulfilled if possible. So all in all lift only creates
flows that can be divided first in a horizontal,
followed by a static and a vertical component. All
flows between supernodes are upgraded and only
flows between subnodes get added and therefore the
resulting flow does not hurt any supplies or demands.

5.2 Improving the Robust Dijkstra Method

The overall runtime of our approach depends strongly
on the RD method. Therefore we now introduce some
modifications of RD, that make it much more e�cient
while running on G⇤.

231

29th European Workshop on Computational Geometry, 2013

Decreasing the initial size of Q

Lemma 2 In G⇤
every negative cycle using non-

negative edges can be detected by starting RD from

a negative source.

Proof: In G⇤ edges with negative costs exist only in-
side a layer. So negative cycles consisting of negative
edges only can occur exclusively between neighbours
in one layer and so they can easily be cancelled.
Given a node v, one can find a negative cycle by
starting RD at it. If v is not a negative source, either
there is an incoming negative edge or no outgoing
negative edge. The latter can not be true, because
RD would stop immediately in that case and no neg-
ative cycle would be detected. But if v has a negative
incoming edge (u, v), the same negative cycle could
be detected starting at u. Because the cycle can
not consist of edges with negative cost only, there
always has to be a negative source one can start from.

This cuts the initial size of Q to at most half
the number of nodes.

Reusing the dependency forest
Especially if RD detects only a short cycle, the
overhead of constructing the dependency forest can
be huge. Therefore it is more e�cient to keep the
parts of the forest that are not a↵ected by the cycle
cancelling for the next iteration.
To realize this approach, we set the initial potentials
d(v) = 1 8v 2 V . Moreover we identify all negative
sources, set their potentials to zero and push them
into Q. Then we run conventional RD (until a
cycle is detected) with the slight change that if we
decrease the potential of v from d(v) to d0(v), we
set �(v) = min{d(v) � d0(v),�d0(v)}. If a cycle is
found, we identify the node of the cycle with the
lowest tree depth. After the cancelling of the cycle
we delete the whole subtree Tv beneath v by setting
prev(w) = null, d(w) = 1, �(w) = 0 8w 2 Tv.
Moreover we check for new negative sources origi-
nated by the cycle cancelling. These nodes again
get a potential of zero and are pushed in Q or S.
Furthermore we also push nodes in Q or S that are
not in Tv themselves, but have adjacent edges to
nodes in Tv. Then again we use RD as described
before to identify the next negative cycle. If Q and
S become empty, RD terminates.

Lemma 3 After termination of modified RD an op-

timal flow is retrieved.

Proof: We claim that 8v /2 Q,S : d(v) + c(v, w) �
d(w) 8(v, w) 2 E (loop invariant). This is certainly
fulfilled after the initialization, because here all nodes
not in Q or S have potential d(v) = 1. For conven-
tional RD it yields: As long as a node v is not added

s=0 s=1 s=2 s=6
128x128 285.702 12.491 12.512 12.247

64x64 58.781 4.305 4.047
32x32 7.578 983
16x16 204

8x8 48
4x4 17
2x2 2

total 285.702 71.272 24.395 17.548

Table 1: Number of cycle cancelling operations for
di↵erent resolutions dependent on the initial scaling
factor s.

to Q its potential stays the same. If a node is pushed
into Q or S, its potential decreased strictly. If a node
is removed from Q all potentials of adjacent nodes got
updated and so the loop invariant is true. If a cycle
is detected, the nodes not in Q or S are the ones with
potentials d(v) = 1 or nodes that were not in Q or
S before and do not have adjacent edges to nodes in
the subtree a↵ected by the cycle. So for the latter
the loop invariant was true before the cycle deletion
and neither their potentials nor the potentials of their
neighbours did change. So all in all the loop invari-
ant is fulfilled after each pass and so after termination
there are no negative cycles left. Therefore modified
RD finds a minimum-cost flow in G⇤.

6 Experimental Results

We implemented our hierarchical flow scheme in C++
and tested our approach on real-world images as well
as artificial input. We observed a significant reduc-
tion of cycle cancelling operations for each of the in-
puts when using our hierarchical approach. In Table
1 we picked one real-world example with dimensions
128x128 and solved the problem without scaling (s=0)
as well as with scaling levels s=1,2 and 6. The to-
tal number of cycle cancelling operations obviously
decreases with higher s. But more importantly the
number of these operations on high resolution images
gets significantly smaller. As detecting negative cy-
cles is on average more expensive in the larger image
versions, reducing their number has a large impact
on the runtime. In this example we could decrease
the runtime from 77m33s for s=0 to 3m36s (of which
3m17s were spend on the highest resolution) for s=6.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, 1 edition, Feb. 1993.

[2] B. Cherkassky and A. Goldberg. Negative-cycle de-
tection algorithms. In J. Diaz and M. Serna, editors,
Algorithms ESA ’96, volume 1136 of Lecture Notes

in Computer Science, pages 349–363. Springer Berlin
Heidelberg, 1996.

232

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Two-Sided Boundary Labeling with Adjacent Sides

Philipp Kindermann⇤ Benjamin Niedermann† Ignaz Rutter‡ Marcus Schaefer‡ André Schulz§

Alexander Wol↵†

Abstract

In the Boundary Labeling problem, we are given a
set of n points, referred to as sites, inside an axis-
parallel rectangle R, and a set of n pairwise disjoint
rectangular labels that are attached to R from the
outside. The task is to connect the sites to the labels
by non-intersecting polygonal paths, so-called leaders.
In this paper, we study the Two-Sided Boundary

Labeling with Adjacent Sides problem, with labels ly-
ing on two adjacent sides of the enclosing rectangle.
We restrict ourselves to rectilinear leaders with at
most one bend. We present a polynomial-time algo-
rithm that computes a crossing-free leader layout if
one exists. So far, such an algorithm has only been
known for the simpler cases that labels lie on one side
or on two opposite sides of R (where a crossing-free
solution always exists).

1 Introduction

Label placement is an important problem in cartog-
raphy and, more generally, information visualization.
Features such as points, lines, and regions in maps,
diagrams, and technical drawings often have to be la-
beled so that users understand better what they see.
The general label-placement problem is NP-hard [6],
which explains why labeling a map manually is a te-
dious task that has been estimated to take 50% of
total map production time [5].
Boundary labeling can be seen as a graph-drawing

problem where the class of graphs to be drawn is re-
stricted to matchings.

Problem statement. Following Bekos et al. [2],
we define the Boundary Labeling problem as fol-
lows. We are given an axis-parallel rectangle R =
[0,W] ⇥ [0, H], which is called the enclosing rectan-

gle, a set P = {p1, . . . , pn} ⇢ R of n points, called

⇤

Lehrstuhl f

¨

ur Informatik I, Universit

¨

at W

¨

urzburg, Ger-

many. WWW: www1.informatik.uni-wuerzburg.de/en/sta↵

†

Fakult

¨

at f

¨

ur Informatik, Karlsruher Institut f

¨

ur Technolo-

gie (KIT), Germany. Email: {rutter, benjamin.niedermann}
@kit.edu

‡

College of Computing and Digital Media, DePaul Univer-

sity, Chicago, IL, USA. Email: mschaefer@cs.depaul.edu

§

Institut f

¨

ur Mathematische Logik und Grundla-

genforschung, Universit

¨

at M

¨

unster, Germany. Email:

andre.schulz@uni-muenster.de

sites, within the rectangle R, and a set L of m n
axis-parallel rectangles `1, . . . , `m, called labels, that
lie in the complement of R and touch the boundary
of R. No two labels overlap. We denote an instance
of the problem by the triplet (R,L, P). A solution

to the problem is a set of m curves c1, . . . , cm, called
leaders, that connect sites to labels such that the lead-
ers a) produce a matching between the labels and (a
subset of) the sites, b) are contained inside R, and
c) touch the associated labels on the boundary of R.
A solution is planar if the leaders do not intersect.

Note that we do not prescribe which site connects to
which label. The endpoint of a leader at a label is
called a port. We distinguish two incarnations of the
Boundary Labeling problem: either the position
of the ports on the boundary of R is fixed and part of
the input, or the ports slide, i.e., their exact location
is not prescribed.
We restrict our solutions to po-leaders, that is,

starting at a site, the first line segment of a leader
is parallel (p) to the side of R containing the label it
leads to, and the second line segment is orthogonal (o)
to that side. Bekos et al. [1, Fig. 12] observed that not
every instance (with m = n) admits a planar solution
with po-leaders where all sites are labeled.

Previous work. For po-labeling, Bekos et al. [2] gave
a simple quadratic-time algorithm for the one-sided
case that, in a first pass, produces a labeling of mini-
mum total leader length by matching sites and ports
from bottom to top. In a second pass, their algorithm
removes all intersections without increasing the total
leader length. This result was improved by Benkert
et al. [3] who gave an O(n log n)-time algorithm for
the same objective function and an O(n3)-time algo-
rithm for a very general class of objective functions,
including, for example, bend minimization. They ex-
tend the latter result to the two-sided case (with la-
bels on opposite sides of R), resulting in an O(n8)-
time algorithm. For the special case of leader-length
minimization, Bekos et al. [2] gave a simple dynamic
program running in O(n2) time. All these algorithms
work both for fixed and sliding ports.

Our contribution. We investigate the problem
Two-Sided Boundary Labeling with Adjacent

Sides where all labels lie on two adjacent sides of R,

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

233

29th European Workshop on Computational Geometry, 2013

for example, on the top and right side. Note that
point data often comes in a coordinate system; then
it is natural to have labels on adjacent sides (for exam-
ple, opposite the coordinate axes). We argue that this
problem is more di�cult than the case where labels
lie on opposite sides, which has been studied before:
with labels on opposite sides, (a) there is always a so-
lution where all sites are labeled (if m = n) and (b) a
feasible solution can be obtained by considering two
instances of the one-sided case.
Our result is an algorithm that, given an instance

with n labels and n sites, decides whether a planar
solution exists where all sites are labeled and, if yes,
computes a layout of the leaders (see Section 3). We
use dynamic programming to “guess” a partition of
the sites into the two sets that are connected to the
leaders on the top side and on the right side. The
algorithm runs in O(n2) time and uses O(n) space.

Notation. We call the labels that lie on the right
(top) side of R right (top) labels. The type of a label
refers to the side of R on which it is located. The type
of a leader (or a site) is simply the type of its label. We
assume that no two sites lie on the same horizontal or
vertical line, and no site lies on a horizontal or vertical
line through a port or an edge of a label.
For a solution L of a boundary labeling problem, we

define the total length of all leaders in L by length(L).

2 Structure of Planar Solutions

In this section, we attack our problem presenting a
series of structural results of increasing strength. For
simplicity, we assume fixed ports. For sliding ports,
we can simply fix all ports to the bottom-left corner of
their corresponding labels. First we show that we can
split a planar two-sided solution into two one-sided
solutions by constructing an xy-monotone, rectilin-
ear curve from the top-right to the bottom-left corner
of R. Afterwards, we provide a necessary and su�-
cient criterion to decide whether for a given separation
there exists a planar solution. This will form the ba-
sis of our dynamic programming algorithm, which we
present in the next section.

Definition 1 We call an xy-monotone, rectilinear

curve connecting the top-right to the bottom-left cor-

ner of R an xy-separating curve. We say that a planar

solution to Two-Sided Boundary Labeling with

Adjacent Sides is xy-separated if and only if there

exists an xy-separating curve C such that

a) the top sites and all their leaders lie on or above C
b) the right sites and all their leaders lie below C.

It is not hard to see that a planar solution is not xy-
separated if there exists a site p that is labeled to the
right side and a site q that is labeled to the top side

with x(p) < x(q) and y(p) > y(q). There are exactly
four patterns in a possible planar solution that satisfy
this condition. Moreover, these patterns are the only
ones that can violate xy-separability.

Lemma 1 A planar solution is xy-separated i↵ it

does not contain any of the following patterns P1–P4

r
p

C q

(P1)

p
r

qC

(P2)

C

q
r

p

(P3)

p
q

rC

(P4)

Next, we claim that any planar solution can be
transformed into an xy-separated planar solution.
Our proof shows that each of the four patterns of
Lemma 1 can be resolved by rerouting leaders such
that no crossings arise and the leader length decreases.
We cannot present the proof due to space constraints.

Proposition 1 If there exists a planar solution L to

Two-Sided Boundary Labeling with Adjacent

Sides, then there exists an xy-separated planar solu-

tion L0

with length(L0) length(L).

Since every solvable instance of Two-Sided Bound-

ary Labeling with Adjacent Sides admits an xy-
separated planar solution, it su�ces to search for such
a solution. Moreover, an xy-separated planar solution
that minimizes the total leader length is a solution of
minimum length. In Lemma 2 we provide a neces-
sary and su�cient criterion to decide whether, for a
given xy-monotone curve C, there is a planar solu-
tion that is separated by C. We denote the region
of R above C by RT and the region of R below C
by RR. For each horizontal segment of C consider
the horizontal line through the segment. We denote
the parts of these lines within R by h1, . . . , hk

, re-
spectively. Further let h0 be the top edge of R. The
line segments h1, . . . , hk

partition RT into k strips,
which we denote by S1, . . . , Sk

from top to bottom,
such that each strip S

i

is bounded by h
i

from below
for i = 1, . . . , k; see Fig. 1a. Additionally, we de-
fine S0 to be the empty strip that coincides with h0.
Note that this strip cannot contain any site of P . For
any point p on one of the horizontal lines h

i

, we de-
fine the rectangle R

p

, spanned by the top-right corner
of R and p. We define R

p

such that it is closed but
does not contain its top-left corner. In particular, we
consider the port of a top label as contained in R

p

,
only if it is not the upper left corner.
A rectangle R

p

is valid if the number of sites of P
above C that belong to R

p

is at least as large as the
number of ports on the top side of R

p

. The central
idea is that the sites of P inside a valid rectangle R

p

can be connected to labels on the top side of the valid

234

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

C

h1

h
k

R
p

0

p0

R

h
i

S
k

S1

p

h0S0

S
i

(a)

p
i

p
i�1

R
pi�1

C

h1

h
k

R h0S0

h
i

S
i

C
i�1C

i

(b)

Fig. 1: The strip condition. a) The horizontal seg-
ments of C partition the strips S0, S1, . . . , Sk

. b) Con-
structing a planar labeling from a sequence of valid
rectangles.

rectangle by leaders that are completely contained in-
side the rectangle. We are now ready to present the
strip condition.

Condition 1 The strip condition of strip S
i

is satis-

fied if there exists a point p
i

2 h
i

\RT, such that R
pi

is valid.

We now prove that, for a given xy-montone curve C
going from the top-right corner to the bottom-left cor-
ner of R, there exists a planar solution in RT for the
top labels if and only if C satisfies the strip condition
for all strips S0, . . . , Sk

in RT.

Lemma 2 Let C be an xy-monotone curve from the

top-right corner of R to the bottom-left corner of R.

Let P 0 ✓ P be the sites that are in RT. There is a

planar solution that uses all top labels of R to label

sites in P 0

in such a way that all leaders are in RT if

and only if each horizontal strip S
i

, as defined above,

satisfies the strip condition.

Proof. To show that the conditions are necessary,
let L be a planar solution for which all top leaders
are above C. Consider strip S

i

, which is bounded
from below by line h

i

, 0 i k. If there is no site
of P 0 below h

i

, rectangle R
p

is clearly valid, where p
is the intersection of h

i

with the left side of R , and
thus the strip condition is satisfied. Hence, assume
that there is a site p 2 P 0 that is labeled by a top
label, and is in strip S

j

with j > i; see Fig. 1a. Then,
the vertical segment of this leader crosses h

i

in RT.
Let p0 denote the rightmost such crossing of a leader
of a site in P 0 with h

i

. We claim that R
p

0 is valid. To
see this, observe that all sites of P 0 top-right of p0 are
contained in R

p

0 . Since no leader may cross the verti-
cal segments defining p0, the region R

p

0 \RT contains
the same number of sites as R

p

0 contains ports on its
top side, i.e., R

p

0 is valid.
Conversely, we show that if the conditions are sat-

isfied, then a corresponding planar solution exists.
For i = 0, . . . , k � 1, let p0

i

denote the rightmost
point of h

i

\ RT, such that R
p

0
i
is valid. We de-

fine p
i

to be the point on h
i

\RT, whose x-coordinate

is min
ji

{x(p0
j

)}. Note that R
pi is a valid rectangle,

as, by definition, it completely contains some valid
rectangle R

p

0
j
with x(p0

j

) = x(p
i

). Also by definition
the sequence formed by the points p

i

has decreasing x-
coordinates, i.e., the R

pi grow to the left; see Fig. 1b.
We can prove inductively that, for each i = 0, . . . , k,

there is a planar labeling L
i

that matches the labels
on the top side of R

pi to sites contained in R
pi , in such

a way that there exists an xy-monotone curve C
i

from
the upper-left corner of R

pi to its lower right corner
that separates the labeled sites from the unlabeled
sites without intersecting any leaders. Then L

k

is the
claimed labeling. ⇤

A similar strip condition (with vertical strips) can
be obtained for the right region RR of a partitioned
instance. The characterization is completely symmet-
ric.

3 The Algorithm

Now we describe how to find an xy-monotone chain C
that satisfies the strip conditions. For that purpose
we only consider xy-monotone chains that lie on the
dual of the grid induced by the sites and ports of the
given instance. When traversing this grid from grid
point to grid point, we either pass a site (site event)
or a port (port event). By passing a site, we decide if
the site is connected to the top or to the right side.
In the following, we describe a dynamic program that
finds an xy-separating chain in O(n3) time.
Let there bemR ports on the right side of R andmT

ports on the top side of R, then the grid has size
[n + mT + 2] ⇥ [n + mR + 2]. We define the grid
points as G(x, y), with G(0, 0) being the bottom-left
and r := G(n+mT+2, n+mR+2) being the top-right
corner of R. Further, we define G

x

(s) := x(G(s, 0))
and G

y

(t) := y(G(0, t)).

t

rs

p
C

p

C

s�1

Fig. 2: Step of the dy-
namic program where p en-
ters the rectangle spanned
by r and G(s� 1, t).

An entry in the ta-
ble of our dynamic
program is described
by three values. The
first two values are s
and t, which give the
position of the cur-
rent search for the
curve C. The in-
terpretation is that
the entry encodes the
possible xy-monotone curves from r to p

C

:= G(s, t);
see Fig. 2. The remaining value u denotes the num-
ber of sites above C in the rectangle spanned by r
and p

C

. Note that it su�ces to store u, as the num-
ber of sites below the curve C can directly be derived
from u and all sites that are contained in the rect-
angle spanned by r and p

C

. We denote the first val-
ues describing the positions of the curves by the vec-

235

29th European Workshop on Computational Geometry, 2013

tor c = (s, t). Our goal is to compute a table T [c, u],
such that T [c, u] = true if and only if there exists an
xy-monotone chain C, such that the following condi-
tions hold. (i) Curve C starts at r and ends at p

C

.
(ii) Inside the rectangle spanned by r and p

C

, there
are u sites of P above C. (iii) For each strip in the two
regions RT and RR defined by C the strip condition
holds.
It follows from these conditions, Proposition 1 and

Lemma 2 that the instance admits a planar solution
if and only if T [(0, 0), u] = true for some u.
Let us now proceed to describe how to compute the

table. Initially, we set c = (n+mT + 2, n+mR + 2).
We initialize the first entry T [c, 0] with true. The
remaining entries are initialized with false.
Let c := (s, t) be the current grid point we checked

as endpoint for C. Based on the table T [c, ·] we
then compute the entries T [c��c, ·] where the vec-
tor �c = (�s,�t) is chosen in such a way that ex-
actly one of both entries �s,�t 2 {0, 1} has value 1.
We classify such steps, depending on whether we
cross a site or a port. We give a full description
for �c = (1, 0), i.e, we decrease s by 1. The other
case is completely symmetric. Assume T [c, u] = true.
We distinguish two cases, based on whether we cross
a site or a port.
Case 1: Going from s to s � 1 is a site event,

i.e., there is a site p with G
x

(s) > x(p) > G
x

(s � 1).
Note that, by our general position assumption and by
the definition of the coordinates, the site p is unique.
If y(p) > G

y

(t), then p enters the rectangle spanned
byG(s�1, t) and r, and it is located above C. We thus
set T [c��c, u+ 1] = true. Otherwise we set T [c�
�c, u] = true. Note that the strip conditions remain
satisfied since we do not decrease the number of sites
in any region.
Case 2: Going from s to s � 1 is a port event,

i.e., there is a label ` on the top side, whose port
is between G

x

(s � 1) and G
x

(s). Thus, the region
above C contains one more label. We therefore check
the strip condition for the strip above the horizontal
line through G(s� 1, t). If it is satisfied, we set T [c�
�c, u] = true.
This immediately gives us a polynomial-time algo-

rithm for Two-Sided Boundary Labeling with

Adjacent Sides. The running time crucially relies
on the number of strip conditions that need to be
checked. We show that after a O(n2) preprocessing
phase, such queries can be answered in O(1) time.

To implement the test of the strip conditions, we
use a table BT, which stores in the position BT[s, t]
how large a deficit of top sites to the right can be
compensated by sites above and to the left of G(s, t).
To compute this matrix, we use a simple dynamic pro-
gram, which calculates the entries of BT by going from
the left to the right side. Once we have computed this
matrix, it is possible to query the strip condition in the

dynamic program that computes T in O(1) time. The
table can be clearly filled out in O(n2) time. A simi-
lar matrix BR can be computed for the vertical strips.
Altogether, this yields an algorithm for Two-Sided

Boundary Labeling with Adjacent Sides that
runs in O(n3) time and uses O(n3) space. However,
the entries of each row and column of T depend only
on the previous row and column, which allows us
to reduce the storage requirement to O(n2). Using
Hirschberg’s algorithm [4], we can still backtrack the
dynamic program and find a solution corresponding
to an entry in the last cell in the same running time.

Theorem 3 Two-Sided Boundary Labeling

with Adjacent Sides can be solved in O(n3) time

using O(n2) space.

In order to increase the performance of our algorithm,
we can reduce the dimension of the table T by 1. For
any search position c, the possible values of u, for
which T [c, u] =true form an interval. Thus, we only
need to store the boundaries of the u-interval. Fur-
ther, we can compute the tables BT and BR back-
wards, i.e., in the direction of the dynamic program,
by precomputing the entries of BT and BR on the
top and right side. Using Hirschberg’s algorithm, this
reduces the running time to O(n2) and the space to
O(n).

Theorem 4 Two-Sided Boundary Labeling

with Adjacent Sides can be solved in O(n2) time

using O(n) space.

References

[1] Michael A. Bekos, Michael Kaufmann, Katerina
Potika, and Antonios Symvonis. Area-feature bound-
ary labeling. Comput. J., 53(6):827–841, 2010. 1

[2] Michael A. Bekos, Michael Kaufmann, Antonios
Symvonis, and Alexander Wol↵. Boundary labeling:
Models and e�cient algorithms for rectangular maps.
Comput. Geom. Theory Appl., 36(3):215–236, 2007. 1

[3] Marc Benkert, Herman J. Haverkort, Moritz Kroll,
and Martin Nöllenburg. Algorithms for multi-criteria
boundary labeling. J. Graph Algorithms Appl.,
13(3):289–317, 2009. 1

[4] D. S. Hirschberg. A linear space algorithm for com-
puting maximal common subsequences. Comm. ACM,
18(6):341–343, 1975. 4

[5] Joel L. Morrison. Computer technology and carto-
graphic change. In D.R.F. Taylor, editor, The Com-

puter in Contemporary Cartography. Johns Hopkins
University Press, 1980. 1

[6] Marc van Kreveld, Tycho Strijk, and Alexander Wol↵.
Point labeling with sliding labels. Comput. Geom.

Theory Appl., 13:21–47, 1999. 1

236

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Trajectory-Based Dynamic Map Labeling

Andreas Gemsa⇤† Benjamin Niedermann⇤ Martin Nöllenburg⇤†

Abstract

In this paper we introduce trajectory-based labeling, a
new aspect of dynamic map labeling where a move-
ment trajectory for the map viewport is given. We
define a general labeling model and study the active
range maximization problem in this model. The prob-
lem is NP-complete and we present a practical ILP
formulation for the general case. For the restricted
case that no more than k labels can be active at any
time, we give a polynomial-time algorithm.

1 Introduction

In contrast to traditional static maps, dynamic dig-
ital maps support continuous movement of the map
viewport based on panning, rotation, or zooming. In
this paper, we take a trajectory-based view on map
labeling. In many applications, e.g., car navigation, a
movement trajectory is known in advance and it be-
comes interesting to optimize the visualization of the
map locally along this trajectory.
Selecting and placing a maximum number of non-

overlapping labels for various map features is an im-
portant cartographic problem. Labels are usually
modeled as rectangles and the objective in a static
map is to find a maximum (possibly weighted) in-
dependent set of labels. This is known as NP-
complete [6] and there are approximation algorithms
and PTAS’s in di↵erent labeling models, e.g. [1, 5].
With the increasing popularity of interactive dy-

namic maps, e.g., as digital globes or on mobile de-
vices, the static labeling problem has been translated
into a dynamic setting. Due to the temporal dimen-
sion of the animations occurring during map move-
ment, it is necessary to define a notion of temporal
consistency or coherence as to avoid distracting e↵ects
such as jumping or flickering labels [2]. Previously,
consistent labeling has been studied from a global per-
spective under continuous zooming [3] and continuous
rotation [7]. In practice, however, an individual map
user is typically interested only in a specific part of a
map and it is thus often more important to optimize
the labeling locally for a certain trajectory of the map
viewport than globally for the whole map.

⇤
Institute of Theoretical Informatics, Karlsruhe Institute of

Technology (KIT), Germany. Email: {lastname}@kit.edu

†
received financial support by the Concept for the Future of

KIT within the framework of the German Excellence Initiative.

R

T (t)
R

0

1

T (t)

↵(t)

Figure 1: Illustration of the viewport moving along
a trajectory. Left the user’s view and right a general
view of the map and the viewport.

We introduce a new and versatile trajectory-based
model for consistent map labeling, which we apply
to point feature labeling for a viewport that moves
and rotates along a di↵erentiable trajectory in a fixed-
scale base map in a forward-facing way. It is no sur-
prise that maximizing the number of visible labels in-
tegrated over time in our model is NP-complete. We
present a practical ILP model for the general unre-
stricted case and a polynomial-time algorithm for the
restricted case that no more than k labels are active at
any time for some constant k. We note that limiting
the number of active labels is of interest in particular
for dynamic maps on small-screen devices.

2 Trajectory-Based Labeling Model

Let M be a labeled north-facing and fixed-scale map,
i.e., a set of points P = {p1, . . . , pn} in the plane to-
gether with a corresponding set L = {`1, . . . , `n} of
labels. Each label `i is represented by an axis-aligned
rectangle of individual width and height. We call the
point pi the anchor of the label `i. Here we assume
that each label has an arbitrary but fixed position
relative to its anchor, e.g., with its lower left corner
coinciding with the anchor. The viewport R is an ar-
bitrarily oriented rectangle of fixed size that defines
the currently visible part of M on the map screen.
The viewport follows a trajectory that is given by a
continuous di↵erentiable function T : [0, 1] ! R2. For
an example see Figure 1. More precisely, we describe
the viewport by a function V : [0, 1] ! R2 ⇥ [0, 2⇡].
The interpretation of V (t) = (c,↵) is that at time t
the center of the rectangle R is located at c and R
is rotated clockwise by the angle ↵. Since R moves
along T we define V (t) = (T (t),↵(t)), where ↵(t) de-
notes the direction of T at time t. We sometimes refer

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

237

29th European Workshop on Computational Geometry, 2013

to R at time t as V (t). To ensure good readability,
we require that the labels are always aligned with the
viewport axes as the viewport changes its orientation,
i.e., they rotate around their anchors by the same an-
gle ↵(t), see Figure 1. We denote the rotated label
rectangle of ` at time t by `(t).
We say that a label ` is present at time t, if V (t)\

`(t) 6= ;. As we consider the rectangles `(t) and V (t)
to be closed, we can describe the points in time for
which ` is present by closed intervals. We define
for each label ` the set ` that describes all dis-
joint subintervals of [0, 1] for which ` is present, thus
 ` = {[a, b] | [a, b] ✓ [0, 1] is maximal so that ` is
present at all t 2 [a, b]}. Further, we define the dis-
joint union = {([a, b], `) | [a, b] 2 ` and ` 2 L} of
all `. We abbreviate ([a, b], `) 2 by [a, b]` and call
[a, b]` 2 a presence interval of `.

Two labels ` and `0 are in conflict with each other
at time t if `(t) \ `0(t) 6= ;. If `(t) \ `0(t) \ V (t) 6=
; we say that the conflict is present. As in [7] we
can describe the occurrences of conflicts between two
labels `, `0 2 L by a set of closed intervals: C`,`0 =
{[a, b] ✓ [0, 1] | [a, b] is maximal and ` and `0 are
in conflict at all t 2 [a, b]}. We define the disjoint
union C = {([a, b], `, `0) | [a, b] 2 C`,`0 and `, `0 2 L}
of all C`,`0 . We abbreviate ([a, b], `, `0) 2 C as [a, b]`,`0
and call it a conflict interval of ` and `0.

The tuple (P,L, , C) is called an instance of
trajectory-based labeling. Note that the essential in-
formation of T is implicitly given by and C. If we
assume that the trajectory T is a continuous, di↵er-
entiable chain of m circular arcs we can compute
in O(m · n) time and C in O(n2) time using simple
geometric observations. We omit the details due to
space restrictions.
Next we define the activity of labels, i.e., when to

actually display which of the present labels on screen.
We restrict ourselves to closed and disjoint intervals
describing the activity of a label ` and define the
set �` = {[a, b] ✓ [0, 1] | ` is active at all t 2 [a, b]}, as
well as the disjoint union � = {([a, b], `) | [a, b] 2 �`

and ` 2 L} of all �`. We abbreviate ([a, b], `) 2 �
with [a, b]` and call [a, b]` 2 � an active interval of `.
It remains to define an activity model restricting

� in order to obtain a reasonable labeling without
label overlaps or inconsistent dynamic behavior like
label flickering. Here we propose three activity models
AM1, AM2, AM3 with increasing flexibility. All three
activity models guarantee consistency and share the
following three restrictions: (1) a label can only be
active at time t if it is present at time t, (2) to avoid
flickering each presence interval contains at most one
active interval, and (3) if two labels are in conflict at
a time t, then at most one of them may be active at
time t to avoid overlapping labels.
What distinguishes the three models are the possi-

ble points in time when labels can become active or

`1

21 3 4 5 6 7 8 9 10 11

`2
`3
E 12

c`1,`2

c`2,`3

13 14

Figure 2: The light gray intervals show presence in-
tervals, the hatched intervals active intervals and the
dark gray intervals conflicts between labels.

inactive. The first and most restrictive activity model
AM1 demands that each label ` is either active for a
complete presence interval [a, b]` 2 or never active
in [a, b]`. The second activity model AM2 allows an
active interval of a label ` to end earlier than the
corresponding presence intervals if there is a witness

label `0 for that, i.e., an active interval for ` may end
at time c if there is a starting conflict interval [c, d]`,`0
and the conflicting label `0 is active at c. However,
AM2 still requires every active interval to begin with
the corresponding presence interval. The third ac-
tivity model AM3 extends AM2 by also relaxing the
restriction regarding the start of active intervals. An
active interval for a label ` may start at time c if
a present conflict [a, c]`,`0 involving ` and an active
witness label `0 ends at time c. In this model active
intervals may begin later and end earlier than their
corresponding presence intervals if there is a visible
reason for the map user to do so, namely the start or
end of a conflict with an active witness label.
A common objective in both static and dynamic

map labeling is to maximize the number of la-
beled points. In our setting, we want to maximizeP

[a,b]`2� w([a, b]`), where w([a, b]`) is the weight of
the active interval [a, b]`, e.g., w([a, b]`) = b� a. This
corresponds to displaying a maximum number of la-
bels integrated over the time interval [0, 1]. Given an
instance (P,L, , C), then with respect to one of the
three activity models we want to find an activity �
that maximizes

P
[a,b]`2� w([a, b]`); we call this op-

timization problem GeneralMaxTotal. If we re-
quire, that at any time t at most k labels are active for
a constant k, we call it k-RestrictedMaxTotal.

3 Solving GeneralMaxTotal

We observe that GeneralMaxTotal is NP-
complete by a straight-forward reduction from the
NP-complete maximum independent set of rectangles
problem [6]. We simply interpret the set of rectangles
as a set of labels, choose a short vertical trajectory T
and a viewport R that always contains all labels.

Theorem 1 GeneralMaxTotal is NP-complete.

Since we are still interested in finding an optimal
solution for GeneralMaxTotal we have developed
integer linear programming (ILP) formulations for all

238

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

three activity models. Due to space constraints we
only present the ILP for AM3. It is then straight-
forward to adapt this ILP for AM1 and AM2.
We define E to be the totally ordered set of the

interval boundaries of all presence and all conflict in-
tervals and additionally include 0 and 1; see Figure 2.
We call each interval [c, d] between two consecutive
elements c and d in E an atomic segment and denote
the i-th atomic segment of E by E(i).
For each label ` and for each E(i) we introduce

three binary variables x`
i , b

`
i and e`i . If the label is

active during E(i) the variable x`
i is set to 1, otherwise

x`
i = 0. The variable b`i is set to 1 if and only if E(i)

is the first atomic segment of an active interval of `,
and analogously e`i = 1 if and only if E(i) is the last
atomic segment of an active interval of `.
Now we are ready to introduce the constraints

of the ILP. In order to ensure property (1) we set
(A) b`i = e`i = x`

i = 0 for all segments E(i) that are
not contained in any presence interval of `. To en-
sure property (2), we require for every presence inter-
val [a, b]` 2 that (B)

P
j2J b`j 1 and

P
j2J e`j 1,

where J = {j | E(j) ✓ [a, b]}. Next, for every conflict
interval [c, d]`,`0 2 C and every E(i) ✓ [c, d] we require

(C) x`
i + x`0

i 1 so that at most one of both labels
can be active during segment E(i) (property (3)).
The desired meaning of the variables x`

i , b
`
i and e`i is

obtained as follows. For all labels ` 2 L we introduce
the constraint b`1 = x`

1 for the first segment E(1), and
for the remaining segments E(i), i > 1, we introduce
the constraints (D) x`

i�1+ b`i = x`
i +e`i�1. This means

that if ` is active during E(i � 1) (x`
i�1 = 1), then

it must either be active during E(i) (x`
i = 1) or the

active interval ends with E(i� 1) (e`i�1 = 1), and if `
is active during E(i) (x`

i = 1) then it must be active
during E(i�1) (x`

i�1 = 1) or the active interval begins
with E(i) (b`i = 1).
To model the admissible boundaries of the active

intervals according to AM3 we consider for all seg-
ments E(j) ⇢ [a, b]` which are neither the first nor
the last atomic segments in [a, b]` the following two
constraints. Let c`,`1 , . . . , c`,`k 2 C be all conflicts of `
that contain E(j � 1) but not E(j), i.e., the conflicts

end with E(j � 1). We require (E) b`j
Pk

i=1 x
`i
j�1,

where b`j = 0 if no such conflict exists. Condition (E)
ensures that at least one label of `1, . . . , `k is active
during E(j�1) if ` becomes active with E(j). Analo-
gously, let c`,`1 , . . . , c`,`k 2 C be all conflicts of ` that
contain E(j+1) but not E(j), i.e., the conflicts begin

with E(j+1). We require (F) e`j
Pk

i=1 x
`i
j+1, where

e`j = 0 if no such conflict exists.

The objective function is
P

`2L

P|E|�1
i=1 x`

i ·w(E(i)).
Obviously, |E| | |+ |C|+2. We obtain O((| |+

|C|) · |L|) variables and O((| |+ |C|) · |L|) constraints.
We have evaluated all three models on the street

map of the city center of Karlsruhe, Germany with

over 2000 labels. Using randomly chosen trajectories
based on shortest paths in the road network we could
show that the ILPs provide practically useful running
times. Using a map scale of 1:2000 we could com-
pute � in less than a second for a vast majority of
trajectories. For a scale of 1:4000, the running times
for AM1-3 are below five seconds, again excluding a
few outliers.

4 Solving k-RestrictedMaxTotal

In this section we show that the problem k-
RestrictedMaxTotal can be solved in polynomial
time. Due to space constraints we only give a descrip-
tion of our algorithms for AM1; they can be extended
to AM2 by applying some non-trivial modifications.
Solving k-RestrictedMaxTotal is related to find-
ing a maximum cardinality k-colorable subset of n
intervals in interval graphs. This can be done in poly-
nomial time in both n and k [4]. However, we have
to consider additional constraints due to conflicts be-
tween labels, which makes our problem more di�cult.
In the following, we first give algorithms that solve k-
RestrictedMaxTotal for k = 1, and k = 2, and
then sketch how to extend this to any constant k > 2.
Note that for the case that at most one label can be

active (k = 1) conflicts between labels do not matter.
Thus, it is su�cient to find an independent subset of
 of maximum weight. This is equivalent to finding a
maximum weight independent set on interval graphs,
which can be done in O(| |) time [8], given that the
intervals are sorted. We denote this algorithm by A1.
Before we give our polynomial-time algorithm

that solves 2-RestrictedMaxTotal we require
some definitions. We say two presence inter-
vals [a, b]` and [c, d]`0 are in conflict if there is a con-
flict [f, g]`,`0 2 C with [f, g]`,`0 \ [a, b]` \ [c, d]`0 6= ;.
We assume that the intervals of = {I1, . . . , Im} are
sorted in non-decreasing order by their left endpoints.
We call a tuple of two presence intervals (Ii, Ij),
Ii, Ij 2 a separating pair if i < j, Ii and Ij overlap
and are not in conflict with each other. Further, a
separating pair (Ip, Iq) is smaller than another sepa-
rating pair (Ii, Ij) if and only if p < i or p = i, q < j.
We denote the set of all separating pairs by S.
We observe that a separating pair (Ii, Ij) contained

in any solution of 2-RestrictedMaxTotal splits
the set of presence intervals into two independent sub-
sets. Specifically, a left (right) subset L[i, j] (R[i, j])
that contains only intervals which lie completely to
the left (right) of the intersection of Ii and Ij and are
neither in conflict with Ii nor Ij ; see Figure 3.
We are now ready to describe our dynamic

programming algorithm. For ease of notation we
add two dummy separating pairs to . One pair
(I�1, I0) with presence intervals strictly to the left
and one pair (Im+1, Im+2) with presence intervals

239

29th European Workshop on Computational Geometry, 2013

Ii

Ij

Ip

Iq

Figure 3: Illustration of presence intervals. Both
(Ii, Ij) and (Ip, Iq) are separating pairs. The inter-
vals of L[i, j] (R[p, q]) are marked by a left (right)
arrow. Intervals in conflict are connected by a dotted
line.

strictly to the right of [0, 1]. Note that since all
original presence intervals are completely contained
in [0, 1] every optimal solution contains both dummy
separating pairs. Our algorithm computes a two-
dimensional table T , where for each separating pair
(Ii, Ij) there is an entry T [i, j] that stores the value
of the optimal solution for L[i, j]. We compute T
from left to right starting with the dummy sep-
arating pair (I�1, I0) and initialize T [�1, 0] = 0.
Then, we recursively define for every separating
pair (Ii, Ij) 2 S: T [i, j] = maxp,q{T [p, q] + w(Ip) +
w(Iq) + A1(R[p, q] \ L[i, j]) | p < q < j, (Ip, Iq) 2
S, the intervals Ip, Iq, Ii, and Ij are not in conflict}.
For a fixed separating pair (Ii, Ij) our algorithm
considers all possible directly preceding separating
pairs, including the one in an optimal solution.
For the intervals between both separating pairs A1

computes the optimal solution while a simple table
lookup is su�cient to obtain the optimal solution for
the remaining presence intervals.
By construction, the optimal solution to 2-

RestrictedMaxTotal is stored in T [m+1,m+2].
There are at most O(m2) separating pairs. Hence, for
a single entry in T we need to execute the linear time
algorithm A1 at most O(m2) times. The number of
entries in T is also bounded by the number of sepa-
rating pairs. Hence our algorithm, which we denote
by A2, has time complexity O(m5).
We prove the correctness of the algorithm by con-

tradiction. Assume that there exists an instance for
which our algorithm does not compute the optimal so-
lution correctly. That means, that there is a smallest
separating pair (Ii, Ij) for which the entry in T [i, j]
does not contain the optimal solution for L[i, j]. Note
that (Ii, Ij) cannot be the dummy separating pair
(I�1, I0) since T [�1, 0] is trivially correct. Hence, the
optimal solution for L[i, j] contains a separating pair
directly preceding (Ii, Ij), which we denote by (Ip, Iq).
Since there is no separating pair between (Ii, Ij) and
(Ip, Iq) is in the optimal solution we can obtain the op-
timal solution for the presence intervals between both
separating pairs by computing A1(R[p, q] \ L[i, j]).
Since, by assumption, T [p, q] is correct, A1 is optimal,
and our algorithm explicitly considers all preceding
separating pairs, the entry T [i, j] must contain the
optimal solution for L[i, j]. Thus, the correctness of

our algorithm follows.

Theorem 2 Our algorithm solves 2-Restricted-

MaxTotal in O(m5) time and requires O(m2) space.

This approach can be generalized to solve k-
RestrictedMaxTotal for any k > 2. We natu-
rally extend the definition of separating pairs to sep-
arating k-tuples. Now, we can recursively define an
algorithm Ak that solves k-RestrictedMaxTotal.
We use essentially the same dynamic program as be-
fore, only that we replace algorithm A1 in the recur-
rence relation by Ak�1. Note that Ak is a polynomial-
time algorithm since we need to execute a polynomial-
time algorithm a polynomial number of times. Due
to space constraints we omit further details.

Theorem 3 Our algorithm solves k-Restricted-

MaxTotal in AM1 in polynomial time and space.

We can use the same basic idea of the dynamic
program to solve k-RestrictedMaxTotal in AM2,
but need to add for each presence interval, all pos-
sible subintervals to that might be contained in
an optimal solution. Moreover special care needs to
be taken to ensure the witness condition of AM2 for
all truncated intervals. It remains open whether k-
RestrictedMaxTotal in AM3 can be solved in
polynomial time.

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label
placement by maximum independent set in rectan-
gles. Comput. Geom. Theory & Appl., 11(3-4):209–
218, 1998.

[2] K. Been, E. Daiches, and C. Yap. Dynamic map label-
ing. IEEE Trans. Visualization and Computer Graph-
ics, 12(5):773–780, 2006.

[3] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wol↵.
Optimizing active ranges for consistent dynamic map
labeling. Comput. Geom. Theory & Appl., 43(3):312–
328, 2010.

[4] M. C. Carlisle and E. L. Lloyd. On the k-coloring of
intervals. Discr. Appl. Math., 59(3):225–235, 1995.

[5] P. Chalermsook and J. Chuzhoy. Maximum indepen-
dent set of rectangles. In Proc. ACM-SIAM Symp.
Discr. Algorithms (SODA’09), pages 892–901, 2009.

[6] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto.
Optimal packing and covering in the plane are NP-
complete. Inform. Process. Lett., 12(3):133–137, 1981.

[7] A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent
labeling of rotating maps. In Proc. 12th Int. Symp. Al-
gorithms & Data Structures (WADS’11), volume 6844
of LNCS, pages 451–462. Springer-Verlag, 2011.

[8] J. Y. Hsiao, C. Y. Tang, and R. S. Chang. An ef-
ficient algorithm for finding a maximum weight 2-
independent set on interval graphs. Inform. Process.
Lett., 43(5):229 – 235, 1992.

240

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Dynamic point labeling is strongly PSPACE-hard

Kevin Buchin⇤ Dirk H.P. Gerrits⇤

Abstract

An important but strongly NP-hard problem in au-
tomated cartography is how to best place textual la-
bels for point features on a static map. We examine
the complexity of various generalizations of this prob-
lem for dynamic and/or interactive maps. Specifi-
cally, we show that it is strongly PSPACE-hard to ob-
tain a smooth dynamic labeling (function from time to
static labelings) when the points move, when points
are added and removed, or when the user pans, ro-
tates, and/or zooms their view of the points.

1 Introduction

Map labeling involves associating textual labels with
certain features on a map such as cities (points), roads
(polylines), and lakes (polygons). This task takes con-
siderable time to do manually, and for some applica-
tions cannot be done manually beforehand. In air
tra�c control, for example, a set of moving points
(airplanes) has to be labeled at all times. In interac-
tive maps users may pan, rotate, and/or zoom their
view of the map, which may require relabeling.

Static point labeling. A good labeling for a point set
has legible labels, and an unambiguous association be-
tween the labels and the points. This has been formal-
ized by regarding the labels as axis-aligned rectangles
slightly larger than the text they contain, which must
be placed without overlap so that each contains the
point it labels on its boundary. Not all placements
are equally desirable, and as such various label mod-

els have been proposed, which specify the subset of
allowed positions for the labels. In the fixed-position

models, every point has a finite number of label can-
didates. In particular, in the 1-, 2-, and 4-position
models a subset of 1, 2, or 4 corners is designated
(the same subset for all labels) and each label must
have one of these corners coincide with the point it la-
bels. The slider models generalize this. In the 1-slider
models one side of each label is designated, but the
label may contain its point anywhere on this side. In
the 2-slider models there is a choice between two op-
posite sides of the label, and in the 4-slider model the
label can have the point anywhere on its boundary.
Ideally, one would like to label all points with pair-

wise non-intersecting labels. This is not always possi-

⇤Dept. of Computer Science, TU Eindhoven, the Nether-
lands, k.a.buchin@tue.nl, dirk@dirkgerrits.com

ble, however, and the decision problem is strongly NP-
complete for the 4-position [2] and 4-slider [5] mod-
els, even if all labels are unit squares. We may deal
with this di�culty in several ways. Firstly, we may
reduce the font size, that is, shrink labels. The size-

maximization problem asks to label all points with
pairwise non-intersecting labels of maximal size. Sec-
ondly, we may remove labels. The (weighted) number-

maximization problem asks to label a maximum-
cardinality (maximum-weight) subset of the points
with pairwise non-intersecting labels of given dimen-
sions. Thirdly, we may allow labels to overlap, but
try to keep such occurrences to a minimum. The free-
label-maximization problem asks for all points to be
labeled with labels of given dimensions, maximizing
the number of non-intersecting labels. All of these
problems are strongly NP-hard for the 4-position and
4-slider models because of the above result.

Dynamic point labeling. A natural generalization of
static point labeling is dynamic point labeling. Here
the point set P changes over time, by points being
added and removed, and/or by points moving contin-
uously. We then seek a dynamic labeling L, which
for all t assigns a static labeling L(t) to the static
points P (t) present at time t. For the 4-slider model
we require that L is continuous in the sense that, if
a point p has a label over a non-empty time interval,
then the label must move continuously over that in-
terval. For the fixed-position and 2-slider models we
must allow labels to make “jumps”. We only allow p’s
label to jump from position A to position B, however,
if there is no candidate position C in between A and B
in clockwise (or counter-clockwise) order around p.
Thus, we allow horizontal and vertical (but no diag-
onal) jumps for the 4-position model. For a 2-slider
model we only allow jumps from an endpoint of one
slider to the “same” endpoint of the other slider.
For static point labeling, both practical heuristic

algorithms and theoretical algorithms with guaran-
teed approximation ratios abound. Dynamic point
labeling, however, has seen very few theoretical re-
sults. Been et al. [1] studied unweighted number-
maximization for points under continuous zooming,
giving constant-factor approximations for unit-square
labels in the 1-position model. Gemsa et al. [3] sim-
ilarly studied continuous rotation, and give a PTAS
for unit-square labels in the 1-position model. Treat-
ment of other label models and more general point
trajectories are sorely missing.

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

241

29th European Workshop on Computational Geometry, 2013

Our results. We believe the relative lack of theoret-
ical results for dynamic point labeling is not due to
a lack of attempts. Intuitively, dynamic point label-
ing should be much harder than its static counter-
part. We prove and quantify this intuition. Specifi-
cally, we prove for unit-square labels in the 4-position,
2-slider, and 4-slider models that deciding whether
there exists a dynamic labeling without intersections
is strongly PSPACE-complete. This is the case when
points are added or removed from the point set, when
(some of) the points move, and when the points set is
panned, rotated, or zoomed within a finite viewport.
Any dynamic generalization of the mentioned static
optimization problems is therefore strongly PSPACE-
hard in these settings. Additionally, we prove that
label-size maximization on dynamic point sets admits
no PTAS unless P=PSPACE. To save space in this
extended abstract, we present our proofs in picture
form, with minimal accompanying text.

2 Non-deterministic constraint logic

To prove PSPACE-hardness of dynamic point label-
ing, we will reduce from non-deterministic constraint

logic (NCL) [4], which is a sort of abstract, single-
player game. The game board is a constraint graph:
an undirected graph with weights on both the vertices
and the edges. A configuration of the constraint graph
specifies an orientation for each of its edges. A con-
figuration is legal if and only if each vertex v’s inflow
(the summed weight of its incoming edges) is at least
v’s own weight. To make a move is to reverse a single
edge in a legal configuration such that the resulting
configuration is again legal. For this game each of the
following questions is PSPACE-complete [4].
• Configuration-to-configuration NCL: Given two le-
gal configurations A and B, is there a sequence of
moves transforming A into B?

• Configuration-to-edge NCL: Given a legal configu-
ration A and an orientation for a single edge eB ,
is there a sequence of moves transforming A into a
legal configuration B in which eB has the specified
orientation?

• Edge-to-edge NCL: Given orientations for edges eA
and eB , do there exist legal configurations A and B,
and a sequence of moves transforming the one into
the other, such that eA has the specified orientation
in A and eB has the specified orientation in B?

These decision problems remain PSPACE-complete
even for planar, 3-regular constraint graphs consisting
only of AND vertices and protected OR vertices. An
AND vertex has a weight of 2, and its three incident
edges have weights 1, 1, 2. To orient the weight-2 edge
away from the vertex requires both weight-1 edges to
be oriented towards the vertex. An OR vertex and its
three incident edges all have weight 2. Thus at least
one edge needs to be oriented towards the vertex at all
times. An OR vertex is called protected if it has two

edges that, because of constraints imposed on them
by the rest of the constraint graph, cannot both be
directed inward.

Gadgets. Figure 1 shows the gadgets we will em-
ploy in our reduction. We call the points with dark
gray labels blockers, as we can consider these labels
fixed obstacles (labeling them di↵erently than shown
will only restrict the placement of other labels fur-
ther). In the 4-position model, the depicted blockers
restrict the light gray labels marked A, B, and C to
two possible positions each. We call the label posi-
tion closest to the center of the vertex gadget inward,
and the other outward. In the figure, labels A and
B are placed inward, and label C is placed outward.
In the slider models, labels can take on any position
in between these two extremes, but we may assume
that only a very small range of positions is actually
used. Consider, for example, label A. Without mov-
ing A0, we can only move A up by at most ", or left
by at most 2". We refer to this range of positions
as inward, and define it similarly for B and C. If
(and only if) A0 is moved left by at least 1 � ", then
A can move further upward. We may then move A
all the way to its uppermost position, and there is
no reason not to do so. Thus we may define outward

as in the 4-position model. With this terminology in
place, we shall prove that our gadgets faithfully sim-
ulate a constraint graph, with labels placed inward

corresponding to edges directed out of a vertex, and
labels placed outward corresponding to edges directed
into a vertex.

Theorem 1 Let G be a planar constraint graph with
n vertices, and let " and � be two real numbers with
0 < " 6 � < 1 � 3". One can then construct a point
set P = P (G, �, ") with the following properties:
• the size of P , and the coordinates of all points in
P , are polynomially bounded in n,

• for any s 2 [1, 1 + � � "], there is a one-to-one cor-
respondence between legal configurations of G and
overlap-free static labelings of P with s⇥ s square
labels in the 4-position model, and

• there is a sequence of moves transforming one legal
configuration ofG into another if and only if there is
a dynamic labeling transforming the corresponding
static labelings of P into each other.

When � < 1/3 � 4"/3, the same results hold for the
2- and 4-slider models.

Proof. Because of the structure of Hearn and De-
maine’s hardness proof of NCL [4], we may assume
that the given constraint graph G is embedded on a
grid with its vertices on grid vertices and its edges
being interior-disjoint paths along grid lines. We turn
this grid by 45� relative to the coordinate axes, and
replace the vertices and edges by appropriate gadgets.
Figure 1(a) shows an OR gadget that works if we

assume that A and B are never both placed outward.

242

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

2� � 2"

�

�
�

"

"

2"

2"

2� � "

2� � "

(a)

2"

�

A

D

C B

A0

C 0 B0

22

2

OR

2� � 2"

�

�

"
�

E

B

A

2"

"

�

�

D

(b)

C

F

C 0

B0

A0

2
1

1

AND

� � "

2� � 2"

R1

R3

R4

L2

L4

(c)

R2

L1

L3

M

Figure 1: Gadgets simulating NCL’s (a) protected OR vertices, (b) AND vertices, and (c) edges. The insets in
the top-right corners show the NCL constructions being simulated.

This means it simulates a protected OR vertex where
edges A and B are never both directed into the ver-
tex. Figure 1(b) shows an AND gadget, where A and
B represent the weight-1 edges. Figure 1(c) shows an
edge gadget to connect vertex gadgets over longer dis-
tances. It is possible for both ends of an edge gadget
to be placed inward for their respective vertex gad-
gets, however, this is of no concern as this corresponds
to an edge of the constraint graph being directed into
neither of its two incident vertices. If all inflow con-
straints are satisfied with such edges present, then
orienting them arbitrarily does not disturb this.
If we scale the grid appropriately, then the gadgets

will fit together so as to form the desired point set P .
We omit the proof of P ’s claimed properties; it can
be reconstructed by ruminating on Figure 1. ⇤

3 Hardness of dynamic point labeling

In this section we will define a number of dynamic
point-labeling problems in an o✏ine setting. That
is, we assume we are given the arrival and departure
times of all points, as well as their trajectories and the
“trajectory” of the viewport. We will seek a dynamic
labeling L for the time interval [a, b], and distinguish
four cases based on whether or not the static label-
ings L(a) and L(b) are pre-specified. We will show
PSPACE-hardness by reduction from configuration-
to-edge NCL for the case where L(a) is given, and
omit the symmetric case where L(b) is given instead.
We also omit the cases where neither or both static
labelings are given, which can be proven by similar re-
ductions from edge-to-edge and configuration-to-con-
figuration NCL, respectively. (The sole exception is
zooming, where pre-specifying neither static labeling
makes the problem “merely” NP-complete.)

Theorem 2 The following decision problem is
strongly PSPACE-complete for the 4-position,
2-slider, and 4-slider label models.

Given: A dynamic point set P (with given trajecto-
ries, arrival times, and departure times), numbers a
and b with a < b, and a static labeling L(a) for P (a).

Decide: Whether there exists a dynamic labeling
L for P respecting L(a) that labels all points with
non-overlapping unit-square labels over the time
interval [a, b].

Additionally, unless P = PSPACE, the maximum
label size for which there is such an L cannot be
(4/3 � "0)-approximated in polynomial time for any
"0 > 0. For the 4-position model, this holds even for
a (2� "0)-approximation.

All of the above remains true when
• all points are stationary, and during [a, b] one point
is removed and one point is added,

• no points are added or removed, and all points move
at the same, constant speed along straight-line tra-
jectories, or

• no points are added or removed, and all points but
one are stationary.

Proof. We only prove the claim of PSPACE-hard-
ness, which we do by reducing from configuration-
to-edge NCL. Thus we are given a constraint graph
G with a legal starting configuration A and the goal
orientation of a single edge eB , and want to decide
whether there is a sequence of moves on G start-
ing from A that will result in eB having its speci-
fied orientation. By Theorem 1, we may construct a
point set P = P (G, �, ") and a valid static labeling
L(a) corresponding to configuration A. Now pick one
blocker q 2 P in the edge gadget for eB , and suppose
p 2 P is the point for which q blocks some label can-
didate(s). We now make q move at a constant speed
of v = 2"/(b � a) towards the nearest non-blocked
candidate of p. Figure 2(a) shows the end result at
time b: the edge gadget has become constrained to a
single orientation around p. Thus there is a sequence
of moves on A resulting in eB having the specified ori-
entation if and only if there is a dynamic labeling L
for this dynamic point set starting at L(a). The same
result may be obtained by moving q at speed v/2 and
moving all other points at speed v/2 in the opposite
direction. Alternatively, we may remove the point q
from P and re-insert it at its modified location. ⇤

243

29th European Workshop on Computational Geometry, 2013

In interactive mapping applications, users are pre-
sented with a rectangular viewport V showing a por-
tion of a larger map. By dynamically panning, rotat-
ing, and/or zooming the map, the user controls which
portion of the map is displayed at any given time. The
task of labeling the points inside V can be seen as a
special case of labeling dynamic point sets. Continu-
ous panning, rotation, and zooming of the map may
cause points to enter or leave V at its boundary, and
causes all points within V to move on continuous tra-
jectories. We will require only the points inside V to
be labeled, and these labels must be fully contained
in V . Points outside of V need not be labeled, but
we may wish to do so in order to ensure a smooth
dynamic labeling. Whether we do so or not makes no
di↵erence in the complexity of these problems.

Theorem 3 The following decision problem is
strongly PSPACE-complete for the 4-position,
2-slider, and 4-slider label models.

Given: A closed rectangle V , a points set P being
panned, rotated, or zoomed in a single direction at
constant speed, numbers a and b with a < b, and a
static labeling L(a) for P (a).
Decide: Whether there exists a dynamic labeling
L for P respecting L(a) that labels P (t) \ V with
non-overlapping unit-square labels inside V for all
t 2 [a, b].

Proof. We reduce from configuration-to-edge NCL in
a way similar to Theorem 2, but we now make sure
that G is laid out on the grid in such a way that eB
is on the far right. Next, we add an additional points
q0 to the right of eB by 1� 3", as in Figure 2(b). We
then construct a viewport rectangle V with its right
side being " to the left of q0. If we then start panning
so that the points move to the left, q0 will enter V
after a distance ". We must then label q0 in such a
way that eB becomes constrained to a single orienta-
tion. The same result can be achieved by rotating the

. . .

. .
.

q
p

(a)

eB

1� 4"

eB

V

q0

. . .

. .
.

(b)

Figure 2: Reduction from configuration-to-edge NCL
to dynamic labeling of (a) moving points, and (b)
static points under panning of the viewport V .

points clockwise, assuming the center of viewport is
above q0. Unlike with panning, rotating also changes
the distances between the points inside of the gadgets.
But if the initial distance between q0 and V is small
enough, q0 will enter V before the gadgets are dis-
turbed. Zooming out similarly makes q0 enter V . ⇤
4 Conclusion

We have examined the complexity of dynamic point
labeling. For a set of points where points may be
added or removed over time, and where the points
present move along continuous trajectories, we seek a
smooth function from time to static point labelings.
For the 4-position, 2-slider, and 4-slider models we
have shown that deciding whether there exists such a
labeling in which no labels ever overlap is strongly
PSPACE-complete. In addition, finding the maxi-
mum label size at which such a labeling does exist
admits no PTAS unless P=PSPACE. For the 4-posi-
tion model a 2-approximation is the best that can be
hoped for, and for the slider models a 4/3-approxima-
tion. The PSPACE-completeness results also apply
for special cases of dynamic point labeling in which
the point set is panned, rotated, or zoomed inside a
fixed viewport.
It remains to examine the complexity of other label

models, specifically the 1- and 2-position models, as
well as the 1-slider model. Presumably the decision
problem is easier for these models, as in the case of
static point labeling. It may also be of interest to
re-examine the special cases of zooming and rotation
with an infinite viewport. Our reduction currently
uses points at the boundary of the viewport, but we
believe this can be avoided. Most importantly, per-
haps, is the continued pursuit of approximation algo-
rithms for dynamic point labeling.

References

[1] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wol↵. Op-
timizing active ranges for consistent dynamic map la-
beling. Comput. Geom. Theory Appl., 43(3):312–328,
2010.

[2] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. In Proc. 7th Annu.

ACM Sympos. Comput. Geom., pages 281–288, 1991.

[3] A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent
labeling of rotating maps. In F. Dehne, J. Iacono,
and J.-R. Sack, editors, Proc. 11th Internat. Sympos.

Algorithms and Data Structures, pages 451–462, 2009.

[4] R. A. Hearn and E. D. Demaine. PSPACE-com-
pleteness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of
computation. Theoret. Comput. Sci., 343(1–2):72–96,
2005.

[5] M. van Kreveld, T. Strijk, and A. Wol↵. Point label-
ing with sliding labels. Comput. Geom. Theory Appl.,
13:21–47, 1999.

244

	booklet_eurocg13_Part1
	booklet_eurocg13_Part2
	booklet_eurocg13_Part3
	booklet_eurocg13_Part4
	booklet_eurocg13_Part5
	booklet_eurocg13_Part6

