
A Protocol for Self-Synchronized Duty-Cycling in Sensor Networks:

Generic Implementation in Wiselib

H. Hernández, M. J. Blesa and C. Blum

ALBCOM Research Group

Universitat Politècnica de Catalunya

Barcelona, Spain

Email: {hhernandez,mjblesa,cblum}@lsi.upc.edu

T. Baumgartner, S. P. Fekete and A. Kröller

Algorithms Group

Braunschweig Institute of Technology

Braunschweig, Germany

Email: {t.baumgartner,a.kroeller,s.fekete}@tubs.de

Abstract—In this work we present a protocol for self-
synchronized duty-cycling in wireless sensor networks with
energy harvesting capabilities. The protocol is implemented in
Wiselib, a library of generic algorithms for sensor networks.
Simulations are conducted with the sensor network simulator
Shawn. They are based on the specifications of real hardware
known as iSense sensor nodes. The experimental results show
that the proposed mechanism is able to adapt to changing
energy availabilities. Moreover, it is shown that the system is
very robust against packet loss.

Keywords-duty-cycling; self-organization; swarm intelligence

I. INTRODUCTION

Sensor networks [14] consist of a set of small, au-

tonomous devices which may be used, for example, for

environmental monitoring, patient monitoring in health care,

and industrial machinery surveillance. As sensor nodes

may be distributed in areas without power supply, or they

may be mobile, they are generally equipped with batteries,

which makes energy a scarce resource. A basic idea for

saving energy is to periodically switch off the sensor nodes.

The mechanism that establishes the alternation between the

active and inactive states is generally called duty-cycling

(see, for example, [13]). In some cases, duty-cycling is

energy-aware (see, for example, [9], [11], [10]). The main

disadvantage of these approaches is that they require a

quite regular pattern for the availability of energy from the

environment.

In previous work [8], [7], [6] we introduced and studied a

possible technique for energy-aware duty-cycling in (mobile)

sensor networks with energy harvesting capabilities. This

system is inspired by self-synchronized sleeping patterns

of natural ant colonies [4]. The focus of these first stud-

ies was purely on the swarm intelligence aspects of the

proposed system. The experiments were performed without

considering, for example, packet loss, collisions and network

failures. Before we outline the contributions of this work,

we introduce already a glimpse of the basic behavior of this

previously introduced system; see Figure 1. The solid line

shows the fraction of active nodes over time, whereas the

slashed line shows the average battery level of the nodes

3000 3200 3400 3600 3800 4000 4200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time

Figure 1. A first glimpse of the working of energy-aware, self-
synchronized duty-cycling.

over time. Finally, the dotted line represents the sun power

that is used to establish the amount of energy which can be

harvested by the sensor nodes at each time step. Note that all

three measures are scaled to [0, 1]. At this point we would
like the interested reader to understand the following two

aspects. First, self-synchronized duty-cycling is indicated

by the repetitive appearance of activity peaks over time

(see solid line). Second, the adaptation to changing energy

conditions is indicated by the changing height of the activity

peaks. At times of lower battery levels, activity peaks are

lower as well. This is the mechanism used by the sensor

nodes to adapt to varying energy conditions.

Contribution of this Work. The first contribution of this

work is the design of a protocol that captures the essential

aspects of the swarm intelligence system previously pro-

posed in [8], [7], [6]. The second contribution consists in

the implementation of this protocol in Wiselib [1], a library

of generic algorithms for wireless sensor networks. Finally,

we experimentally test our duty-cycling protocol in a real

scenario, simulating iSense sensor nodes from Coalesenses

GmbH [3] with the network simulator Shawn [12].

The organization of the paper is as follows. In Section II

the extension of Wiselib for duty-cycling algorithms is

introduced, followed by the description of the protocol for

self-synchronized duty-cycling in Section III. Finally, exper-

imental results are presented in Section IV, and conclusions

and an outlook are given in Section V.

2010 Sixth International Conference on Mobile Ad-hoc and Sensor Networks

978-0-7695-4315-4/10 $26.00 © 2010 IEEE

DOI 10.1109/MSN.2010.27

134

II. WISELIB: DUTY-CYCLING CONCEPT

The Wiselib [1], [16] is a generic algorithm library for

heterogeneous wireless sensor networks. The main objective

concerns the implementation of algorithms that may be

applied on different hardware and software platforms. Not

only real sensor hardware such as MicaZ or TelosB nodes

are supported by Wiselib, but also simulation environments

such as Shawn and TOSSIM. The algorithms included in the

Wiselib are organized in topics according to their functional-

ity. In order to abstract the algorithms from the hardware and

the operating system, a set of connectors specifies interfaces

for interacting with them. A connector is also defined to

interact with wireless sensor network simulators such as

Shawn [12]. Those connectors are defined such that the

same algorithm can be run on a physical platform or on

a simulator.

The design of a new algorithm class in Wiselib requires

the definition of a concept, that is, a specification of how

an algorithm looks and behaves. In this paper we provide

a generic concept for energy-aware duty-cycling algorithms,

and provide one model for this concept (see Section III). In

particular, a duty-cycling algorithm must assist sensor nodes

in their decision of being active or inactive. This is handled

via a call-back to the sensor node when it is supposed to

change mode. Based on this call-back, the sensor node is

then responsible for executing the corresponding action.

Therefore, a duty-cycling algorithm has basically two

functionalities: It can be enabled and disabled, and a call-

back can be (un)registered to indicate changes in activity.

The concept looks as follows:

conc ep t DutyCyc l ing {
enum Du t yCy c l i n gAc t i v i t y {
DC ACTIVE , DC INACTIVE

} ;
void e n ab l e (void) ;

void d i s a b l e (void) ;

template<c l a s s Ca l l e e , void (C a l l e e : :∗ TMethod) (i n t)>
i n t r e g c h a ng e d c a l l b a c k (C a l l e e ∗ ob j p n t)

void u n r e g r e c v c a l l b a c k (i n t) ;

} ;

With the aid of this generic concept, it is possible to

cover a broad range of duty-cycling algorithms. The exact

behavior of a potential duty-cycling model is not mandatory.

It can be asynchronous or synchronized, it may rely on

exact time-synchronization or do not have any requirements.

The important aspect is that the method signatures from the

concept are implemented, so that it can be passed to other

algorithms as a template parameter.

III. PROPOSED DUTY-CYCLING MODEL

As mentioned before, in [8], [7], [6] a swarm intelligence

technique with the potential application of self-synchronized

duty-cycling in (mobile) wireless sensor networks with

energy harvesting capabilities was introduced. This section

aims at designing and implementing a duty-cycling protocol

on the basis of this work. The current version of the protocol

assumes that there is a time synchronization algorithm

executed by a lower layer of the network. The protocol

works in periods. Each period has a length of ∆ time units
(say, seconds). Each period is divided in two phases: the first

phase is dedicated to actions concerning the management

of duty-cycling, whereas the second phase is dedicated to

application-specific tasks that sensor nodes must perform

(see Figure 2). The first phase of each period is very short.

In this phase all nodes may receive transmissions from

neighboring nodes and execute themselves one duty-cycling

event. The outcome of the first phase decides if a node will

be active or inactive for the rest of the corresponding period.

In case of being active a node is available for user-defined

applications (environmental data monitoring, tracking, etc).

However, if the state of a sensor node is set to inactive the

node will turn off the radio and will sleep until the start of

the following period.

In the following we focus on the description of the duty-

cycling algorithm executed in the first phase of each period.

This algorithm consists in a so-called duty-cycling event that

is executed by each sensor node i exactly once. The time
of executing this event is, at the moment, randomly chosen

by each sensor node within the first phase of each period.

Each sensor node i maintains a real-valued state variable
Si. The value of this state variable is initially set to the so-

called activity threshold Sact, which is a parameter of the
mechanism. Moreover, ai is a binary variable whose value

determines if the sensor node i is active (ai = 1) or inactive
(ai = 0) in phase two of the corresponding period. The value
of the variable ai is determined as follows:

ai := Φ(Si − θact) , (1)

where θact is the so-called activation threshold, and Φ(x) = 1
if x ≥ 0, and Φ(x) = 0 otherwise. Note that an inactive
sensor node can return to the active state either due to local

interactions (as explained below in Eq. 2) or spontaneously

with a probability pa and an activity level Sa.

In addition, each sensor node maintains a queue Qi for

incoming duty-cycling messages from neighboring sensor

nodes. Each messagem ∈ Qi contains a single fieldmactivity,
which is set to the activity Sj of the sensor node j that
has sent the message. When sensor node i executes its
duty-cycling event, the value of state variable Si is updated

depending on the messages in Qi. Subsequently sensor node

i sends a duty-cycling message, containing the new value
of Si, using a certain transmission power level. Note that

the choice of the transmission power level is a crucial

component for the working of our duty-cycling technique.

More specifically, the value of state variable Si of a sensor

node i is computed as follows:

Si := tanh(g · (Si +
∑

m∈Qi

mactivity)) , (2)

where g is a gain parameter whose value determines how

135

0 ∆ 2∆ 3∆

DC User application DC User application DC User application

Figure 2. Division of time between the duty-cycling mechanism and user applications. The protocol works in a sequence of time periods of length ∆.
In each period, the first phase is dedicated to duty-cycling (DC), and the second phase to the user application.

fast the value of variable Si diminishes. After this update,

all messages are deleted from Qi, that is Qi := ∅. Note
that with this update the value Si of an inactive sensor may

increase sufficiently enough in order to be greater than the

activity threshold Sact.
For the working of the duty-cycling mechanism, the

choice of the power level for the transmission of the duty-

cycling messages plays a crucial role. Here we assume

a standard antenna model which allows sensor nodes—

for each transmission—to choose from a finite set P =
{P 1, . . . , Pn} of different transmission power levels.1 More
specifically, the choice of a sensor node i depends on its
battery level, which is denoted by bi ∈ [0, 1]. Hereby,
bi = 1 corresponds to a full battery. In the following we first
outline the determination of a so-called ideal transmission

power level, which then leads to the choice of the real

transmission power level. The ideal transmission power level

(pi) of a sensor i depends on the current battery level:
pi := pmin·(1−bi)+pmax·bi, where pmin, respectively pmax,

are parameters that fix the minimum, respectively maximum,

transmission power levels. Only when batteries are fully

charged the ideal transmission power level may reach pmax.

The ideal transmission power level is then translated into the

real transmission power level (Ti) as follows: Ti := P k ∈ P
such that

pi ∈
(

(P k−1 + P k)/2, (P k + P k+1)/2
]

(3)

At this point it is important to realize that the transmission

power level Ti is used only for sending the duty-cycling

message. For other messages during the second phase of

each period, the user application is responsible for choosing

transmission power levels. The duty-cycling event described

above is summarized in Algorithm 1. As mentioned above,

the battery level of the sensor nodes is responsible for

their choice of a transmission power level for sending the

duty-cycling message. Therefore, the battery level of course

affects the communication topology in the context of the

duty-cycling mechanism.

IV. EXPERIMENTAL EVALUATION

In the following we first describe the experimental setup

and the experimentation environment before we present the

obtained results. The implementation of the presented pro-

tocol in the Wiselib provides us with options for executing

1Popular sensor hardware such as iSense nodes or SunSPOTs are
equipped with such antennas.

Algorithm 1 Duty-cycling event of a sensor node i

1: Calculate ai (see Eq. 1)

2: if ai = 0 then
3: Draw a random number p ∈ [0, 1]
4: if p ≤ pa then Si := Sa and ai := 1 endif
5: end if

6: Determine transmission power level Ti (see Eq. 3)

7: Compute new value for state variable Si (see Eq. 2)

8: Send duty cycling message m with mactivity := Si with

transmission power level Ti

it on real test-beds but also to perform simulations with

some sensor network simulators. In the context of this

paper we decided for the second option. More specifically

we used the sensor network simulator Shawn [12], which

is a discrete event simulator with a very high level of

parameterization which is able to execute algorithms from

the Wiselib. The user can easily run experiments simulating

the behavior of different sensor nodes and also add own

sensor node specifications. A peculiarity of Shawn is the fact

that packet collisions are not explicitly considered. Instead

Shawn simulates these collisions and the consequent packet

loss under different constraints and in different scenarios.

Thus, any packet-loss model can be implemented.

We decided to experiment with iSense sensor node hard-

ware from Coalesenses GmbH [3]. For this purpose we

added the specification of iSense nodes to Shawn. These sen-

sor nodes use a Jennic JN5139 chip, a solution that combines

the controller and the wireless communication transceiver in

a single chip. The controller has a 32-bit RISC architecture

and runs at 16Mhz. It is equipped with 96kb of RAM and

128kb of serial flash. The maximum transmission power

level of iSense nodes reaches a distance of about 500m in all

directions in open air conditions. Note that iSense nodes are

being used by two of the currently largest European projects

on sensor networks: WISEBED [2], [15] and FRONTS [5].

In our simulations, iSense nodes are supposed to be equipped

with solar panels. According to their documentation, iSense

nodes require 0.025mA to work without using any additional
peripheral such as the radio or the sensing devices. The state

in which the radio is also turned on requires a power supply

of 12.8mA. Additionally, to receive or send a message
with 4 bytes of information, as required by duty-cycling
messages, implies a consumption of 7.43µC. The batteries
have a maximum capacity of 2600µC. Energy harvesting

136

Table I
POWER DEVICES AND PARAMETERS FOR THE ENERGY MODEL.

Data Device specifications

Tx/Rx (4 bytes) 7.43µC
Radio On 12.8mA
Radio Off 0.025mA

Battery capacity 2600µC
Energy harvesting (f) 1.6W
Max. Tx Power 500m

by solar panels can reach a maximum nominal value of

1.6W. This information is summarized in Table I. Finally, let
us mention that iSense nodes offer 6 possible transmission
power levels, in addition to the state in which the radio is

turned off. The five transmission power levels other than

the maximum one are obtained by reducing the maximum

transmission power level by 1

6
, 2

6
, 3

6
, 4

6
, and 5

6
.

One of the aspects that has not been described so far is

the simulation of the light source for energy harvesting. This

was done as follows. The light source at time z > 0 has an
intensity of s(z) ∈ [0, 1]. Hereby, s(z) = 0 corresponds
to absolute darkness. In [8] we described a model for the

evolution of the sun light intensities, that is, for the evolution

of s(z) over time. Here we consider exactly the same model.
Additionally, we assume a variable cloud density c(z) ∈
[0, 1]. Depending on the technical characteristics of the solar
panels used, a sensor node i can transform a fraction f of
the available light intensity into energy:

eharvi ((t − ∆, t]) := f ·

∫ t

t−∆

s(z) · (1 − c(z))dz (4)

In the experiments presented in this article we do not

consider any specific user application, that is, the energy

consumption of phase two of the proposed protocol must be

simulated. This is done by removing an amount of eapp of
energy from the battery for each execution of phase two.

The parameter values used for simulation are as follows:

pmin pmax g pa eapp f
0.07 0.14 0.1 0.001 0.001 0.0027

It is important to note that the information which refers to

the power profile of the iSense nodes is obtained by properly

rescaling the values from Table I to the [0, 1] range that is
used by the description of duty-cycling given in Section III.

A. Experiments

Assuming that ∆—that is, the length of one period—
corresponds to 60 seconds, the simulations that we con-

ducted span 30 days (each day consists of 1440 periods).
The first phase of each period, which is reserved for the

duty-cycling events, was given 0.05 seconds. Information
about the state of the sensor nodes (active versus inactive)

is collected at the start of each period. The most important

measure taken is the mean activity of the sensor network,

which is measured—at any time—as follows:

A :=
1

k

k
∑

i=1

ai ∈ [0, 1] (5)

Note that, the greater A the more sensors are active

at the specific time at which A was determined. Self-

synchronization behavior is characterized by an oscillating

value of A over time. This was shown already for a mobile
sensor network with k = 120 sensor nodes in Figure 1 of
the introduction (see solid line). However, the results from

that figure were obtained in a perfect environment with no

collisions or transmission failures and no propagation times.

Moreover, the energy model that was used had no relation

to real sensor node hardware.

The experiments that we present in this section aim at

proving the applicability of the proposed mechanism in real

sensor networks. All experiments are done on the basis of a

static network of k = 120 iSense nodes as simulated by the
Shawn sensor network simulator. For the first experiment

that we conducted we assumed zero probability of packet

loss. Moreover, we assume a cloud density of zero, that is,

c(z) = 0 for z ≥ 0. Figure 3 shows the obtained duty-
cycling behavior. Again, the solid line shows the fraction

of active sensor nodes over time, whereas the slashed line

shows the average battery level of the sensor nodes over

time. Finally, the dotted line represents the sun power that

is used to establish the amount of energy which can be

harvested by the sensor nodes at each time step. The graphic

shows the behavior for one day of simulation, that is, 1440

periods. Self-synchronized duty-cycling is indicated by the

appearance of activity peaks over time. It is remarkable how

the system adapts to the available energy resources, reducing

the height of the peaks when the battery level of the nodes

is reduced. Note that when a lot of energy is available the

system can even prescind from switching off sensor nodes.

This can be seen by the existence of a large activity peak

of about 200 periods of length located around period 14000.

Note that for this experiment the average fraction of nodes

that are active at each period is approximately 0.6. This
measure will henceforth be called the mean system activity.

Concerning the energy spent by the duty-cycling protocol

with respect to the user application, we took measures over

the whole simulation of 43200 periods (that is, 30 days).

Duty-cycling User Appl.

Tx Rx Idle Active

Energy (%) 0.757 18.591 0.001 0.035 80.616

The energy spent by duty-cycling is hereby split into the

”Idle” and ”Active” states as well as the energy spent for

transmitting the duty-cycling messages (Tx) and receiving

duty-cycling messages (Rx). Note that message reception

is the task which consumes most of the energy. In total,

the duty-cycling mechanism consumes approximately 20%
of the total amount of spent energy. This may seem quite

137

13000 13400 13800 14200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time

activity
battery
sun

Figure 3. Simulation results (network size: 120; 11th day of simulation).
Solid line: evolution of the fraction of active nodes. Dashed line: average
battery level. Dotted line: evolution of the sun light intensity.

high at first. However, consider that this percentage strongly

depends on the value of eapp, which we have set to a very
moderate value of 0.001. Increasing this value will obviously

cause the decrease of the percentage of energy spent by duty-

cycling.

After these initial studies we will now test the duty-

cycling mechanism in two adversarial scenarios. In first

place, it is shown how the system responds to situations

with communication failures. In second place, the behavior

of the system is studied in scenarios where energy harvesting

is limited, for example, due to cloudy weather. Finally, we

present a mechanism for automatic parameter adaptation of

the system for what concerns different network sizes.

1) Effect of Packet Loss: With the next experiment we

aim at studying the robustness of the system with respect

to communication failures. The experiment consists in sim-

ulating the duty-cycling protocol under different packet loss

rates. A packet loss rate of ploss ∈ [0, 1] means that the
probability of correctly receiving a message is 1 − ploss.

We repeated the initial experiment as outlined above for all

packet loss rates between 0 and 1, in steps of 0.01. The

results are shown in terms of the obtained mean system

activity for each considered packet loss rate in Figure 4

(top). It can be observed that the behavior of the system

does not visibly change until a packet loss rate of about 0.3.
This means that the proposed system is quite robust against

packet loss. Only for packet loss rates greater than about 0.3
the system behavior degrades.

2) Limited Energy Harvesting: Another interesting ques-

tion concerns the possible change in system behavior when

energy harvesting is restricted. Considering the example of

solar panels, this is the case, for example, with bad weather

conditions. Remember that the proposed model is able to

simulate bad weather conditions by means of cloud densities

greater than zero. We repeated the initial experiment (that

is, without considering packet loss) for a range of different

cloud densities between 0 and 1. Figure 4 (middle) shows
the evolution of the obtained mean system activity when

moving from low to high cloud densities. As expected, with

increasing cloud density the mean system activity decreases.

Interestingly, the relation between cloud density and the

mean system activity is linear.

3) Adapting to Different Network Sizes: When changing

to differently sized networks (we only considered 120 node

networks so far), it is intuitively clear that some parameter

values must be adjusted in order to maintain a functional

system. Note that when changing the network size, the node

density changes. Hence, it is reasonable to assume that for

maintaining the shape of the activity peaks, the choice of the

transmission power level and the probability of spontaneous

activation should be adapted to the new network size. A

way of obtaining the new system parameters is described

in the following. With knew, pa
new
and tnew we refer to the

new number of sensor nodes, the probability of spontaneous

activation and the transmission power level of the new,

differently sized, network. First, in order to obtain the same

wake-up rates as in the case of a 120-node network, the

following rule can be applied: pa
new

:= pa · k/knew, where pa

and k are the parameters from the original network. Note that
this rule increases the probability of spontaneous activation

of the nodes when the network size is decreased, and vice-

versa when the number of nodes increases. Moreover, the

average number of nodes’ spontaneous activations per time

unit is maintained. Next we introduce a rule for adapting

the transmission power level. The basic idea is to have

a constant average number of sensors being reached by a

transmission. Due to the fact that the sensor nodes form

a random topology, the following reasoning was used. In

general, the number of nodes that can be reached by the

ideal transmission of a sensor can be estimated as follows:

t · k/S, where k is the number of sensor nodes and S is the
space in which the sensor nodes reside and the transmission

power establishes the size of the area of coverage. In our

case it holds that S = 12 = 1. Therefore, as t is known
for the case of 120-node networks, an adjusted transmission

power level can be calculated for networks of different sizes

as follows:

tnew =
t · k

knew
, (6)

where knew is the size, respectively tnew is the transmission
power level, of the new network. However, note that the

transmission power level is not directly modifiable as an

algorithm parameter. The only parameters of our algorithm

for what concerns to the transmission power level are pmin

and pmax. These values are used as the boundaries of the

region for the ideal transmission power levels. Therefore, our

scaling method consists in using Eq. 6 for obtaining pnewmin

and pnewmax for delimiting the value of the new networks’ ideal

transmission power level.

With this scaling methodology we repeated the initial

experiment (that is, without packet loss) for a range of

different network sizes k ∈ [0, 300]. The graphic in Figure 4
(bottom) shows the evolution of the resulting mean system

activity. Ideally we would have expected a more or less

138

0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

packet loss rate

m
e
a
n
 s

y
s
te

m
 a

c
ti
v
it
y

cloud density

m
e
a
n
 s

y
s
te

m
 a

c
ti
v
it
y

0 0.2 0.4 0.6 0.8 1

0
0
.2

0
.4

0
.6

0
.8

1

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

network size

m
e
a
n
 s

y
s
te

m
 a

c
ti
v
it
y

Figure 4. Behavior of the duty-cycling mechanism under varying condi-
tions. Top figure: different packet loss rates. Middle figure: different cloud
densities. Bottom figure: different network sizes.

straight line at about 0.6. This would have meant that the
introduced parameter scaling method leads to a system that

behaves equally for all network sizes. However, as can be

seen, the scaling method only works well for networks with

more than 100 nodes. For smaller networks, the mean system

activity decreases. However, this can be explained by the

decreasing connectivity and communication ability.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a protocol for self-

synchronized duty-cycling in wireless sensor networks with

energy harvesting capabilities. This protocol, inspired by real

ant colonies, has been implemented in the generic algorithm

library Wiselib. Moreover, experiments have been performed

with the network simulator Shawn configured to simulate

iSense hardware. The proposed technique adapts to changing

energy conditions in a self-organized way. Moreover, it is

very robust for what concerns packet loss and limitations

of energy harvesting. In the future we plan to combine this

protocol with real user applications such as monitoring or

tracking. Moreover, we plan to verify the experiments on

real hardware. Finally, as our technique does not depend on

nodes being static, the results obtained in this paper can be

reproduced for mobile sensor networks.

ACKNOWLEDGMENT

This work was supported by the EU project FRONTS (FP7-ICT-2007-1). In

addition, Christian Blum acknowledges support from the Spanish Ramón y Cajal

program, and Hugo Hernández acknowledges support from a Catalan FI grant.

REFERENCES

[1] T. Baumgartner, I. Chatzigiannakis, S. Fekete, C. Koninis,
A. Krller, and A. Pyrgelis. Wiselib: A generic algorithm
library for heterogeneous sensor networks. In J. Sa Silva
et al., editors, Proc. of EWSN 2010, volume 5970 of LNCS,
pages 162–177. Springer, 2010.

[2] I. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and
D. Pfisterer. WISEBED: an open large-scale wireless sensor
network testbed. In N. Komninos, editor, Proc. of SENSAP-
PEAL 2009, volume 29 of Lecture Notes of the Institute for
Computer Sciences, pages 68–87. Springer, 2009.

[3] Coalsesenses GmbH. http://www.coaelesenses.com.

[4] N. R. Franks and S. Bryant. Rhythmical patterns of activity
within the nest of ants. Chem. and Biol. of Soc. Insects, pages
122–123, 1987.

[5] FRONTS - Foundations of Adaptive Networked Societies of
Tiny Artefacts. http://fronts.cti.gr.

[6] H. Hernández and C. Blum. Asynchronous simulation of a
self-synchronized duty-cycling mechanism for mobile sensor
networks. In Proc. of BADS 2009, pages 61–68. ACM press,
2009.

[7] H. Hernández and C. Blum. Self-synchronized duty-cycling
in sensor networks with energy harvesting capabilities: the
static network case. In F. Rothlauf et al., editor, Proc. of
GECCO 2009, pages 33–40. ACM press, 2009.

[8] H. Hernández, C. Blum, M. Middendorf, K. Ramsch, and
A. Scheidler. Self-synchronized duty-cycling for mobile
sensor networks with energy harvesting capabilities: A swarm
intelligence study. In Proc. of SIS 2009, pages 153–159. IEEE
press, 2009.

[9] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghu-
nathan. Adaptive duty cycling for energy harvesting systems.
In Proc. of ISLPED 2006, pages 180–185. IEEE press, 2006.

[10] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Sri-
vastava. Power management in energy harvesting sensor
networks. Trans. on Embedded Comp. Sys., 6(4):32, 2007.

[11] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Sri-
vastava. Design considerations for solar energy harvesting
wireless embedded systems. In Proc. of IPSN 2005, pages
457–462, 2005.

[12] S. Fischer S. Fekete, A. Krller and D. Pfisterer. Shawn:
The fast, highly customizable sensor network simulator. In
Proc. of INSS 2007, page 299, 2007.

[13] D. Tian and N. D. Georganas. A node scheduling scheme
for energy conservation in large wireless sensor networks.
Wirel. Comm. and Mob. Comp., 3:271–290, 2003.

[14] D. Wagner and R. Wattenhofer, editors. Algorithms for Sensor
and Ad Hoc Networks, volume 4621 of LNCS. Springer, 2007.

[15] WISEBED - Wireless Sensor Network Testbeds.
http://www.wisebed.eu.

[16] WISELIB. http://www.wiselib.org.

139

