Institute of Operating Systems
Technische and Computer Networks

% Universitit
o .
Braunschweig

- e

THEMIs: An Efficient and Memory-Safe

BFT Framework in Rust
SERIAL Workshop, December 9, 2019

Signe Riisch, Kai Bleeke, Riidiger Kapitza
ruesch@ibr.cs.tu-bs.de
Technische Universitit Braunschweig, Germany

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Byzantine Fault Tolerance

= Consensus even with participants showing
arbitrarily wrong behaviour

» E.g. used in permissioned blockchains
= Tolerate f Byzantine faults with 3f + 1 nodes

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust| Page 2

Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Byzantine Fault Tolerance

= Consensus even with participants showing
arbitrarily wrong behaviour
» E.g. used in permissioned blockchains

= Tolerate f Byzantine faults with 3f + 1 nodes

= BFT protocols have high message complexity

= Frameworks are highly optimised regarding
processing time per message

= Both on protocol and network layer

Technische

Universitit

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 2
Braunschweig

Institute of Operating Systems
and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Byzantine Fault Tolerance

= Consensus even with participants showing
arbitrarily wrong behaviour
» E.g. used in permissioned blockchains

= Tolerate f Byzantine faults with 3f + 1 nodes

BFT protocols have high message complexity

Frameworks are highly optimised regarding
processing time per message

= Both on protocol and network layer

™ BFT frameworks should be fast, efficient, and resilient!

Technische

Universitit

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 2
Braunschweig

Institute of Operating Systems
and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion
Programming Languages — C

= So far, frameworks mostly written in C or Java

= C: PBFT [castro et al., 05DI99]
- Java: Reptor [Behl et al., Middleware’15]

+ Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 3 . .
Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion
Programming Languages — C

= So far, frameworks mostly written in C or Java

= C: PBFT [castro et al., 05DI99]
- Java: Reptor [Behl et al., Middleware’15]

» Low-level programming languages like C offer
high performance
» Direct access to memory
= Translation into native instructions

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 3
Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion
Programming Languages — C

= So far, frameworks mostly written in C or Java

= C: PBFT [castro et al., 05DI99]
- Java: Reptor [Behl et al., Middleware’15]

» Low-level programming languages like C offer
high performance
» Direct access to memory
= Translation into native instructions
» But error-prone due to memory leaks and \ ‘
undefined behaviour, e.g.: _
= Reading uninitialized memory
* Dereferencing a NULL pointer, an invalid pointer
= Out-of-bounds array access

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust| Page 3

Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion
Programming Languages — C

= So far, frameworks mostly written in C or Java

= C: PBFT [castro et al., 05DI99]
- Java: Reptor [Behl et al., Middleware’15]

» Low-level programming languages like C offer
high performance
» Direct access to memory
= Translation into native instructions
» But error-prone due to memory leaks and \ ‘
undefined behaviour, e.g.: N4
= Reading uninitialized memory
* Dereferencing a NULL pointer, an invalid pointer
= Out-of-bounds array access

™ Eliminate unsafe, unreliable code!

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust| Page 3

Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Programming Languages — Java

= Strong type system offers safety
» Runtime offers platform independence

* No manual memory management: Garbage
Collector (GC)

Technische

Universitit

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 4
Braunschweig

Institute of Operating Systems
and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Programming Languages — Java

= Strong type system offers safety
» Runtime offers platform independence

* No manual memory management: Garbage
Collector (GC)

®» Interpreting bytecode less performant

JIT and GC add uncertainty to performance

= Not resource-efficient: JVM’s high memory
consumption

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 4 . .
Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Programming Languages — Java

= Strong type system offers safety
» Runtime offers platform independence

* No manual memory management: Garbage
Collector (GC)

®» Interpreting bytecode less performant

JIT and GC add uncertainty to performance

= Not resource-efficient: JVM’s high memory
consumption

™ Tradeoff: performance vs. safety!
How can we combine both?

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 4 . .
Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation Conclusion

The Rust Programming Language

= Combines performance and safety
» Young language: 1.0 release in 2015
= Initiated by Mozilla

= Completely open source

* Performance: no runtime or garbage collector

Reliability: strong type system
= Safety: memory safety enforced at compile time

Technische

Univer: 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 5 . .
Braunschweig Institute of Operating Systems
and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation Conclusion

Ownership: Safe Memory

// heap allocate
let x = Box::new(1000);

= Every value has an owner // move into y
* Values are dropped when owner // x no longer accessible
goes out of scope let y = x;

. Val dt println! ("{}", x);
alues are moved to a new owner /Jerror[E0382] :

[N

// use of moved value: ‘x

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust| Page 6

Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation Conclusion

Borrowing and Lifetimes: Safe References

= Borrow value to get shared and
mutable references

» Either single mutable reference
or multiple shared references

= References have lifetimes
= No reference to invalid memory

» Enforced at compile time by the
borrow checker

let mut x = 1000;

//mutable reference

let ¢ = &mut x;

let d = &x;

//error[E0502]: cannot borrow ‘X
// as immutable because it is

// also borrowed as mutable

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust| Page 7

Braunschweig

Institute of Operating Systems
and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation Conclusion

Borrowing and Lifetimes: Safe References

= Borrow value to get shared and
mutable references

» Either single mutable reference
or multiple shared references

= References have lifetimes
= No reference to invalid memory

» Enforced at compile time by the
borrow checker

let mut x = 1000;

//mutable reference

let ¢ = &mut x;

let d = &x;

//error[E0502]: cannot borrow ‘X
// as immutable because it is
// also borrowed as mutable

™ Rust eliminates a whole class of errors that potentially lead to
Byzantine behaviour!

Technische

Univ 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust| Page 7

Braunschweig

Institute of Operating Systems
and Computer Networks

Introduction Rust Twemis: BFT in Rust Evaluation Conclusion

THEMIS Framework

Requirements for efficient BFT
frameworks:
= Concurrency

= Multiple small requests
= Asynchronous execution

» Event-driven, non-blocking I/O
= Often realized with Java NIO

™ Rust: Async/Await, Futures,
Tokio libraries

™ Recently stabilized language features!

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 8
Institute of Operating Systems

and Computer Networks

Introduction Rust Twemis: BFT in Rust Evaluation Conclusion

THEMIS Framework

Requirements for efficient BFT
frameworks:

Application Module

= Concurrency

= Multiple small requests

H Client
= Asynchronous execution Loy | LI Gommuricatn
Module

Protocol Module

» Event-driven, non-blocking I/O
= Often realized with Java NIO

™ Rust: Async/Await, Futures, = THEMIS has three modules:
Tokio libraries » Communication
= Protocol

> Recently stabilized language features! ~ = Application

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 8
Institute of Operating Systems

and Computer Networks

Introduction Rust Twemis: BFT in Rust Evaluation Conclusion

Communication Module

= Handles connection management

= Spawn tasks:

= Listener for new connections
» Sender and receiver for each connection

Application Module

Protocol Module

= Communication between tasks with preen I
| | Communication |

asynchronous channels tibrary | Coienee

= Messages are verified and batched before
entering protocol stage

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 9
Institute of Operating Systems

and Computer Networks

Introduction Rust Twemis: BFT in Rust Evaluation Conclusion

Protocol Module

= Protocol implementation as interface (trait)

= Easy implementation of new protocols Applcation Module

= Handles incoming and outgoing messages

Protocol Module

il

= Currently includes: —
= PBFT: ordering, checkpointirjg, view chan.ge LibI::y | | Communication
= Hybster [gehetal, eurosys17: hybrid protocol with
trusted subsystem based on Intel SGX

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 10
Institute of Operating Systems

and Computer Networks

Introduction Rust Twemis: BFT in Rust Evaluation Conclusion

Application Module

= Application implementation as interface
= Asynchronous for higher flexibility:

» execute() method takes request
= Returns a Future of a response Protocol Module

» Creates snapshots for checkpointing kg ,m}w
: Library
and failure recovery [T Module

= Does not have to be implemented in Rust

Application Module

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 11
Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Evaluation

= THEMIS implementation with PBFT
* 8.6 kLoC

= Compare to Reptor framework: Java-based PBFT
= Single-threaded execution

» RSA for message authentication

= Checkpoint creation at every 1000 requests

= Four replicas and one client machine

= Intel Core i7-6700 @ 3.40GHz, 24GB RAM
= Intel Xeon E5645 @ 2.40GHz, 24GB RAM

= Research Questions:

= How does Rust’s throughput and latency compare to Java?
* How is the memory consumption of the frameworks?

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 12
Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Evaluation: Throughput

—— THEMIS 100B/10 —e— THEMIS 100B/100
—+— REPTOR 100B/10 — REPTOR 100B/100
30 T T T T T T T

DO
es}

—
)

%)
o,
—

=5

+~
=
(o

-~
o0
=}
o]
=

=

=

Clients

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 13 . .
Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Evaluation: Latency

—— TuEMIS 100B/10 —e— THEMIS 100B/100
—+— REPTOR 100B/10 — REPTOR 100B/100

Clients

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 14
Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Evaluation: Memory Consumption

| 100B /10 | 100B /100
THemis | 125MB | 44MB

Reptor | 18GB | 2.8GB

= Reptor: 64-144x higher memory consumption
= Complete memory per process measured at end of benchmark runs

= Lower memory consumption due to lack of runtime

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 15
Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Roadmap

Improvements since submission:

» Bug fixes in evaluation
= Message authentication using elliptic curve cryptography, e.g. ECDSA
* 93 % higher throughput, 53 % lower latency than RSA

= WIP implementation of Hybster

Future Work:
“» BFT for embedded settings with restricted memory capacity
™ Consensus in embedded blockchains, e.g. in railway systems

Technische

Universitit 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 16 . .
Braunschweig Institute of Operating Systems
and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Conclusion
= Rust has high performance and memory safety Appication Module
= New features allow implementation of safe | Protoco Module
ioh- Client I
high-performance BFT frameworks oent o

= THEMIS presents a first prototype of PBFT

— S 100B/10 = Tiens 100B/100
RH\ o 100/10 — Rerron 1008/100

» Evaluation shows promising results

7100

Investigation of usage of BFT for blockchainsin -,
embedded settings e R

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 17
Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Conclusion
= Rust has high performance and memory safety Appicaton Module
= New features allow implementation of safe | Protocol e
‘oh- Client I
high-performance BFT frameworks oent o

= THEMIS presents a first prototype of PBFT

THEMIS 100B/10 ——
REPTOR 100B/10

Mis 100B/100
ToR 100B/100

» Evaluation shows promising results

7 100

*» |nvestigation of usage of BFT for blockchains in
embedded settings e e e

Clients Clients

Thank you for your attention! Questions?
ruesch@ibr.cs.tu-bs.de

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 17 . .
Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 18 . .
Braunschweig Institute of Operating Systems

and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Evaluation: ECDSA

—— THEMIS RSA 100B/10 —e— THEMIS RSA 100B/100
—+— REPTOR RSA 100B/10 —— REPTOR RSA 100B/100
—— TueMIsS ECDSA 100B/10 —= TueEMmIis ECDSA 100B/100

Throughput [krps]

Clients Clients

2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 19
Institute of Operating Systems

and Computer Networks

Async/Await in Rust

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

async syntax async types.
" EVe nt- based async/await + Futures Rust nightly
architecture o
Executor Userland
= Reactor: notifies _ I
tokio b % tveadpool asyn runtime
about incoming event L
. Tep mio epoll, kquee... async kernel methods|
= Executor: takesdata -~ . ¢ o
and executes async
fu n Ctl on (FUture) https://dev.to/gruberb/explained-how-does-async-work-in-rust-46£8
+ Technische
% Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 20 . .
Institute of Operating Systems

Braunschweig

and Computer Networks

https://dev.to/gruberb/explained-how-does-async-work-in-rust-46f8

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Executing Futures

= Spawned as tasks on an Executor

= Executor polls tasks when Waker is Executor [<—wake Reactor
called
. . . oll poll register
= |/O objects (sockets) register with P
Reactor
Future <—channel—>» Future
= Reactor waits for socket readiness
= Reactor wakes task when socket is ready
Technische
Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust| Page 21

Braunschweig

Institute of Operating Systems
and Computer Networks

Introduction Rust THEemis: BFT in Rust Evaluation ~ Conclusion

Futures

trait Future {
type Output;
fn poll(&mut self, waker: &Waker) -> Poll<Self::Output>;
}
enum Poll<T> {
Ready(T),
Pending,
}

trait Future {

type Output;

fn poll(self: Pin<@mut Self>, waker: &Waker) -> Poll<Self::Output>;
}

= Future are lazy and have to be polled

= Future resolves to type Output, provided by implementer

Technische

Universitat 2019-12-09 | Signe Riisch | THemis: An Efficient and Memory-Safe BFT Framework in Rust | Page 22 . .
Braunschweig Institute of Operating Systems

and Computer Networks

	Introduction
	Rust
	Themis: BFT in Rust
	Evaluation
	Conclusion

