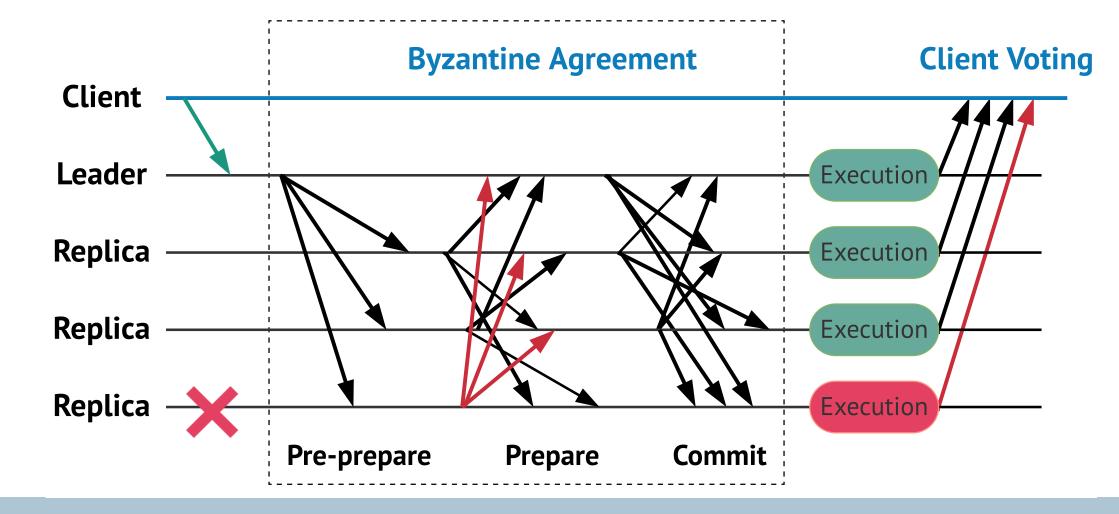


Institute of Operating Systems and Computer Networks


Low-Latency Network-Scalable Byzantine Fault-Tolerant Replication

Ines Messadi, TU Braunschweig, Germany. Advisor: Rüdiger Kapitza messadi@ibr.cs.tu-bs.de, rrkapitz@ibr.cs.tu-bs.de

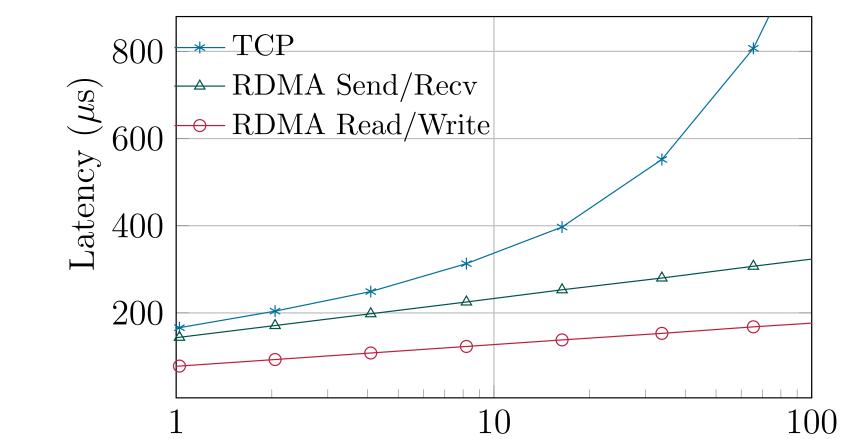
Byzantine Fault Tolerance (BFT)

Traditional BFT protocols

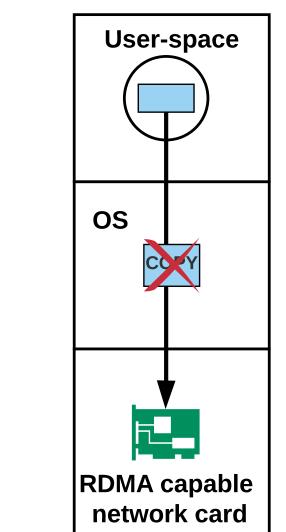
- Tolerating arbitrary (Byzantine) faults
- -3f+1 nodes to tolerate f faults
- TCP/IP-based communication
- \hookrightarrow High reliability and consistency

Problem Statement

Drawbacks of BFT protocols

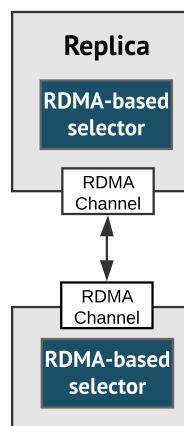

- Multiple rounds of communication \Rightarrow high latency
- Costly message complexity
- Limited throughput & scalability
- TCP incurs **high latency**
- \hookrightarrow Availability of modern hardware technology such as the **low-latency Remote Direct Memory Access (RDMA) networking**

Challenge


- RDMA interfaces require an explicit design of applications
- \Rightarrow Necessity of the redesign of existing BFT protocols for RDMA

Remote Direct Memory Access

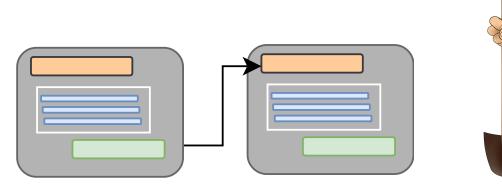
- Direct access to memory on remote systems with without CPU involvement
- **Zero-copy** data transfer
- Communication resources
 - Queue based-communication
 - Memory registration & buffer management
- Richer data transfer primitives
 - One-sided Read/Write
 - Two-sided Send/Receive


Payload (KB)

Towards building RDMA-based BFT

How can we build a secure scalable RDMA-based BFT ?

- Effcient use of RDMA one-sided and two-sided communication
 - Clients use Send primitive to not saturate the leader
 - Dynamically Connected Transport (DCT) for better scalability
 - Replicas perform a direct RDMA Write into remote memory
- Problem:
 - Malicious replicas have access to remote nodes' memory
 - Memory RDMA keys are not secure
 - \rightarrow Implement counter-measures
- Basis BFT protocol: Hybster [Behl et al., EuroSys'17]
 - Use of two-sided to avoid security issues
 - Preliminary approach
 Design an RDMA-based selector replacing
 the Java NIO selector



Related Work

- DARE is an RDMA-based Raft protocol optimized using RDMA features^a
- APUS is scalable RDMA-based Paxos protocol performing replication using RDMA Write^b

Example Applications: Blockchain and Coordination Services

- Building a coordination service with a similar interface as ZooKeeper
 - Strong consistency and availability
- Implementing BFT-ordering service
- \hookrightarrow Benefit from improved performance of BFT

^{*a*}Marius Poke and Torsten Hoefler. DARE: high-performance state machine replication on RDMA networks. In ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC), 2015

 ^bCheng Wang et al. APUS: Fast and scalable Paxos on RDMA. In: Proceedings of the 2017
 Symposium on Cloud Computing . ACM. 2017, pp. 94107