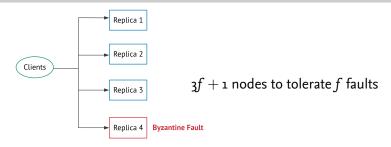
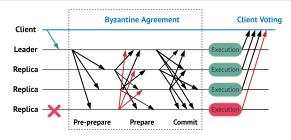


Technische Universität Braunschweig

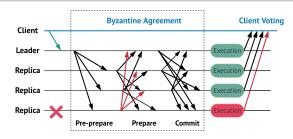


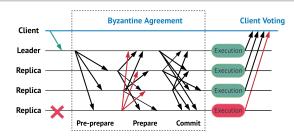
Low-Latency Network-Scalable Byzantine


Fault-Tolerant Replication

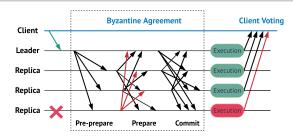
12th EuroSys Doctoral Workshop (EuroDW 2018)

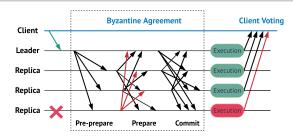
Ines Messadi, TU Braunschweig, Germany, 2018-04-23 New PhD student (Second month) in the distributed systems group Research area: Resiliency of distributed systems, Byzantine Fault Tolerance Advisor: Rüdiger Kapitza



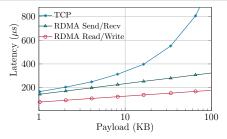


2018-04-23 | Ines Messadi, TU Braunschweig, Germany | Page 2 Low-Latency Network-Scalable Byzantine Fault-Tolerant Replication


Problem: Agreement latency overhead & message complexity in BFT

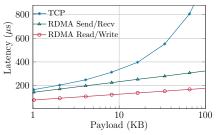

- Problem: Agreement latency overhead & message complexity in BFT
- Reason: Multiple communication rounds & slow TCP networking

- Problem: Agreement latency overhead & message complexity in BFT
- Reason: Multiple communication rounds & slow TCP networking
- New trend: Availability of modern hardware technology such as Remote Direct Memory Access (RDMA)



- Problem: Agreement latency overhead & message complexity in BFT
- Reason: Multiple communication rounds & slow TCP networking
- New trend: Availability of modern hardware technology such as Remote Direct Memory Access (RDMA)
- Consequence: A need to redesign current BFT systems
 - \hookrightarrow How can we build a secure fast and scalable RDMA-based BFT?

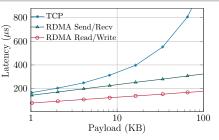
Remote Direct Memory Access (RDMA)


- Why RDMA ?
 - Zero-copy data transfer
 - Reduce communication CPU usage
- \hookrightarrow Low latency and CPU efficiency

Remote Direct Memory Access (RDMA)

- Why RDMA ?
 - Zero-copy data transfer
 - Reduce communication CPU usage
 - \hookrightarrow Low latency and CPU efficiency
- Challenges
 - Different communication mechanisms
 - Inappropriate design \Rightarrow **unexpected bad performance**
 - Security issues
 - \hookrightarrow Require an explicit design of applications

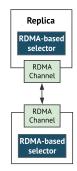
Remote Direct Memory Access (RDMA)


- Why RDMA ?
 - Zero-copy data transfer
 - Reduce communication CPU usage
 - \hookrightarrow Low latency and CPU efficiency
- Challenges
 - Different communication mechanisms
 - Inappropriate design \Rightarrow **unexpected bad performance**
 - Security issues
 - \hookrightarrow Require an explicit design of applications

Observation

Necessity to redesign the existing BFT protocols for RDMA

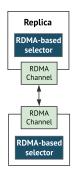
Technische Universität Braunschweig


Towards building RDMA-based BFT

- Basis BFT protocol: Hybster [Behl et al., EuroSys'17]
 - Building an RDMA-tailored BFT protocol
 - Investigating RDMA communication tradeoffs
 - Counter-measures for the resilient use of RDMA

Towards building RDMA-based BFT

- Basis BFT protocol: Hybster [Behl et al., EuroSys'17]
 - Building an RDMA-tailored BFT protocol
 - Investigating RDMA communication tradeoffs
 - Counter-measures for the resilient use of RDMA
- Preliminary approach
 - Build similar interfaces to TCP programming using RDMA
 - \Rightarrow Aiming to take fully advantage of RDMA


Towards building RDMA-based BFT

- Basis BFT protocol: Hybster [Behl et al., EuroSys'17]
 - Building an RDMA-tailored BFT protocol
 - Investigating RDMA communication tradeoffs
 - Counter-measures for the resilient use of RDMA
- Preliminary approach
 - Build similar interfaces to TCP programming using RDMA
 - \Rightarrow Aiming to take fully advantage of RDMA
- Example applications: Blockchain & coordination services

2018-04-23 | Ines Messadi, TU Braunschweig, Germany | Page 4 Low-Latency Network-Scalable Byzantine Fault-Tolerant Replication

