
Motivation Approach of TrustJS Evaluation Conclusion

TrustJS: Trusted Client-side
Execution of JavaScript

David Goltzsche1, Colin Wulf1, Divya Muthukumaran2,
Konrad Rieck1, Peter Pietzuch2 and Rüdiger Kapitza1

1TU Braunschweig, Germany
2Imperial College London, UK

EuroSec’17, April 23, 2017, Belgrade, Serbia

0 / 15

Motivation Approach of TrustJS Evaluation Conclusion

place

1 / 15

Motivation Approach of TrustJS Evaluation Conclusion

hol

1 / 15

Motivation Approach of TrustJS Evaluation Conclusion

der

1 / 15

Motivation Approach of TrustJS Evaluation Conclusion

untrusted client-side computation

1 / 15

Motivation Approach of TrustJS Evaluation Conclusion

computation repeated

1 / 15

Motivation Approach of TrustJS Evaluation Conclusion

computation not offloaded

1 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Agenda

Motivation

Approach of TrustJS

Evaluation

Conclusion

2 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Motivation

• Web applications replace traditional desktop applications

• Providers offload computations to clients
• Popular programming language: JavaScript
• Minimise round trips
• Reduce server-side resource demand

• Clients not assumed as trustworthy
• Results can be faulty
• No confidential code or data
→ Strong limitation for offloading approach

• Results of untrusted clients typically verified at server-side
• Requires recomputation, that can lead to vulnerabilites1

→ Waste of resources

1
P. Bisht, et el. NoTamper: Automatic Blackbox Detection of Parameter Tampering Opportunities in Web

Applications. CCS, 2010.

3 / 15

Motivation Approach of TrustJS Evaluation Conclusion

TrustJS

Trusted client-side execution of JavaScript

• General purpose JavaScript

• Integration in commodity browsers
• Protecting code and data

• Integrity
• Confidentiality (optional)

• Remote verification of computation results

4 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Architecture of TrustJS

Browser tab1

IE3

Browser

Browser tab2

IE3
Browser tab3

IE3
SP3Trusted channel

SP2SP1Add-on

High-level architecture of TrustJS
IE: interpreter enclave
SP: service provider

5 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Intel SGX (1/2)

• Software Guard Extensions

• Extension of x86 instruction set

• Creation of isolated compartments → enclaves

• Execution isolated from untrusted OS

• Transparent memory encryption
• Pages stored in EPC

• Support for remote attestation
• based on Intel-provided service IAS

6 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Intel SGX (2/2)

Enclave
Application

ecall
return return

ocall

enclave creation

trusted
execution

untrusted
execution

untrusted
execution

enclave destrucion

Basic interaction pattern between application and enclave

7 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Approach of TrustJS

• Use Intel SGX enclaves at client-side
• Put JavaScript interpreter MuJS in it
• ”Interpreter enclave”

• Integration as browser add-on
• Generic enclave binary shipped

• Additional trusted JavaScript interpreter in browser
• Untrusted: GUI rendering, user interaction
• Trusted: execution of integrity-protected/encrypted code

• Remote attestation to generate verifiable responses
→ Verification at server

• Developers annotate code parts for trusted execution
• Automated transition into interpreter enclave

8 / 15

Motivation Approach of TrustJS Evaluation Conclusion

TrustJS Client

HTML page

Browser process

Interpreter
enclave

JS Engine

Add-on Bridge

untrusted
JavaScript
execution

JS Engine

trusted JS execution

Client-side components of TrustJS
9 / 15

Motivation Approach of TrustJS Evaluation Conclusion

TrustJS Client

HTML page

Browser process

Interpreter
enclave

injected
content script

ports

ecalls
ocalls

JS Engine

Add-on Bridge

untrusted
JavaScript
execution

js-ctypes

JS Engine

trusted JS execution

Client-side components of TrustJS
9 / 15

Motivation Approach of TrustJS Evaluation Conclusion

TrustJS Server

<script trustjs-encrypt="yes">

/* @exposed confidentialFunction 1 */
function hiddenFunction(y) { ...

}

function confidentialFunction(x) { ...
hiddenFunction(x);

}

</script>
<script>var a = confidentialFunction(42);</script>

⇓

10 / 15

Motivation Approach of TrustJS Evaluation Conclusion

TrustJS Server

<script trustjs-encrypt="yes">

/* @exposed confidentialFunction 1 */
function hiddenFunction(y) { ...

}

function confidentialFunction(x) { ...
hiddenFunction(x);

}

</script>
<script>var a = confidentialFunction(42);</script>

⇓

<script trustjs-encrypt="yes"

trustjs-blob="X6YXkazAVA7oBZYC..9CkX0Tq9I="/>
<script>var a = confidentialFunction(42);</script>

10 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Evaluation 1/4

Client

calc2

Server
HTTP GET

calc1

calc1

HTML

t1

t2

t0

HTTP POST

Result

HTTP POST

Result

calc2

Latency build-up of traditional web application
with server-side recalculations

11 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Evaluation 2/4

Client Server IAS

Quote + public key Quote

OK

t1

Enclave start

HTTP GET

HTML

HTTP POST

Hash check

calc2

t2

Quote
verification

Secret key generation
Preparation of HTML document

HMAC verification

calc1

HMAC generation

Encrypted secret key

Result + HMAC

t0

Latency build-up of web application using TrustJS
with single server-side verification

12 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Evaluation 3/4

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10

A
pp

lic
at

io
n
 r

u
n
 t

im
e

[m
s]

Number of calculations

no TrustJS
TrustJS

13 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Evaluation 4/4

 0

 20

 40

 60

 80

 100

1 100 200 300 400 500 600

S
er

ve
r

C
PU

 u
sa

ge
 [

%
]

Number of clients

no TrustJS
TrustJS

14 / 15

Motivation Approach of TrustJS Evaluation Conclusion

Conclusion and Future Work

• TrustJS enables...
• trusted execution of JavaScript in commodity browsers

seamlessly integrated as an add-on
• service providers to save resources by removing

(re)computations on server-side
• developers to remove unnecessary round trips

• With future work TrustJS may...
• support more sophisticated JavaScript engines
• make parts of the Node.js API available in enclave

15 / 15

	Motivation
	Approach of TrustJS
	Evaluation
	Conclusion

