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untrusted client-side computation
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Motivation

• Web applications replace traditional desktop applications

• Providers offload computations to clients
• Popular programming language: JavaScript
• Minimise round trips
• Reduce server-side resource demand

• Clients not assumed as trustworthy
• Results can be faulty
• No confidential code or data
→ Strong limitation for offloading approach

• Results of untrusted clients typically verified at server-side
• Requires recomputation, that can lead to vulnerabilites1

→ Waste of resources

1
P. Bisht, et el. NoTamper: Automatic Blackbox Detection of Parameter Tampering Opportunities in Web

Applications. CCS, 2010.
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TrustJS

Trusted client-side execution of JavaScript

• General purpose JavaScript

• Integration in commodity browsers
• Protecting code and data

• Integrity
• Confidentiality (optional)

• Remote verification of computation results
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Architecture of TrustJS

Browser tab1
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High-level architecture of TrustJS
IE: interpreter enclave
SP: service provider
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Intel SGX (1/2)

• Software Guard Extensions

• Extension of x86 instruction set

• Creation of isolated compartments → enclaves

• Execution isolated from untrusted OS

• Transparent memory encryption
• Pages stored in EPC

• Support for remote attestation
• based on Intel-provided service IAS
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Intel SGX (2/2)
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Basic interaction pattern between application and enclave
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Approach of TrustJS

• Use Intel SGX enclaves at client-side
• Put JavaScript interpreter MuJS in it
• ”Interpreter enclave”

• Integration as browser add-on
• Generic enclave binary shipped

• Additional trusted JavaScript interpreter in browser
• Untrusted: GUI rendering, user interaction
• Trusted: execution of integrity-protected/encrypted code

• Remote attestation to generate verifiable responses
→ Verification at server

• Developers annotate code parts for trusted execution
• Automated transition into interpreter enclave
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TrustJS Client

HTML page
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JS Engine

trusted JS execution

Client-side components of TrustJS
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TrustJS Client
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Client-side components of TrustJS
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TrustJS Server

<script trustjs-encrypt="yes">

/* @exposed confidentialFunction 1 */
function hiddenFunction(y) { ...

}

function confidentialFunction(x) { ...
hiddenFunction(x);

}

</script>
<script>var a = confidentialFunction(42);</script>

⇓
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TrustJS Server

<script trustjs-encrypt="yes">

/* @exposed confidentialFunction 1 */
function hiddenFunction(y) { ...

}

function confidentialFunction(x) { ...
hiddenFunction(x);

}

</script>
<script>var a = confidentialFunction(42);</script>

⇓

<script trustjs-encrypt="yes"

trustjs-blob="X6YXkazAVA7oBZYC..9CkX0Tq9I="/>
<script>var a = confidentialFunction(42);</script>
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Evaluation 1/4

Client
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calc2

Latency build-up of traditional web application
with server-side recalculations
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Evaluation 2/4

Client Server IAS

Quote + public key Quote

OK

t1

Enclave start

HTTP GET

HTML

HTTP POST

Hash check

calc2

t2

Quote
verification

Secret key generation
Preparation of HTML  document

HMAC verification

calc1

HMAC generation

Encrypted secret key

Result + HMAC
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Latency build-up of web application using TrustJS
with single server-side verification
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Evaluation 3/4
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Evaluation 4/4
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Conclusion and Future Work

• TrustJS enables...
• trusted execution of JavaScript in commodity browsers

seamlessly integrated as an add-on
• service providers to save resources by removing

(re)computations on server-side
• developers to remove unnecessary round trips

• With future work TrustJS may...
• support more sophisticated JavaScript engines
• make parts of the Node.js API available in enclave
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