Institute of Operating Systems
and Computer Networks

Technische

Universitat
Braunschweig

TrustScript: Language Support for

Partitioning Trusted Web Applications

David Goltzsche, Tim Siebels, Riidiger Kapitza | TU Braunschweig, Germany
goltzsche@ibr.cs.tu-bs.de, siebels@ibr.cs.tu-bs.de, rrkapitz@ibr.cs.tu-bs.de

Problem Statement TypeScript

. . m Syntactical superset of JavaScript
m Previous work Trust)S achieves trusted client-side execution of y P J P

avaScript using trusted execution environments (TEEs)

m Added features: types, namespaces, interfaces, ...

J

m Partionining of JavaScript code is necessary = Type checking in compilation step

I No existing development tools for Trust)S = Transcompiles to pure JavaScript

! Time-consuming and error-prone development " Compiler itself written in TypeScript

m Goal: first-class language support for partitioning web applications " Type definitions for interfacing TypeScript and JavaScript

“» Approach: Extend TypeScript language to support partitioning

TrustScript Features
m Single keyword added to TypeScript language: trusted

Trust)S

m Trust)S enables trusted, client-side execution of JavaScript

publishedE at EuroSec’1y

m New namespace type: trusted namespace m Protected JavaScript engine integrated into web browsers for

securely offloading JS applications

= Other possible approaches: annotations, trusted functions

m Compilation from a single file into separate files: trusted and untrusted ® Enclave implementation based on Intel SGX

m Existing export keyword used for exposing functions to untrusted side ! Partitioning of JavaScript code is necessary
= Only explicitly exposed functions are callable from untrusted side
= Name mangling for elements in trusted namespaces
» Preventing name clashes due to different trusted namespaces
m Diagnostics: compiler warnings and errors
= Exporting other elements than functions from trusted namespaces

= DOM access from trusted side

» Calling an untrusted function from within trusted namespace
m |IDE support for Visual Studio Code

1Goltzsche et al. "Trust]S: Trusted Client-side Execution of JavaScript." Proceedings
of the 10th European Workshop on Systems Security. ACM, 2017.

Written Code

// File: counter.ts
trusted namespace inside {
let count = 0;
export function counter(): number

{

return ++count;

¥

namespace outside {
async function printCounter()

{

console.log("Counter: +
(awalit 1nside.counter())
) ;
¥

Emitted Code

// File: counter_trusted. js

/* @exposed

__tsNSinsideFcounter 0;%*/

var __tsNSinsideFcount = 0;
function __tsNSinsideFcounter() {

return ++__tsNSinsideFcount;

¥

// File: counter.js
var outside;
(function (outside) {
async function printCounter() {

console.log("Counter: +
(await __tsNSinsideFcounter())

);

}
}) (outside || (outside = {}));

Future Work

m Currently, only local TEEs possible

m Extend our approach for enclaves in
remote browsers

m Based on WebRTC

D
J

Browser

r

D

Browser
Browser

r
\,
,
\,

